

Video BenchLab Demo: An Open Platform for Video
Realistic Streaming Benchmarking

Patrick Pegus II Emmanuel Cecchet Prashant Shenoy
University of Massachusetts Amherst

{ppegusii,cecchet,shenoy}@cs.umass.edu

ABSTRACT
In this demonstration, we present an open, flexible and realistic
benchmarking platform named Video BenchLab to measure the
performance of streaming media workloads. While Video
BenchLab can be used with any existing media server, we provide
a set of tools for researchers to experiment with their own
platform and protocols. The components include a MediaDrop
video server, a suite of tools to bulk insert videos and generate
streaming media workloads, a dataset of freely available video
and a client runtime to replay videos in the native video players of
real Web browsers such as Firefox, Chrome and Internet
Explorer. Various metrics are collected to capture the quality of
video playback and identify issues that can happen during video
replay. Finally, we provide a Dashboard to manage experiments,
collect results and perform analytics to compare performance
between experiments.
The demonstration showcases all the BenchLab video
components including a MediaDrop server accessed by real web
browsers running locally and in the cloud. We demo the whole
experiment lifecycle from creation to deployment as well as result
collection and analysis.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools, .D 2.8 [Metrics]:
Performance measures.

General Terms
Measurement, Performance, Experimentation.

Keywords
Benchmarking, Video, Streaming, Web browsers.

1. INTRODUCTION
This demo presents some of the features described in the MMSys
conference paper [5]. The BenchLab project seeks to offer an
open, freely-available platform for realistic benchmarking of
servers applications. While BenchLab was initially designed to
support web-based applications and services (e.g., multi-tier web
applications accessed from browser-based clients), Video

BenchLab is an enhanced platform that provides similar functions
for streaming media servers and protocols accessed via browser-
based players. Towards this end, Video BenchLab uses real web
browsers running real video players to request HTTP streaming
content from the server. A key goal of Video BenchLab is to
enable automation for running complex experiments where
clients, servers or both may be distributed or running on remote
machines such as cloud servers; an experiment comprises a set of
clients that are controlled remotely by the platform and provided
with a video request trace that they then inject on the specified
server or set of servers. The content is streamed to HTML5
players supported by modern browsers and a range of statistics
are gathered and uploaded to a central database. Real user
behavior when watching video content such as pausing, skipping
or clicking on related videos can be simulated as part of the trace
replay. BenchLab provides the ability to inject requests onto real
servers (e.g., YouTube) and also provides a synthetic server
backend based on MediaDrop that emulates a YouTube-like
system on small scale. Our goal is to enable a range of
performance evaluation experiments related to server design,
streaming protocol performance, network performance and client-
side performance. Finally, Video BenchLab includes new tools
that permit analysis of results across different runs of an
experiment. We believe that the open nature of the BenchLab
platform makes it an attractive choice for multimedia systems
researchers for use in their own research and experimentation.

2. VIDEO BENCHLAB
Video BenchLab provides multiple components and tools for
researchers to experiment with media streaming environments: a
streaming server virtual appliance (section 2.1), video data sets
and workload generators to exercise these datasets (section 2.2), a
client runtime to play videos in existing Web browsers using their
native HTML5 players or the YouTube JavaScript API (section
2.3) and a Web Application hosting a database to define
experiments, collect results and provide analytics (section 2.4).

2.1 MediaDrop Virtual Appliance
While Video BenchLab can be used with any existing video
streaming service, there is no readily available virtual appliance
of realistic video streaming servers that can be used by
researchers to perform media streaming experiments. Recently,
in-browser HTML 5 video playing has become standard since the
switch of all major players to HTTP streaming [4]. To provide a
relevant benchmark, we chose MediaDrop [3], a redistributable
open source platform supporting HTML5 video streaming that
also included social media features such as comments, view
counts and likes. Like modern video streaming platforms,
MediaDrop offers content management, statistics and popularity
ranking and social media aspects such as comments, Twitter and
Facebook integration.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
MMSys '15, Mar 18-20, 2015, Portland, OR, USA
ACM 978-1-4503-3351-1/15/03.
http://dx.doi.org/10.1145/2713168.2723146

We have built an Amazon EC2 virtual machine image with a
complete installation of MediaDrop ready to use. We will perform
a demonstration of this virtual appliance that we have made
publicly available on EC2.

We also provide the Ganglia monitoring tools to report on cpu,
memory, disk and network utilization if the cloud infrastructure
does not already report these metrics. When network throttling is
needed, we rely on the Linux traffic controller hierarchical token
bucket (tc-htb) to limit the MediaDrop server bandwidth.

2.2 Video datasets, tools, and workloads
While Video BenchLab allows a researcher to upload any video
dataset into the MediaDrop appliance, for ease of use, we provide
an initial video dataset for research use. All videos in our dataset
were obtained from a set of videos on Vimeo[6] that are
distributed under a Creative Commons Attribution and thus can
be used and modified by researchers without licensing restriction.
Table 1 summarizes our video dataset, which contains videos on
topics such as news, general entertainment and sports.

Table 1. Video dataset specifications

Category # of videos Duration Video size

Small 20 (10SD-10HD) 0-5 min 2.9-68MB

Medium 8 (4SD-4HD) 5-10 min 20MB-73MB

Large 5 (3SD-2HD) 10min – 1H+ 18MB-203MB

Importing videos through the MediaDrop Web interface is a
multistep process that involves a user uploading a video and an
administrator approving the video for it to be available for others
to stream. This process is too cumbersome for bulk video inserts
or large dataset creations. We provide tools to perform bulk
inserts of videos directly in the MediaDrop database to make
them readily available with their thumbnails.

Typical BenchLab workload traces include a unique request id, a
timestamp indicating when the request must be played, a client id
identifying the browser, the URL to visit as well as optional
interactions with Web elements in the visited page. The trace
format for video workloads extends the original format by adding
video manipulation commands. The supported commands are:

 play: play the video from the current position
 pause: pause the video at the current position
 change_quality(quality): changes the quality of the

video (player specific, e.g. in MediaDrop implemented as
pause/load new media file/seek to previous current
position/resume, in YouTube implemented as a call to
setPlaybackQuality). quality is one of the pre-defined
values lowest, highest, lower or higher, which
changes to the lowest, highest, next lower available and next
higher available quality, respectively.

 skip_ads: skip the in-stream advertisement (player specific,
currently only available for YouTube).

 quit: end the playing right now and proceed to the next entry
in the trace

 seek(video_position): seek the video to the given
position in seconds since the beginning of the video. The
position is defined by a numerical value or a formula using the
video length and current_position provided by the
BCR. Example:
o Seek to 1 minute into the video: seek(60)

o Seek to the middle of a video: seek(length/2)
o Jump 30 seconds: seek(current + 30)

 wait_for(timeout,[video_position]): wait for the
timeout to expire or the current video position to reach the
given value, whichever comes first. The wait_for command
should always be followed by another command. The timeout
can either be a relative value in seconds or an absolute
timestamp. The video_position parameter is defined in a
similar way as the seek command:
o Wait for the video to reach 1 minute playback within 2

minutes: wait_for(120, 60)
o Wait for the video to reach the middle of the playback with

a maximum 20% delay:
wait_for((length/2)*1.2, length/2)

o Wait until the given timestamp before executing the next
command: wait_for(‘2015-01-16 12:30:10.5’)

o Wait until the video ends: wait_for(0,length)

The default script that just plays a video until its end is as
follows:|
VideoBenchLab={player_type:html5|youtube,
 commands:{play, wait_for(0,length), quit}}

Multiple browsers can be synchronized by using the timestamp
field in the trace. Recall that the trace format is:
<request id>,<client id>,<timestamp>,<URL>,<parameter>

The following trace starts 3 clients at a 10 seconds interval, each
client going first to the YouTube homepage and 5 seconds later
playing a video (URLs are abbreviated):
1, 1, 2015-01-16 00:00:00.0, http://youtu.be,null
2, 1, 2015-01-16 00:00:05.0, http://youtu.be/…,VideoBenchLab={…}
3, 2, 2015-01-16 00:00:10.0, http://youtu.be,null
4, 2, 2015-01-16 00:00:15.0, http://youtu.be/…,VideoBenchLab={…}
5, 3, 2015-01-16 00:00:20.0, http://youtu.be,null
6, 3, 2015-01-16 00:00:25.0, http://youtu.be/…,VideoBenchLab={…}

2.3 Video BenchLab Client Runtime
A central contribution of Video BenchLab is the ability to replay
traces through real Web browsers. The Video BenchLab Client
Runtime (BCR) extends the open source Selenium [4] framework
with functionalities to download a video trace, replay it via a real
web Browser by issuing HTTP requests for video, record
streaming performance statistics for each page and upload the
results at the end of the replay. Unlike traditional load injectors
that work at the network level, replaying through a Web browser
accurately performs all the complex interactions between the
browser and the server. When playing videos, the unmodified
native player or plugin extensions of the browser are used giving
insights on real world performance on any platform or software
combination.

Figure 1.Video BenchLab Client Runtime (BCR) architecture

BenchLab Client Runtime

Native
Firefox
browser

Selenium

Firefox driver
Trace

Processing

Network

Storage

tra
ce

Video
Log snap-

shot

Video streaming
services

Snapshot
generator

Video
instrumentation

Figure 1 gives an overview of the architecture of the BCR with a
Firefox browser as an example. We also support Chrome and
Internet Explorer browsers. In order to benchmark HTML5 video,
the BCR executes JavaScript on the video web page to collect
performance metrics. The script instructs the browser to record
video metadata, including MIME type, resolution and duration,
current time, video position, buffer start and end positions, and, if
supported by the player, when the video has stalled. This data can
be used to extract information about potential lags or skips during
the video replay. As each player might store these values
differently, the data collection code is specific to each video
player. We have implemented data collectors for the native
standard HTML5 player found in every browser and the YouTube
player.

2.4 BenchLab Dashboard to orchestrate
experiments

The BenchLab Dashboard is used to setup and automatically run
performance experiments as well as gathering experimental
results. It provides a Web interface (standard Java WebApp) to
interact with experimenters that want to create experiments using
an arbitrary number of browsers and servers. The Dashboard
gives an overview of the browsers currently connected, the
experiments (created, running or completed) and the Web traces
that are available for replay.

Video workload trace files are uploaded by the experimenter
through a Web form and stored in the Dashboard database. The
BenchLab Dashboard does not deploy, configure or monitor any
server-side software. There are a number of deployment
frameworks (Gush, WADF, JEE, .Net deployment service, etc)
and monitoring tools (Ganglia and fenxi are popular choices) that
users can choose from depending on their preferences.

Anyone can deploy a BenchLab Dashboard and therefore build
his or her own experiment repository. An experiment defines what
trace should be played and how. The user defines how many
browsers should replay the sessions with eventual constraints
(specific platform, version, location…). The experiment can start
as soon as enough clients have registered to participate in the
experiment. The Dashboard does not deploy client web browsers,
rather it waits for the browsers to connect and its scheduler
assigns them to experiments.

3. Demo
For this demo, we are deploying a BenchLab Dashboard and a
BCR on the local laptop. We also deploy another BCR in Amazon
EC2 as well as our MediaDrop server as shown on Figure 2. The
trace file used for the demo is shown in Figure 3.

The first browser plays a video from a MediaDrop player running
on EC2, waits for 5 seconds, then seeks to the middle of the video
and waits for the video to finish with a maximum delay of 20%.
The second browser plays a YouTube video that has in-stream
ads. After 10 seconds the ads are discarded and the video is
played for 5 seconds before being paused. The playing resumes
for 5 seconds before switching the quality to a higher quality and
waits for another 30 seconds before terminating.

Figure 2 gives an overview of the BenchLab components and how
they interact to run an experiment. The Video BenchLab Client
Runtime (BCR) starts and controls the native Web browser on the
client machine. On startup, a BCR connects the browser to a
BenchLab Dashboard (step 1 in Figure 2). When the browser

connects to the Dashboard, it provides details about the exact
browser version and platform runtime it currently executes on as
well as its IP address and location if available.

A new experiment is created using the Web interface of the
Dashboard that automatically redirects the BCR to a download
page where it gets the trace for the session it needs to play. The
BCR stores the trace on the local storage and makes the Web
browser regularly poll the Dashboard to get the experiment start
time. There is no communication or clock synchronization
between BCRs, they just get a start time as a countdown in
seconds from the Dashboard that informs them ‘experiment starts
in x seconds’ through a Web form. The status of browsers is
recorded by the Dashboard and stored in a database.

Figure 2.Video BenchLab experiment flow overview
1, 1, 2015-01-16 00:00:00.0,

http://ec2.amazon.com/mediadrop/…,
VideoBenchLab = {player_type: html5,
 commands: [
 play,
 wait_for(5),
 seek(length/2),
 wait_for(1.2*length/2,length),
 quit]}

2, 2, 2015-01-16 00:00:00.0,
http://youtube.com/…,
VideoBenchLab = {player_type: youtube,
 commands: [
 play,
 wait_for(10),
 skip_ads,
 wait_for(5),
 pause,
 wait_for(5),
 play,
 wait_for(5),
 change_quality(higher or hd720),
 wait_for(30),
 quit]}

Figure 3. Trace used for the experiment playing a video from
MediaDrop and another from YouTube

Amazon
EC2

BCR VM

BCR

MediaDrop VM

BenchLab
Dashboard

traces
experiments
browser status
results

1
Register
Download trace
Wait for start

2
Play trace
Record perf.

3

Upload
results 3

When the experiment start time has been reached, the BCRs play
their trace through their Web browser monitoring each interaction
(step 2 in Figure 2). For each URL visited, BCRs record Web and
video performance metrics. The results are uploaded to the
Dashboard at the end of the experiment (step 3 in Figure 2). The
Dashboard provides a number of ways of visualizing data and
comparing results between experiments. The entire database with
experiment configuration, traces and results can also be easily
exported to be shared with other researchers.

Figure 4 shows a smooth HTML5 video streaming from our
MediaDrop server running on EC2. The jump at the 5 second
mark corresponds to the command to seek to the middle of the
video. There is no buffer underrun and the video plays smoothly
all along.

Figure 4. Analysis of an HTML5 video streaming from a
MediaDrop server running on EC2

Figure 5 shows an example of the video analysis graphs computed
by the BenchLab Dashboard. Besides the video buffer size and
video current position over time, the amount of user perceived lag
and the seconds of video skipped during replay are also shown to
diagnose issues.

Figure 5. Sample of a MediaDrop video playing analysis using
the BenchLab Dashboard

The Dashboard also allows the experimenter to compare different
experiments and browsers to easily analyze experimental results
at a large scale. We are currently working on expanding the set of
analysis tools to automate result processing.

4. Implementation and Platform Availability
Video BenchLab is an open platform that is designed for
benchmarking streaming media workloads. Hence, all
components of the Video BenchLab software suite are freely
available under an open source license and downloadable from
SourceForge at http://sf.net/projects/benchlab. Additional details

of our platform are available from the BenchLab project page at
http://lass.cs.umass.edu/projects/benchlab. Our software suite
comprises several components summarized in Table 2.

Table 2. Summary of tools in the Video BenchLab suite

Tool Description Platforms

MediaDrop Video streaming server Linux

mediaload
Bulk video import for

MediaDrop
Linux/python

metadump Video metadata export Linux/python

loadgen Video workload generator Linux/python

BCR
Video BenchLab Client

Runtime

Firefox+Chrome on
Linux/Windows, IE

on Windows

HTML5
collector

BCR data collector for
HTML5 video players

All browsers

YouTube
collector

BCR data collector for
YouTube video player

All browsers

Dashboard
Experiment management,

result db and analytics
Java Web container

(e.g. Tomcat)

These components are available individually and as a packaged
platform to permit flexibility in how they are used for
experimentation. We have also published on SourceForge our
experimental Dashboard database with all the results contained in
our MMSys 2015 paper [5]. To help with reproducibility of
experimental results, anyone can import this database in their own
Dashboard and rerun the experiments. We have also provided
Amazon EC2 images (AMIs) for MediaDrop, BCR and
Dashboard so that anyone can reproduce the experiments
conducted in this paper.

Acknowledgements: This research and the development of
BenchLab and Video BenchLab is supported in part by a National
Science Foundation grant 1339839.

5. REFERENCES
[1] ACM Multimedia Systems conference Dataset archive,

http://traces.cs.umass.edu/index.php/Mmsys/Mmsys

[2] Philip Bräunlich and Gerrit van Aaken – HTML5 Video
Player Comparison – http://praenanz.de, last update 2014-
07-09.

[3] M. Larson, M. Soleymani, M. Eskevich, P. Serdyukov, R.
Ordelman, and G. Jones. "The community and the crowd:
Developing large-scale data collections for multimedia
benchmarking." IEEE Multimedia, (2012).

[4] Li, Mingzhe, Mark Claypool, Robert Kinicki, and James
Nichols. "Characteristics of streaming media stored on the
Web." ACM Transactions on Internet Technology (TOIT) 5,
no. 4: 601-626, 2005.

[5] P. Pegus, E. Cecchet, and P. Shenoy, “Video BenchLab: An
Open Platform for Realistic Benchmarking of Streaming
Media Workloads”, in Proc. ACM Multimedia Systems
Conference (MMSys), Portland, OR, 2015.

[6] Slingerland, Nathan T., and Alan Jay Smith. "Design and
characterization of the Berkeley multimedia workload."
Multimedia Systems 8, no. 4: 315-327, 2002.

