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Abstract—In this paper, we argue that weak cache consistency mechanisms supported by existing Web proxy caches must be

augmented by strong consistency mechanisms to support the growing diversity in application requirements. Existing strong

consistency mechanisms are not appealing for Web environments due to their large state space or control message overhead. We

focus on the lease approach that balances these trade-offs and present analytical models and policies for determining the optimal

lease duration. We present extensions to the HTTP protocol to incorporate leases and, then, implement our techniques in the Squid

proxy cache and the Apache Web server. Our experimental evaluation of the leases approach shows that 1) our techniques impose

modest overheads even for long leases (a lease duration of 1 hour requires state to be maintained for 1,030 leases and imposes an

per-object overhead of a control message every 33 minutes), 2) leases yields a 138-425 percent improvement over existing strong

consistency mechanisms, and 3) the implementation overhead of leases is comparable to existing weak consistency mechanisms.

Index Terms—Web caching, Web proxy servers, cache consistency, strong consistency, leases.
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1 INTRODUCTION

1.1 Motivation

THE growth of the Internet and the World Wide Web has
enabled an increasing number of users to access vast

amounts of information stored at geographically distributed
sites. Due to the growing user population and the
nonuniformity of information access, however, popular
objects create server and network overload and, thereby,
significantly increase latency for information access [1].
Proxy caching is one popular approach to alleviate these
drawbacks. In a proxy caching architecture, clients request
objects from a proxy; the proxy services client requests
using locally cached data or by fetching the requested object
from the server. By caching frequently accessed objects, a
proxy can reduce the load on network links and servers as
well as client access latencies. A limitation, however, is that
the proxy cache may store stale data.

To prevent stale information from being transmitted to

clients, a proxy must ensure that locally cached data is

consistent with that stored on servers. The exact cache

consistency mechanism employed by a proxy depends on

the nature of the cached data; not all types of data need the

same level of consistency guarantees. For instance, users

may be willing to receive slightly outdated versions of

objects such as news stories and sports scores, but are likely

to demand the most up-to-date versions of “critical” objects

such as financial information and stock prices. This

indicates that a proxy cache will need to provide different

consistency guarantees for different types of data.

Most proxies deployed in the Internet today, provide
only weak consistency guarantees [2], [3]. Until recently,
most objects stored on Web servers were relatively static
and changed infrequently. Moreover, this data was ac-
cessed primarily by humans using browsers. Since humans
can tolerate receiving stale data (and manually correct it
using browser reloads), weak cache consistency mechan-
isms were adequate for this purpose. In contrast, many
objects stored on Web servers today change frequently and
some objects (such as newspapers headlines and stock
quotes) are updated every few minutes [4]. Moreover, the
Web is rapidly evolving from a predominantly read-only
information system to a system where collaborative
applications (e.g., Web bulletin boards) and program-
driven agents frequently read, as well as write, data. Such
applications are less tolerant of stale data than humans
accessing information using browsers. These trends argue
for augmenting the weak consistency mechanisms em-
ployed by today’s proxies with those that provide strong
consistency guarantees in order to make caching more
effective.1 In the absence of such strong consistency
guarantees, servers resort to marking data as uncacheable
and, thereby, reduce the effectiveness of proxy caching. The
design of efficient strong cache consistency mechanisms
that can coexist with existing weak consistency mechanisms
is the subject matter of this paper. Specifically, we propose
the adaptive leases mechanism for strong consistency and
present techniques to optimally configure adaptive leases.

1.2 Existing Cache Consistency Mechanisms:
Benefits and Limitations

A cache consistency mechanism that always returns the
results of the latest write at the server is said to be strongly
consistent. Due to the unbounded message delays in the
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Internet, no cache consistency mechanism can be strongly
consistent in this idealized sense. Hence, we relax our
definition to the following: a mechanism that returns data
that is never outdated by more than t time units with the
version on the server is said to be strongly consistent, where
t is the server to proxy delay at that instant and 0 < t � 1.
Mechanisms that do not satisfy this property (i.e., can
return stale data) are said to be weakly consistent.

Most existing proxies provide only weak consistency by
1) employing a server specified lifetime of an object
(referred to as the time-to-live (TTL) value) or 2) periodically
polling the server to verify that the cached data is not stale
[5], [2], [3]. In either case, modifications to the object before
its TTL expires or between two successive polls causes the
proxy to return stale data.

Strong consistency can be enforced either by server-driven
mechanisms or client-driven mechanisms [6]. The former
approach, referred to as server-based invalidation, requires
the server to notify proxies when the data changes. This
approach substantially reduces the number of control
messages exchanged between the server and the proxy
(since messages are sent only when an object is modified).
However, it requires the server to maintain per-object state
consisting of a list of all proxies that cache the object; the
amount of state maintained can be significant, especially at
popular Web servers. Moreover, when a proxy is unreach-
able due to network failures, the server must either block on
a write request until a timeout occurs, or risk violating
consistency guarantees.

The client-driven approach, also referred to as client
polling, requires that proxies poll the server on every read to
determine if the data has changed [6]. Frequent polling
imposes a large message overhead and also increases the
response time (since the proxy must await the result of its
poll before responding to a read request). The advantage,
though, is that it does not require any state to be maintained
at the server, nor does the server ever need to block on a
write request (since the onus of maintaining consistency is
on the proxy).

Server-based invalidation and client polling form two
ends of a spectrum. Whereas the former minimizes the
number of control messages exchanged, but may require a
significant amount of state to be maintained, the latter is
stateless, but can impose a large control message overhead.
Fig. 1 quantitatively compares these two approaches with
respect to 1) the server overhead, 2) the network overhead,
and 3) the client response time. Due to their large over-
heads, neither approach is appealing for Web environ-
ments. A strong consistency mechanism suitable for the

Web must not only reduce client response time, but also
balance both network and server overheads.

One approach that provides strong consistency, while
providing a smooth trade-off between the state space
overhead and the number of control messages exchanged,
is leases [7]. In this approach, the server grants a lease to
each request from a proxy. The lease duration denotes the
interval of time during which the server agrees to notify the
proxy if the object is modified. After the expiration of the
lease, the proxy must send a message requesting renewal of
the lease. The duration of the lease determines the server
and network overhead. The smaller the lease duration,
smaller is the server state space overhead, but larger is the
number of control (lease renewal) messages exchanged and
vice versa. In fact, an infinite lease duration reduces the
approach to server-based invalidation, whereas a zero lease
duration reduces it to client-polling. Thus, the leases
approach spans the entire spectrum between the two
extremes of server-based invalidation and client-polling.

The concept of a lease was first proposed in the context
of cache consistency in distributed file systems [7]. Recently,
some research groups have begun investigating the use of
leases for maintaining consistency in Web proxy caches.
The use of leases for Web proxy caches was first alluded to
in [8], and was subsequently investigated in detail in [6].
The latter effort has focused on the design of volume
leases—leases granted to a collection of objects—so as to
reduce 1) the lease renewal overhead and 2) the blocking
overhead at the server due to unreachable proxies. Other
efforts have focused on extending leases to hierarchical
proxy cache architectures [9], [10]. Thus, most of the
research on leases to date has focused on the mechanisms
for efficiently granting and renewing leases. The problem of
determining the optimal lease duration so as to balance the
trade-off between the state space overhead and the control
message overhead has not received much attention and is
the focus of this paper.

1.3 Research Contributions
In this paper, we argue that weak consistency mechanisms
supported by today’s proxies must be augmented by strong
consistency mechanisms to meet the growing diversity in
application and user requirements. Since existing strong
consistency mechanisms either impose a large state space
overhead or a large control message overhead, we focus on
the leases approach that balances these trade-offs. We
observe that the lease duration is the critical parameter that
determines the efficiency of the leases algorithm and
propose a number of techniques for determining the lease
duration. First, we present analytical models that use
constraints on the state space overhead and the control
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Fig. 1. (a) State Space overhead, (b) control messages, and (c) response time. Efficacy of server-based invalidation and client polling for three

different trace workloads (DEC, Berkeley, and Boston University). The figure shows that server-based invalidation has the largest state space

overhead, client polling has the highest control message overhead, and server-based invalidation has the smallest response time.



message overhead to compute an appropriate lease dura-
tion. Since these models are suitable only for scenarios
where the load does not fluctuate rapidly, we then present a
number of policies that enable a server to react to the fast
time-scale variation in load. These policies require the lease
duration to be computed afresh on each request, thereby
enabling the server to immediately react to load fluctua-
tions. Both techniques enable us to adapt the lease duration
to the observed load, albeit at different time scales, hence,
we collectively refer to our techniques as adaptive leases.

We have implemented the leases algorithm in the
Apache Web server and the Squid proxy cache. We present
extensions made to the http/1.1 protocol to incorporate
leases and, then, describe the details of our prototype
implementation. Our implementation allows the proxy and
the server to continue using existing weak consistency
mechanisms and use the strong consistency provided by
leases only when necessary.

Finally, we experimentally demonstrate the efficacy of
the leases algorithm using trace-driven simulations and the
prototype implementation. Our results show that 1) the
dynamic lease computation policies allow a server to
optimize either the state space overhead or the control
message overhead depending on which factor is the
bottleneck and 2) the state space and control message
overhead imposed is modest even for relatively long leases
(e.g., a lease duration of 1 hour imposes a state space
overhead of 1.030 leases and a per-object control message
overhead of 0.0005 msg/sec—a 425 percent and 138 percent
improvement over server-invalidation and client polling,
respectively). Results from our prototype implementation
shows that the overhead of computing and renewing leases
is small (around 4ms, or 4.3 percent of the client response
time) and is comparable to existing cache consistency
mechanisms such as time-to-live values.

The rest of this paper is structured as follows: We present
analytical models and adaptive policies for computing the
lease duration in Sections 3 and 4, respectively. Section 5
discusses the details of our prototype implementation.
Section 6 presents our experimental results and, finally,
Section 7 presents some concluding remarks.

2 ADAPTIVE LEASES

Consider a Web proxy that services user requests from its
local cache, fetching requested objects from the server if
necessary. Assume that the server and the proxy employ
leases to provide strong consistency guarantees. Intuitively,
a lease is a contract that gives its holder specific rights over
property for a limited period of time [7]. In the context of
Web objects, a lease grants to its holder a guarantee that, so
long as the lease is valid, the object will not be modified
without prior notification. More formally, a lease for an
object O consists of a pair ðs; dÞ, where s and d denote the
start time and the duration of the lease, respectively, and
the server agrees to notify the holder of all updates to the
object within the interval s � t < sþ d.

In such an environment, a proxy must hold a valid lease
on a cached object before responding to a client read
request.2 The leases algorithm involves the following
message exchange between the proxy and the server:

1. The first read for an object causes the proxy to send a
lease grant request along with a GET request to the

server; the server responds with the data along with
a lease (or a lease denial).

2. Subsequent reads are served by the proxy from its
local cache as long as the lease remains valid.

3. A read request after the expiration of a lease causes
the proxy to send a lease renewal request along with
an if-modified-since (IMS) request to the server; the
server responds with a new lease (or a lease denial)
along with either a not-modified message or the
updated object.

4. Modifications to the object during the validity of its
lease cause the server to send invalidationmessages to
all proxies holding a lease on the object; the server
defers the update until it receives invalidate acknowl-
edgments from all proxies or the lease duration
expires.

Observe that, in addition to notifying the proxy of an update,
the server can piggyback the update with the invalidation
request [11]. Such piggybacking of modifications (also
referred to as deltas [12]) can reduce the access latency for a
subsequent read request without any significant increase in
bandwidth requirements [13].

The crucial parameter that determines the efficiency of
the lease algorithm is the lease duration d. By appropriately
determining d, a server can balance the amount of state it
needs to maintain and the number of control messages
(lease renewal) exchanged. In what follows, we design
techniques for determining an appropriate lease duration.
Observe that the leases algorithm does not impose any
restriction on how d is computed. In particular, it does not
require the lease duration to be fixed across objects or fixed
for a particular object. We exploit this flexibility and
propose a number of techniques and policies that balance
various trade-offs. We first present analytical models that
use constraints on the state space overhead and control
message overhead to compute an appropriate lease dura-
tion. A server can employ these models to compute a lease
duration based on the observed load; the lease duration can
be recomputed if the observed load changes. Since these
models are only suitable for scenarios where the load does
not fluctuate rapidly, we also present policies for dynami-
cally determining the lease duration in the presence of
varying load. By using the current load conditions to
compute the lease duration, these policies can immediately
react to load fluctuations. Both techniques enable us to
adapt the lease duration to changing conditions, albeit at
different time scales. Hence, we collectively refer to our
techniques as adaptive leases.

3 ANALYTICAL MODELS FOR COMPUTING THE

LEASE DURATION

Consider a Web server that stores n data objects and
services requests for these objects from proxies as well as
end users. Whereas some requests require strong con-
sistency guarantees from the server, weak consistency
guarantees suffice for other requests. Let us consider only
those requests that require strong consistency guarantees,
and let Ri denote the read frequency for object i at a
particular proxy p, and let Wi denote its write frequency
at the server.3 Let di denote the lease duration and si
denote the start time of the lease for object i. Depending
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2. The original leases algorithm [7] required that a valid lease be held
prior to both read and write requests. For Web environments, we assume
that clients can only read, but not write to an object. Writes to objects are
done in a controlled manner directly at the server, so proxies need not
implement the part of the leases algorithm that deals with client writes.

3. A sequence of consecutive writes with no intervening reads is counted
as a single write request. This is because, after an invalidating the object
from the cache due to the first write, the server need not send additional
invalidations for subsequent writes until the proxy fetches the updated
object due to a read.



on whether the state space at the server or the control
messages overhead is the constraining factor, the lease
duration can be computed as follows.

3.1 Lease Duration Based on the State Space
Overhead

Let L denote the total state space (in terms of the number of
simultaneous leases granted) that the server can maintain.
Let �p

i denote the frequency of lease grant and renewal
messages for object i sent by proxy p. The proxy handles an
average of ddi �Rie read requests for object i over the
duration of its lease. Thus, the cost of a lease grant or
renewal request is amortized over ddi �Rie read requests at
the proxy. Hence, the frequency of lease grant and renewal
messages is

�p
i ¼

Ri

ddi �Rie
: ð1Þ

The frequency of lease grant/renewal requests for object i
received by the server from all proxies is

�i ¼
X
p

�p
i : ð2Þ

The server grants a lease to each such request and maintains
state for the lease over its lifetime ½si; si þ diÞ. To maintain
this state, the server must allocate space by partitioning the
total available space L among individual objects. We
consider two different policies for doing so.

First, we consider a policy that partitions the state space
in proportion to the lease request/renewal frequency
(popularity) of an object. Let li denote the space (in terms
of number of leases) allocated to object i. Then,

li ¼
�iP
j �j

 !
� L: ð3Þ

Since the number of leases granted for object i in the steady
state is di � �i, we have

di � �i � li: ð4Þ

Substituting li from (3), and simplifying, we get

di �
LPn
j¼1 �j

: ð5Þ

Thus, if the available state space is partitioned in proportion
to the popularity of an object, then the lease duration for the
object is independent of its lease request/renewal (i.e., access)
frequency �i and depends only on the aggregate request rate
at the server. Moreover, the lease duration is identical for all
objects stored at the server. Observe that such a policy is
simple to implement since the server needs to determine
only the aggregate request rate to compute the lease
duration and no per-object statistics need to be maintained.
The lease duration can be recomputed periodically in case
of fluctuations in the aggregate request rate.

Our second policy partitions the available state space
equally among all objects. Thus,

li ¼
L

n
: ð6Þ

Since the number of leases granted to object i in the steady
state is di � �i, we have

di � �i � li ¼
L

n
; ð7Þ

or

di �
L

n � �i
: ð8Þ

In this case, the lease duration is inversely proportional to
the request/renewal frequency of the object at the server.
Thus, with an equal partitioning of state space across objects,
more popular objects are granted shorter leases.

3.2 Lease Duration Based on Control Message
Overhead

To compute the lease duration based on the control message
overhead, we must first quantify the number of messaged
exchanged due to read and write requests. Since the proxy
handles an average of ddi �Rie read requests for object i over
the duration of its lease, each lease or renewal request is
amortized over ddi �Rie reads. Hence, the number of control
messages per unit time due to read requests is Ri=ddi �Rie.
Each write request results in an invalidation request from
the server to the proxy and a subsequent read at the proxy
triggers a fetch of the updated object.4 Thus, each write
results in two control messages; the number of control
messages per unit time due to write requests is 2Wi.
Observe that we are only interested in control messages and
the overhead of transferring data is not included here. Let
Ci denote the bound on the frequency of control messages
exchanged for object i between the server and a proxy.
Then, we have

Ri

ddi �Rie
þ 2Wi � Ci: ð9Þ

Substituting ddi �Rie � ð1þ di � RiÞ and simplifying, we get

di �
1

Ci � 2Wi
� 1

Ri
: ð10Þ

Thus, the lease duration is inversely proportional to the
control message overhead and depends on the read
frequency Ri at a proxy as well as the write frequency Wi

at the server. Furthermore, for a fixed control message
overhead, the more popular an object at a proxy, the longer its
lease.

4 ADAPTIVE POLICIES FOR COMPUTING THE

LEASE DURATION

The analytical models presented in Section 3, enable a
server to periodically recompute the lease duration based
on the observed load. Such recomputations can be expected
to occur over a slow time scale of tens of minutes or hours
(since accurate estimates of the load require a large number
of samples measured over a long time interval). Conse-
quently, a server employing these models may not be able
to react to fast time scale variations in the load. In this
section, we present several policies that enable a server to
compute the lease duration on-the-fly. Since the lease
duration is computed afresh on each lease grant/renewal
request, the server can quickly adapt to changing load
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counted as a single write, since only a single invalidation message needs to
be sent. Also, the derivation assumes Ri >> Wi, which implies that a valid
lease is always held during writes.



conditions. Each policy that we present determines the lease
duration based on a certain characteristic of the workload
and allows a different metric to be optimized.

4.1 Age-Based Leases

This policy is motivated by the bimodal nature of object
lifetimes (most objects are long lived, while a majority of the
updates go to young objects) [2]. Consequently, a server can
reduce the number of invalidate messages it needs to send
by granting short leases to frequently modified objects and
long leases to long lived objects. Observe that the policy
requires the server to know object lifetimes in order to
compute the lease duration. Since lifetimes may not be
known a priori, we choose the age of the object to be a
reasonable predictor of its lifetime. Hence, the lease
duration is computed as

di ¼ � � agei; ð11Þ
where agei denotes the age of object i and � is a constant.
Our policy assumes that the larger the age of the object,
longer is its expected lifetime and, hence, older objects are
granted longer leases. However, since the age of an object
has no correlation to its popularity [14], old objects that are
popular may impose a significant state space overhead on
the server. Observe that, this policy is similar to the Alex
protocol for computing TTL values [5], [2].

4.2 Renewal Frequency-Based Leases
The policy is motivated by 1) the skewed popularity of
objects and 2) the geographically skewed nature of accesses
over the World Wide Web [2]. A server can exploit these
factors to reduce the overhead of lease renewal messages.
To do so, the server can grant longer leases to proxies that
have a sustained interest in a object. Thus, not only do more
popular objects get longer leases, only those proxies at
which the object is popular get these long leases. Moreover,
granting short leases to proxies that have only a limited
interest in the object enables the server to reduce the state
space overhead. To achieve these objectives, the lease
duration is computed as

di ¼ � � renewalpi ; ð12Þ

where renewalpi denotes the number of renewal messages
sent by proxy p for object i, and � is a constant. A limitation
of this policy is that requests for cold objects that were
popular in the past continue to be granted long leases. This
limitation can be overcome by incorporating another term
in (12) that gradually decays the lease duration based on its
popularity over a sliding window.

4.3 State Space Overhead-Based Leases

In this policy, the lease duration is set to be inversely
proportional to the amount of state maintained at the
server. By granting shorter leases during periods of heavy
load, the server can adaptively control the amount of state it
needs to maintain. The lease duration for an object can be
computed either based on the number of valid leases
granted for a particular object or the aggregate number of
leases granted by the server. That is,

di ¼
�

l̂ili
or di ¼

�

L̂L
; ð13Þ

where l̂ili and L̂L denote the number of leases granted for
object i and for all objects at the server, respectively, and � is
a constant.

5 PROTOTYPE IMPLEMENTATION

We have implemented the leases algorithm in the Squid
proxy cache and the Apache Web server.5 To do so, we first
extended the HTTP/1.1 protocol to enable clients (proxies)
to request and renew leases from a server. The HTTP/1.1
protocol allows user defined extensions as part of the
request/response header; lease requests and responses use
this feature and are piggybacked onto normal HTTP
requests and responses. Lease renewals are piggybacked
onto if-modified-since HTTP requests. Invalidation requests
are also sent as request header extensions. The exact syntax
for lease requests, renewals, and invalidations is described
in Fig. 2.

We have incorporated these extensions into the Apache
Web server (version 1.3.6). Note that the HTTP protocol
(and, hence, the Apache Web server) is inherently stateless,
whereas the leases algorithm requires state to be main-
tained at the server. Our prototype preserves the stateless
nature of the Apache Web server by implementing tasks
such as granting and renewing leases as well as invalida-
tions in a separate lease server (leased). Such an
architecture results in a clean separation of functionality
between the Apache server, which handles normal HTTP
processing, and the lease server, which handles lease
processing and maintains all the state information (see
Fig. 3). Whenever the Apache server receives a lease grant/
renewal request piggybacked on a HTTP request, it
forwards the former to the lease server for further
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5. Source code for our prototype implementation is available from
http://lass.cs.umass.edu/software/leases.

Fig. 2. User-defined extensions to HTTP/1.1 to incorporate leases.



processing. The results of the HTTP request and the lease
request are then combined and sent back to the client
(proxy). Our lease server implements a number of policies
for computing the lease duration; the exact policy to be used
can be specified at startup time through a configuration file
[15]. Invalidation requests are handled similarly—the Web
server forwards the request to the lease server, which then
sends invalidations to all proxies caching that object. We
have also modified the Squid proxy cache (version 2.2) to
support leases. When configured to use leases, our modified
Squid proxy sends a lease request with every HTTP request;
expired leases are renewed by sending an if-modified-since
request to the server (causing the object to be fetched if it
has been modified since the lease expiration). Failures (e.g.,
network partitions) are detected by exchanging heartbeat
messages—upon detecting an unreachable server, a proxy
invalidates all objects with valid leases from that server.
Our implementation of leases can coexist with other cache
consistency mechanisms such as time-to-live values. The
proxy and server can continue to use weak consistency
mechanisms such as TTL using normal HTTP request and
responses; requests that require strong consistency use
HTTP requests/responses enhanced with lease directives.

6 EXPERIMENTAL EVALUATION

In this section, we demonstrate the efficacy of leases by
1) comparing leases to other cache consistency mechanisms,
2) evaluating the analytical models presented in Section 3,
and 3) evaluating the adaptive lease policies presented in
Section 4, using trace-driven simulations and the prototype
implementation. In what follows, we first present our
experimental methodology and then our experimental
results.

6.1 Experimental Methodology

6.1.1 Simulation Environment
We have designed an event-based simulator to evaluate the
efficacy of various cache consistency mechanisms. The
simulator simulates a proxy cache that receives requests
from several clients. Cache hits are serviced using locally
cached data, whereas a cache miss is simulated by fetching
the object from the server. The proxy is assumed to employ

a consistency mechanism to ensure the consistency of
cached data with that stored on servers. The simulator
supports various cache consistency mechanisms such as
leases, server-invalidation, client-polling, and time-to-live
values.

For our experiments, we assume that the proxy employs
a disk-based cache to store objects. To determine an
appropriate cache size for our experiments, we varied the
cache size from 256MB to infinity and found that, for
workloads under consideration, the improvements in hit
ratios were marginal beyond 1GB. Hence, we choose a disk
cache size of 1GB for our experiments so as to factor out the
effect of capacity misses. The cache is assumed to be
managed using a LRU cache replacement policy. Data
retrievals from disk (i.e., cache hits) are modeled using an
empirically derived disk model [16] with a fixed
OS overhead added to each request. We choose the Seagate
Barracuda 4LP disk for parameterizing the disk model [17].
For cache misses, data retrieval time over the network is
modeled using the round-trip latency, the network band-
width, and the object size. Since proxies are deployed close
to clients, but are distant from most servers, we choose
20ms and 100KB/s for client-proxy latency and bandwidth,
respectively; the proxy-server latency and bandwidth is
chosen to be 200ms and 10KB/s (these parameters assume a
LAN environment; our results hold for modem environ-
ments as well). In reality, network latencies and bandwidths
vary depending on network conditions and distance
between the source and the destination. Since we are
interested in evaluating the efficacy of cache consistency
mechanisms, use of a simple network model is adequate for
our purpose.

6.1.2 Workload Characteristics
To generate the workload for our experiments, we use
traces from actual proxies, each servicing several thousand
clients over a period of several days. We employ three
different traces for our experiments; the characteristics of
these traces are shown in Table 1. To understand the impact
of leases on the proxy as well as the server, we determined
the most popular server in each trace. We report experi-
mental results for the entire trace (i.e., all servers in the
trace) as well as the most popular server.

Each request in the trace provides information such as
the time of the request, the requested URL, the size of the
object, the client making the request, etc. To determine
when objects are modified, we considered using the last
modified time values as reported in the trace. However, the
BU trace did not include this information, and other traces
included these values only when available (e.g., the last
modified time value was unavailable in 37 percent of the
requests contained in the Berkeley trace). Since last
modified time values are crucial for evaluating cache
consistency mechanisms, we employed an empirically
derived model to generate synthetic write requests (and,
hence, last modified times) for our traces. Based on the
observations in [2], we assume that 90 percent of all Web
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Fig. 3. Interactions between the lease server, the Web server, and the

Squid proxy cache.

TABLE 1
Characteristics of Proxy Workload Traces



objects change very infrequently (i.e., have an average
lifetime of 60 days). We assume that 7 percent of all objects
are mutable (i.e., have an average lifetime of 20 days) and
the remaining 3 percent objects are very mutable (i.e., have
an average lifetime of five days). We partition all objects in
the trace into these three categories.6

6.2 Comparison with Other Cache Consistency
Schemes

We first, experimentally, compare leases with server
invalidation and client polling. To do so, we varied the
lease duration from zero to seven days (the lease duration
was kept fixed within each experiment, independent of the
workload characteristics) and measured its impact on the
server and the proxy. Note that, a lease duration of 0
reduces the scheme to client polling, whereas a lease
duration of seven days (which is larger than the duration
of the trace) reduces it to server invalidation. Fig. 4 plots the
state space overhead, the response time, and the control
message overhead for all servers in the DEC trace.7 Fig. 5
plots these values for the most popular server in the trace.
The figures show that the state space overhead increases
with increasing lease duration (since a server must maintain
state for each active lease for a longer duration), whereas
the control message overhead decreases with increasing
lease duration (since the proxy need not poll the server so
long as the lease is active). The response time shows a
corresponding decrease since cache hits can be serviced

without polling the server. For a lease duration of 3,600s
(1 hour), our technique yields a 425 percent and 138 percent
improvement in state space and control message overhead,
respectively, as compared to server invalidation and client
polling (see Figs. 4a and 4c). Moreover, the degradation in
response time as compared to server invalidation is modest
at 7.1 percent (see Fig. 4b). Fig. 4c lists various components
of the control messages exchanged between the server and
the proxy. The figure shows that the number of if-modified-
since (IMS) and not-modified messages decreases, whereas
the number of invalidation messages increases as we
proceed from client polling to server invalidation. The
number of GET messages (resulting mostly from compul-
sory misses) remains relatively unchanged. Since the
reduction in IMS and not-modified messages is larger than
the increase in invalidation messages, the total control
message overhead decreases with increasing lease duration.
Together, Figs. 4 and 5 demonstrate that, by carefully
choosing the lease duration, a server can tradeoff state space
overhead with the number of control messages exchanged,
while providing strong consistency guarantees. In the
remainder of this section, we study how various policies
for computing the lease duration enable a server to make
such trade-offs.

6.3 Efficacy of the Model
To evaluate the effectiveness of the model presented in
Section 3, we first plot the relationship between the state
space overhead (i.e., the number of active leases li) and the
control message overhead Ci. Recall from (4) and (10), that

li ¼
�i

Ci � 2Wi
� �i

Ri
:
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6. Since a recent study has shown that objects lifetimes and object
popularity are uncorrelated [14], we ignored access frequency when
partitioning objects into these three categories.

7. Results from other traces are similar; we omit them due to space
constraints.

Fig. 4. (a) State Space overhead, (b) response time, and (c) control message overhead of various cache consistency mechanisms.

Fig. 5. (a) State Space overhead, (b) response time, and (c) control message overhead. Performance for the most popular server.



Figs. 6a and 6b depict this relationship between li and Ci for
the most frequently accessed object in the DEC trace and
various write frequencies, respectively. The figure shows
that the state space overhead and the control message
overhead are inversely proportional to each other. Thus,
depending on the constraints, a server can trade one for the
other by choosing a particular point on this curve, which in
turn yields a particular lease duration. Figs. 7 and 8 further
illustrate this trade-off. Fig. 7a, obtained from (4), shows
that, for a fixed state space overhead, increasing the
aggregate request rate at the server results in a decrease
in the lease duration (since the server must grant shorter
leases to keep the state space overhead fixed). Fig. 7b shows
that, for a fixed request rate, allocating a larger state space
overhead enables a server to proportionately increase the
lease duration. The figure also shows that, even for
relatively long leases (about 3,600s or 1 hour), the state
space overhead is modest (1,030 leases).

Fig. 8a and 8b, obtained using (10), show the impact of
the request rate at a proxy and the control message
overhead on the lease duration. Fig. 8a shows that, for a
given Ci, increasing the read request rate Ri causes the lease
duration to increase (since the server must grant longer
leases to keep the control message overhead fixed).
Increasing the control message overhead, on the other
hand, enables the server to grant shorter leases (see Fig. 8b).
The figure also shows that for a lease duration of 3,600s (1
hour), the control message overhead is 0.0005/s (a message
every 33 minutes). Finally, Table 2 shows the lease

durations for various trace workloads obtained using our
analytical models. The values shown, assume a state space
overhead of 1,000 leases at the server and a control message
overhead of 0.001 msgs/s.

6.4 Efficacy of Adaptive Leases
To demonstrate the efficacy of the adaptive leases policies
presented in Section 4, we varied the average lease duration
by varying the parameter � . Fig. 9 plots the state space
overhead, control message overhead, and response time
yielded by each policy for different lease durations. The
figure illustrates the following salient features. Renewal-
based leases provide longer leases to more popular objects.
By doing so, they incur a smaller control message overhead
at the expense of a larger state space overhead. For a given
� , the state-space-based lease policy maintains a fixed state
space overhead regardless of the load and, hence, the policy
incurs the smallest state space overhead (at the expense of a
higher control message overhead). Age-based leases neither
take the access frequency of an object nor the state space
overhead into account. Hence, it incurs the largest control
message overhead and response times among the three
policies. Together, these experiments show that renewal-
based leases and state-space-based leases are appropriate
when the control message overhead and state space
overhead, respectively, are constraining factors. As shown
in the next section, age-based leases are suitable for
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Fig. 6. Relationship between the number of active leases and number of control messages exchanged.

Fig. 7. Effect of request rate and available state space on lease duration.



optimizing the number of invalidation messages resulting
from frequently updated objects.

6.5 Impact of Object Lifetimes
Fig. 10 depicts the impact of object lifetimes on the
performance of various adaptive leases policies. Fig. 10a
shows the effect of increasing the object lifetime on the lease
duration. Since only the age-based lease policy uses object
lifetimes to compute the lease duration, the figure shows
that the lease duration increases linearly with increase in
object lifetime. The lease duration remains relatively
unchanged for the other two policies (since they are
independent of object lifetimes). Fig. 10b shows, for a
particular lease duration, that the number of control
messages exchanged decreases with increasing object life-
times. This is because increasing the object lifetime reduces
the write frequency for that object and the number of
invalidation messages a server must send after each write.
Age-based leases exploit this property by granting longer

leases to older objects, thereby reducing the number of
invalidation messages and state space overhead for fre-
quently updated (young) objects.

6.6 Results from the Prototype Implementation
In the preceding sections, we examined the efficacy of
various techniques to compute the lease duration. In this
section, we study the overhead of granting, renewing, and
invalidating leases using our prototype implementations.
The testbed for our microbencmarks consisted of the
augmented Web server (httpd and leased), the Squid proxy
cache, and the client running on a cluster of PC-based
workstations. Each PC used in our experiments is a
350MHz Pentium II with 64MB RAM and runs RedHat
Linux 5.1; all machines were interconnected by a 10Mb/s
ethernet. Our experiment for measuring the overhead of
granting a lease consisted of a client that requested a 1KB
file first from an unmodified Apache/Squid combination,
and then from our prototype implementation. The experi-
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Fig. 8. Effect of request rate and control message overhead on lease duration.

TABLE 2
Lease Duration Computed Using the Model (L ¼ 1; 000; C ¼ 10�3; n ¼ 1; 000;Wi ¼ 0:2 writes=day)

Fig. 9. (a) State Space overhead, (b) control messages, and (c) response time. Performance of adaptive leases algorithm.



ment was repeated 2,000 times and Table 3 lists the client
response time and the overhead of the leases algorithm at
the server. As shown, the overhead of granting a lease is
only 3.77ms in our untuned implementation, which is
4.3 percent of the total response time. Next, we compared
the overhead of lease renewals to an unmodified Squid that
refreshes an expired TTL value using an IMS request. As
shown in Table 3, the overhead of renewing a lease and
refreshing an expired TTL value are comparable (the overall
response time is larger than the previous case due to the
additional computations that Squid performs on a lease/
TTL expiration). Fig. 11 shows the overhead of sending
invalidation messages to proxies. The figure plots the
variation in invalidation overhead with increasing number
of leases held for an object. Since the lease server must send
invalidation messages to each proxy cache holding a valid
lease, the invalidation overhead increases slowly with
increase in number of active leases (the increase is not
linear since the lease server parallelizes this task by forking
additional processes). We also measured these overheads
by replaying the BU trace and the results were very similar
to the microbenchmark results shown in Table 3. We omit
these results due to space constraints [15]. Thus, the above
experiments demonstrate that the leases algorithm can be
efficiently implemented with overheads comparable to
existing techniques.

7 CONCLUDING REMARKS

In this paper, we argued that weak cache consistency
mechanisms supported by existing Web proxy caches must
be augmented by strong consistency mechanisms to support
the growing diversity in application requirements. Existing
strong consistency mechanisms are not appealing for Web
environments due to their large state space or control

message overhead. We focused on the leases approach that
balances these trade-offs and presented analytical models
and policies for determining the optimal lease duration. We
presented extensions to the HTTP protocol to incorporate
leases and, then, described our prototype implementation
using the Squid proxy cache and the ApacheWeb server. An
advantage of our approach is that it can coexist with other
weak consistency mechanisms [18]. Our experimental eva-
luation of the leases approach showed that: 1) our techniques
impose modest overheads even for long leases ( a lease
duration of 1 hour requires state to be maintained for
1,030 leases and imposes an per-object overhead of a control
message every 33 minutes), 2) leases yields a 138-425 percent
improvement over existing strong consistency mechanisms,
and 3) the implementation overhead of leases is comparable
to existing weak consistency mechanisms.
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Fig. 10. (a) Duration and (b) control messages. Impact of write frequency (object lifetimes).

TABLE 3
Overhead of Granting and Renewing Leases
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