Keep It Simple: Bidding For Servers In Today’s
Cloud Platforms

Prateek Sharma, David Irwin, Prashant Shenoy

Abstract—Public clouds now offer computing services with a variety of
pricing schemes. Spot servers, which offer large cost savings, are an
increasingly popular platform on which applications are being deployed.
Spot servers are dynamically priced and require users to submit a bid.
In this article, we show the effect of bidding on application cost and
availability when running on spot servers. Based on our analysis, we
present simple and effective bidding strategies for users and motivate new
research directions in cloud resource management and fault tolerance.

1 INTRODUCTION

Today’s TaaS cloud platforms such as Amazon EC2 and Google
Cloud Platform rent computing resources on demand in the form
of virtual machine servers and offer numerous benefits, including a
pay-as-you-use pricing model, the ability to quickly scale capacity
when necessary, and low costs due to their high degree of statistical
multiplexing and massive economies of scale.

IaaS platforms rent servers under a variety of contract terms
that differ in their cost and availability guarantees. The simplest
type of contract is for an on-demand server, which a customer
may request at any time and incurs a fixed cost per unit time of
use. In contrast, spot servers provide an entirely different type of
contract for the same resources. Spot servers incur a variable cost
per unit time of use, where the cost fluctuates continuously based
on the spot market’s instantaneous supply and demand. Unlike
on-demand servers, spot servers are revocable: the cloud platform
may unilaterally preempt them at any time.

In the case of Amazon EC2, the cost and availability of spot
servers is governed by an auction mechanism. A customer specifies
an upper limit (a “bid”) on the price they are willing to pay for
a spot server, and EC2 reclaims the server whenever the server’s
spot price rises above the bid. Since spot servers incur a risk of
unexpected resource loss, they offer weaker availability guarantees
than on-demand servers and tend to be cheaper—the average price
of spot servers is only 10-30% of the on-demand servers.

Conventional wisdom has held that careful selection of bid-
price is important to balance the cost-availability tradeoff—since a
high bid may increase costs but also increase spot server availability.
In this article, we show that spot instance bidding need not be
complicated. We analyze empirical price data of over 1,500 spot
markets over a six month period, and show that a wide range of
possible bids have approximately the same intended effect on the
cost and availability. We show that while careful bid selection
doesn’t significantly impact the cost-availability tradeoff, careful
spot market selection is important to reduce costs and effects of
revocations.

Based on our analysis, we argue for simple bidding strategies

ot
o
{

Spot price
On-demand price

© o o
N b

Price ($/hr)

=4
=

o
o

50 100 150

Time (minutes)

Fig. 1. Variations in spot price of the m3.medium instance type. The
spot price is generally much lower than the on-demand price, but shows
ocassional spikes.

and describe best-practices when deploying applications on spot
servers. We identify challenges and opportunities in reducing the
impact of spot revocations (which are akin to machine failures)
on application performance. Our goal is to provide practical
suggestions to simplify bidding, and to motivate new directions in
cloud computing research.

2 BIDDING FOR SPOT INSTANCES

Spot instances allow cloud platforms to gain revenue from surplus
idle resources. Amazon EC2 uses a market mechanism to sell this
capacity where users place a bid for servers, and EC2 allocates them
if the bid is higher than the spot price, which varies continuously
based on supply and demand. When the spot price rises above a
user’s bid price, EC2 revokes the servers. EC2 determines the spot
price by running a sealed-bid multi-unit second-price auction [2].
Note that the underlying supply of surplus servers in the spot pool
also changes dynamically, since EC2 may take resources from the
spot pool to allocate new on-demand instances. Thus, the spot price
changes dynamically both as users submit new bids, and as the
spot pool’s capacity changes (Figure [I).

To use a spot server, users place a single, fixed bid, which
represents the maximum hourly price that they are willing to pay.
The bids can range from zero to ten times the on-demand price.
Based on the current bids for the server and the available supply,
a spot price is determined by a continuous auction. Because this
is a second-price auction, users pay the spot price, which may be
lower than the bid. If the market price increases above the user’s
bid, then the spot instance is revoked and terminated after a small
(120 second) warning. The prices for each spot server type (also
referred to as a spot market) are independently determined. The
combination of different server sizes and geographical regions

determines a market, and Amazon runs over 2,500 spot markets
globally.

A low bid means that the user is price-sensitive and is only
willing to pay a low price for the spot servers. But a server with
a low bid may suffer from low availability and higher likelihood
of being revoked if the market price increases above the bid
price. Frequent revocations may cause application downtimes,
missed deadlines, and decreased performance as the application
recovers from revocations which are akin to machine failures.
Thus bidding presents the user with a tradeoff between cost and
availability/revocation-rate, which may further impact application
performance.

Careful selection of bids via bidding strategies has received
wide attention in both research [[7] and industry. Bidding strategies
have been proposed for minimizing costs with different constraints
(deadlines, etc.) for a wide range of applications (Map-Reduce,
scientific-computing, etc.). Bidding’s complexity may be one reason
why, despite its extremely low prices (70-90% less than on-demand
instances), the spot market has low utilization [3]]. As we discuss,
however, the bidding problem in today’s markets (and possibly
in future markets) is not particularly important for maximizing
performance and minimizing costs using spot servers.

3 EFFECT OF BIDDING

To understand the effect of bidding for spot instances, we analyze
spot prices over a six month period from March to August 2015
(and longer periods where stated) of 1,500 spot markets. For ease of
exposition, we begin our discussion by analyzing the most popular
instance types in the most popular region, i.e., Linux instances in
the us-east-1 region.

Bidding strategies optimize the cost-availability tradeoff for
spot instances: as a user increases their bid, they may pay more per-
hour, but their availability also increases. However, spot price data
across many markets shows that there is a wide range of “optimal”
bids that essentially yield the same availability for the same cost.
This is because the spot prices are “spiky”. In figure [T| we see that
the price spikes can be almost 10x the on-demand price—the same
as the upper-bound on the bid-price. Thus no matter what the bid,
the spot instance will be revoked during these large spikes.

To illustrate, Figure Eka) shows a CDF of availability for
instance types in five different markets over our six month period,
where the x-axis is a user’s bid normalized to the on-demand price,
i.e., 2 is 2x the on-demand price, etc. As expected, availability
monotonically increases with the bid. However, the CDF has an
extremely long tail, and there is little increase in availability after
some bid threshold and only bids that fall within the steep range
of the incline yield different availabilities. As the graph shows,
this range of bids is quite small, providing only a narrow window
where changing a bid will have a significant effect on availability.
Thus, availability of spot instances is not sensitive to bidding for a
large range of bid prices.

The insensitivity of bidding in determining the average cost of
spot instances can similarly be seen in Figure[2[b). In this case, the
cost on the y-axis is a fraction of the on-demand cost. The cost is
monotonically increasing with the bid amount. However, just as
with availability, the cost curve has a long tail, such that higher
bids result in little or no increase in cost. This occurs because most
markets always have a low and stable spot price, with the average
spot price <0.2x the on-demand price. Just as with availability,
bidding has little effect on the cost of spot instances, since there is

2

no penalty for bidding high because of the second-price nature of
the auction.

Finally, the frequency of revocations, as indicated by their mean-
time-between-revocations (MTBR), is another important metric,
since revocations incur overhead for applications that restart or
migrate. Figure 2Jc) shows the MTBR for different bids. The
figure shows that MTBRs range from tens to hundreds of hours. In
addition, the MTBRs also have a long tail in all but one market,
such that bidding high does not significantly increase the MTBR
and there is a wide range of bids with effectively the same MTBR.
Regardless of the bid price, revocations are unavoidable when using
spot instances.

In addition to the five markets discussed above, we also
analyzed these properties in over 1,500 spot markets, and found
that availability, cost, and MTBR are insensitive to bidding for
most markets. Figure |3|is a succinct representation of our findings
for the 1,500 markets. We show the length of the range of bids for
which the availability, cost, and MTBR are all within 10% of the
“optimal” bid. The optimal bid is the bid that yields the highest
availability and MTBR for the lowest cost. In EC2, the maximum
bid can be 10x the on-demand price, and thus the max bid range
is 10. We see from Figure [3] that the bid range length is more than
9 for most markets, with very few outliers. This indicates that if
one were to pick randomly, more than 90% of the bids would be

optimal.
10
9 I ? ? E |
T |
|

Bid range length
~
T

+ i
6} .
+
5h + $:
L L
Avail. Cost MTBR

Fig. 3. Range of bids for which availability, cost, and MTBR is within 10%
of optimal across 1500 markets.

A Simple Strategy: Based on our analysis, we argue that cloud
customers need not employ sophisticated bidding and can instead
use simple strategies as described next. (i) Select the spot server
type carefully to reduce revocation risk. (ii) Use a bid price equal
to the on-demand price. (iii) Diversify when possible by choosing
multiple spot server types. (iv) If revoked, migrate the application
state to a new spot server in a different market. Next, we discuss
several design considerations in implementing such a strategy.

4 MITIGATING SPOT INSTANCE REVOCATIONS

Applications can use the characteristics of spot markets to minimize
their costs and impact of revocations. Careful spot market selection
and using the appropriate fault-tolerance policies can drastically
reduce the impact of revocations while also lowering costs.

Market Selection. Carefully selecting spot markets, instead of
being restricted to a particular server type, can greatly increase
the effectiveness of spot servers. For distributed applications, a
useful strategy is to use multiple spot markets, i.e. servers in
different availability zones and of different types (small, large, etc.).
We have observed that price variations across markets are largely
uncorrelated (Figure[). In general, revocations in different markets

| — g2.2xlarge — c3.xlarge r3.large — - m3.medium - - d2.8xlarge
(a) Availability CDF (b) Expected Cost (c) MTBR
T T T Iy T 0~8 T T Ip T T 200 T T 'I T T
1.0 —_— n 0.7L :
- 0.8 i 0.6 w 150 : :
= > .
= o 0.5 S :
3 0.6] § 0.4} < 100} X 1
S 04 . 03f [=———=== = E ;
7
<02 0.27#:/—F 1 S sof 1
’ i 01— . P e
0.0 I I I ool I I I ole i I I I
2 3 4 5 0 1 3 4 5 0 1 2 3 4 5

Fig. 2. The effect of bidding on availability, expected cost, and MTBR for selected instance types. Bids and the expected costs are normalized to a

factor of the corresponding on-demand price.

do not occur at the same time. When deployed on a single market,
a price spike results in revocation of all the servers. If instead
multiple markets are used, then the application can continue to run
on remaining unaffected servers.

16 T T T T T T T
14 - m | §o0
12 | 7.5
10 u | | 6.0
8 4.5
6 3.0
- |
. g CIREEE
5 0.0
o 1 H-1.5

0 2 4 6 8 1012 1416

Fig. 4. Correlation between different spot markets in the us-east-1 region.
Darker squares indicate higher correlation.

Fault Tolerance. Fault tolerance policies and migration strategies
are key in light of the inevitability of revocations and the availability
of multiple markets. We can treat server revocation events as fail-
stop failures, and choose the suitable application-specific fault-
tolerance policy. Checkpointing is a commonly used strategy,
and by periodically checkpointing state to network storage, the
application can resume from the most recent checkpoint. This
periodic checkpoint can be performed either at the system-level
using nested virtualization [6], or by using the application’s built-in
checkpointing mechanism (e.g., Spark [5] and MPI [4])).

Spot server revocations come with a small 120 second warning,
and this warning can expand the fault tolerance choices available
and reduce their overhead. For example, it may be possible for
certain applications to react on revocation warning and complete
a checkpoint, instead of periodically. Thus, there exist research
opportunities in determining efficient checkpointing and migration
strategies to exploit cheap but revocable spot servers.

Finally, we must emphasize that it is the combination of spot
market and fault tolerance policies that determines performance
and costs. An application deployed on a single market is more
susceptible to failure and thus requires stronger fault tolerance, and
potentially incurs a higher performance overhead. Selecting the
right market may involve considering its average cost, availability

and MTTR. Tools like Amazon bid-advisor [[1]] can help users in
picking markets. A diversified portfolio of markets might reduce
revocation risk, but at a higher cost, since it entails picking
uncorrelated markets which may not have the lowest prices.

5 CONCLUSION AND FUTURE OF SPOT MARKETS

The analysis of historical spot price data leads us to conclude that
bidding can be kept simple in today’s spot markets. Instead, users
should carefully select markets and fault tolerance policies for their
applications.

Our results are predicated on the nature of current spot prices
which are generally low but with occasional spikes. Increased usage
of spot servers might change these price characteristics. If the cost
and availability CDFs are no longer long-tailed, then bidding’s
importance will increase. However, an increased demand for spot
servers might be met with an increase in supply, and the price
characteristics might remain unchanged. The second-order effects
of increasing spot server usage is thus unclear and remains an open
question.

REFERENCES
[1

2

—

Ec2 Spot Bid Advisor.
September 2015.

O. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir. Decon-
structing Amazon EC2 Spot Instance Pricing. ACM TEC, 1(3), September
2013.

[3] S. Higginbotham. Bidding Strategies? Arbitrage? AWS Spot Market is
where Computing and Finance Meet. Gigaom, October 8th 2013.

A. Marathe, R. Harris, D. Lowenthal, B. R. de Supinski, B. Rountree, and
M. Schulz. Exploiting Redundancy for Cost-effective, Time-constrained
Execution of HPC Applications on Amazon EC2. In HPDC, 2014.

P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy. Flint: Batch-Interactive
Data-Intensive Processing on Transient Servers. In EuroSys, April 2016.
[6] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy. SpotCheck: Designing
a Derivative IaaS Cloud on the Spot Market. In EuroSys, April 2015.

L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang. How to Bid
the Cloud. In SIGCOMM, August 2015.

https://aws.amazon.com/ec2/spot/bid-advisor/,

—

[4

=

[5

[t}

[7

—

Prateek Sharma is a PhD student in the College of Information and
Computer Sciences at the University of Massachusetts Amherst. His
current research focuses on cloud computing. Contact him at pra-
teeks@cs.umass.edu.

David Irwin is an Assistant Professor in the Department of Electri-
cal and Computer Engineering at the University of Massachusetts
Amherst. His research interests are broadly in experimental computing
systems with a particular emphasis on sustainability. Contact him at
irwin@ecs.umass.edu.

https://aws.amazon.com/ec2/spot/bid-advisor/

Prashant Shenoy is a Professor of Computer Science at the University
of Massachusetts Amherst. His current research focuses on cloud
computing and green computing. He is a distinguished member of the
ACM and a Fellow of the IEEE. Contact him at shenoy@cs.umass.edu.

	Introduction
	Bidding For Spot Instances
	Effect of Bidding
	Mitigating Spot Instance Revocations
	Conclusion and Future of Spot Markets
	References
	Biographies
	Prateek Sharma
	David Irwin
	Prashant Shenoy

