PETER DESNOYERS, Northeastern University TIMOTHY WOOD, PRASHANT SHENOY, and RAHUL SINGH, University of Massachusetts Amherst SANGAMESHWAR PATIL and HARRICK VIN, Tata Research Development and Design Centre

The rising complexity of distributed server applications in Internet data centers has made the tasks of modeling and analyzing their behavior increasingly difficult. This article presents *Modellus*, a novel system for automated modeling of complex web-based data center applications using methods from queuing theory, data mining, and machine learning. Modellus uses queuing theory and statistical methods to automatically derive models to predict the resource usage of an application and the workload it triggers; these models can be composed to capture multiple dependencies between interacting applications.

Model accuracy is maintained by fast, distributed testing, automated relearning of models when they change, and methods to bound prediction errors in composite models. We have implemented a prototype of Modellus, deployed it on a data center testbed, and evaluated its efficacy for modeling and analysis of several distributed multitier web applications. Our results show that this feature-based modeling technique is able to make predictions across several data center tiers, and maintain predictive accuracy (typically 95% or better) in the face of significant shifts in workload composition; we also demonstrate practical applications of the Modellus system to prediction and provisioning of real-world data center applications.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems— Modeling techniques; C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms: Design, Performance

Additional Key Words and Phrases: Workload and performance modeling, internet applications

ACM Reference Format:

Desnoyers, P., Wood, T., Shenoy, P., Singh, R., Patil, S., and Vin, H. 2012. Modellus: Automated modeling of complex internet data center applications. ACM Trans. Web 6, 2, Article 8 (May 2012), 29 pages. DOI = 10.1145/2180861.2180865 http://doi.acm.org/10.1145/2180861.2180865

1. INTRODUCTION

Distributed server applications have become commonplace in today's Internet and business environments. The data centers hosting these applications—large clusters of networked servers and storage—have in turn become increasingly complex. Some of this is due to complexity of the applications themselves, which may have multiple tiers and share resources across applications. Another factor contributing to data center complexity, however, is evolution and change as hardware and software components are added or replaced, often resulting in unknown or unforeseen system interactions.

© 2012 ACM 1559-1131/2012/05-ART8 \$10.00

DOI 10.1145/2180861.2180865 http://doi.acm.org/10.1145/2180861.2180865

This work is supported by the National Science Foundation, under grants CNS-0720616, CNS-0916972, and OCI-1032765.

T. Wood is currently affiliated with the George Washington University.

Author's e-mail address: Timothy Wood, timwood@gwu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.

Such systems, which must be managed to meet service-level agreements (SLAs) and to minimize operating and capital costs, have become too complex to be comprehended by a single human. This article proposes a new approach for conquering this complexity, using queuing theory combined with statistical methods from data mining and machine learning. Collectively, these methods create predictive models that capture interactions within a system, allowing the user to relate input (i.e., user) behavior to interactions and resource usage. Data from existing sources (log files, resource utilization) is collected and used to train a model derived from queuing theory, so that application models can be created "on the fly" from a running system. From this training data we then infer queuing network models that relate events or input at different tiers of a data center application to resource usage at that tier, and to corresponding requests sent to tiers further within the data center. By composing these models, we are able to examine relationships across multiple tiers of an application, and to isolate these relationships from the effects of other applications that may share the same components.

The models produced by our system can then be used by system administrators to better understand the behavior and resource requirements of their applications. System administrators can use these models to perform "as-is state analysis" to study the health of and dependencies between running applications, or to perform "headroom analysis" to determine the current resource usage and the remaining capacity in the data center to handle workload growth or new applications. Such models can also be used for "what-if analysis" studies that ask questions about how resource needs may change depending on anticipated variations in application workloads. Currently, such analysis is done using rules of thumb or manually developed models. The complexity and scale of these manual approaches becomes a challenge as the size of applications and data centers continues to grow, pointing to the need for automated methods.

The nature of modern web-based applications makes this analysis and modeling particularly difficult. These applications are typically composed of multiple components, so models must account for the relationships between them. Further, the input workloads seen by each component are comprised of many different request types and each type may place a very different load on the server. To create models of inputs and responses, we must classify them; yet request classes are typically unique to each application component, and system administrators are unlikely to have the application-specific knowledge required to differentiate them. Even with expert knowledge, classifying inputs by hand will not scale in practice due to the huge number of unique components in a data center and their rate of change. Instead, if we are to use modeling as a tool in data center management, we must automatically learn not only system responses but input classifications themselves.

The benefits of an automated modeling method are several. It relieves humans from the tedious task of tracking and modeling complex application dependencies in large systems. The models created may be used for higher-level tasks such as analyzing data center capacity ("headroom analysis") or predicting the impact of workload variations ("what-if analysis"). Finally, automated modeling can keep these models up-to-date as the system changes via periodic testing and repetition of the learning process.

We have designed and implemented *Modellus*,¹ a system that implements our automated modeling approach. Modellus combines classical results from queuing network theory [Denning and Buzen 1978; Jackson 1957; Lazowska et al. 1984] with novel techniques that "mine" the incoming web workload for features that best predict the observed resource usage or workload at a downstream component. Specifically, model inference in Modellus is based on stepwise regression—a technique used in statistical

¹*Latin*. Root of "model".

data mining—for determining features that best correlate with empirical observations taken from monitoring of application request logs and OS-level resource usage measurements. These features are used to parameterize network queuing models, which can then be composed to capture dependencies between interacting applications. Modellus also implements automated model testing to verify that derived models remain valid, and triggers relearning of a new model upon model failure.

We implement a host of optimizations to ensure that our queuing and statistical methods are practical in large distributed systems. A fast, distributed model testing algorithm performs frequent coarse-grain testing at local nodes, triggering full model testing only when these tests fail. This improves scalability while reducing the latency of detecting model failures. Techniques for estimating prediction errors are used to prevent excessive errors due to the composition of a large number of models. Finally, Modellus implements back-off heuristics to avoid scenarios where transient phase changes in the workload or inherently "noisy" workloads cause frequent model failures, triggering wasteful relearning.

We have implemented a prototype of Modellus, consisting of both a nucleus running at the monitored systems and a control plane for model generation and testing. We conducted detailed experiments on a prototype data center running a mix of realistic web-based applications. Our results show that in many cases we predict server utilization within 5% or less, based on measurements of the input to either that server or upstream servers. In addition, we demonstrated the utility of our modeling techniques in predicting responses to future traffic loads and patterns for use in capacity planning.

Overall, our contributions lie in the design of a system that combines queuing network theory with statistical methods to automate the task of modeling distributed application behavior, while being scalable and practical for deployment in large data centers. Specific contributions include the following:

- (1) automated data mining techniques that classify application requests into different types;
- (2) use of queuing network results in conjunction with statistical techniques to relate incoming requests to resource utilization or workloads at downstream components;
- (3) model composition rules that allow workloads at one application component to be related to behavior at another;
- (4) an automated model testing and revalidation component that ensures models are kept up to date in an efficient manner;
- (5) a thorough evaluation of the prediction accuracy of Modellus, as well as practical use cases that describe how it can be used to answer questions in a real data center.

The remainder of this article is structured as follows. We present background and formulate the modeling problem in Section 2, and describe our automated modeling approach in Sections 3 to 5. Section 6 presents the Modellus implementation, while Sections 7 and 8 present our experimental results. Finally, we survey related work in Section 9, and conclude in Section 10.

2. BACKGROUND AND PROBLEM FORMULATION

Consider an Internet data center consisting of a large collection of computers, running a variety of applications and accessed remotely by clients via the Internet. The data center will have resources for computation (i.e., the servers themselves), storage, local communication (typically a high-speed LAN), and remote communication with end-users. We define an *application* as a collection of *components* that are distributed across multiple servers. Each component typically resides on a separate server and implements a portion of the application functionality. The various components

collectively implement the functionality of the distributed application and are assumed to be structured as a directed acyclic graph from a request processing standpoint.

As an example, a web-based student course registration application might be composed of three separate components: a frontend J2EE server, a legacy client-server processing tier, and an enterprise database. Some of these components may be shared between applications; for instance, our example backend database is likely to be shared with other applications (e.g., tuition billing) that need access to course registration data. In addition, in many cases, physical resources may be shared between different components and applications, either by direct colocation or through the use of virtual machines.

For our analysis, we can characterize these applications at various tiers in the data center by their requests and the responses to them. In addition, we are interested in both the computational and I/O load incurred by a component when it handles a request, as well as any additional requests it may make to other tier components in processing the request (e.g., database queries issued while responding to a request for a dynamic web page). We note that a single component may receive intercomponent requests from multiple sources, and may generate requests to several components in turn. Thus, the example database server receives queries from components that are part of multiple applications. Likewise, a single application component may make requests to multiple databases or other components.

In this work we seek to model the overall operation of applications based on data gathered at each of their components. Thus, we require data on the operations performed at each component as well as their impact. We obtain request or event information from application logs, which typically provide event timestamps, client identity, and information identifying the specific request. Resource usage measurements are gathered from the server OS, and primarily consist of CPU usage and disk operations over some uniform sampling interval.

Problem Formulation. The automated modeling problem may be formulated as follows. In a system as described above, given the request and resource information provided, we wish to automatically derive the following information.

(1) *Request classifications* that allow input request streams to be classified by type. These request classes must be generated automatically by the system due to the large number of applications in a modern data center. The classification is then combined with workload information for the following models.

(2) A workload-to-utilization model that uses queuing theory to model the resource usage of an application component as a function of its incoming workload. For instance, the CPU utilization and disk I/O operations due to an application μ_{cpu} , μ_{iop} can be captured as a function of its workload λ :

$$\mu_{cpu} = f_{cpu}(\lambda), \ \mu_{iop} = f_{iop}(\lambda).$$

(3) A *workload-to-workload model* that uses queuing networks to model the outgoing workload of an application component as a function of its incoming workload. Since the outgoing workload of an application component becomes the incoming workload of one or more downstream components, our model derives the workload at one component as a function of another:

$$\lambda_j = g(\lambda_i).$$

We also seek techniques to compose these basic models to represent complex system systems. Such model composition should capture *transitive behavior*, where pairwise models between components i and j and j and k are composed to model the relationship between i and k. Further, model composition should allow pairwise dependence to be

extended to *n*-way dependence, where a component's workload is derived as a function of the workloads seen by all its *n* upstream components.

3. DATA CENTER MODELING: BASICS

In this section, we present the intuition behind our basic models, followed by a discussion on constructing composite models of complex data center applications. Our basic models are based on results from queuing theory and queuing network theory. However, since each application is somewhat different, in a real system, the parameters of these models, as well as system artifacts such as configuration parameters and caching, govern how the application behaves in response to a particular request workload. Consequently the challenge lies in automating the tasks of derving the paramaters of our queuing and queuing network models to capture the behavior of the distributed application.

3.1. Workload-to-Utilization Model

Consider an application comprising of multiple components. We model each component as a M/G/1/PS queue, that is, the service times are assumed to have an arbitrary distribution; the service discipline is assumed to be processor sharing, and the request interarrivals are assumed to have a Poisson distribution. Let us suppose that the input stream consists of k distinct classes of requests, where requests in each class have similar service times. For example, a web server might receive requests for small static files and computationally-intensive scripts.

We model the entire application as an open network of queues [Jackson 1957; Denning and Buzen 1978; Lazowska et al. 1984]. We can now apply the BCMP theorem [Baskett et al. 1975] to analyze this network of queues by considering each queue in the network independently. According to the utilization law [Denning and Buzen 1978], the aggregate CPU utilization of an application component over the interval τ is a linear sum of the usage due to each request type:

$$\mu = \lambda_1 \cdot s_1 + \lambda_2 \cdot s_2 + \dots + \lambda_k \cdot s_k + \epsilon, \tag{1}$$

where $\lambda_1, \lambda_2, \ldots \lambda_k$ denote the observed rates for each request class over the interval τ ; $s_1, s_2, \ldots s_k$ denote the corresponding mean service times and ϵ is a error term assumed random and independent.

If the request classes are well chosen, then we can sample the arrival rate of each class empirically, derive the above linear model from these measurements, and use it to yield an estimate $\hat{\mu}$ of the CPU utilization due to the incoming workload. Thus, in our example above, λ_1 and λ_2 might represent requests for small static files and scripts; and s_2 would be greater than s_1 , representing the increased cost of script processing. The value of this model is that it retains its accuracy when the request mix changes. Thus, if the overall arrival rate in our example remained constant but the proportion of script requests increased, the model would account for the workload change and predict an increase in CPU load.

3.2. Workload-to-Workload Model

In addition to examining requests at a single component, we next consider two interacting components, as shown in Figure 1(b), where incoming requests at *i* trigger requests to component *j*. For simplicity, we assume that *i* is the source of all requests to *j*; the extension to multiple upstream components is straightforward. Let there be *k* request classes at components *i* and *m* classes in the workload seen by *j*. Let $\lambda_I = {\lambda_{i1}, \lambda_{i2}, \ldots}$ and $\lambda_J = {\lambda_{j1}, \lambda_{j2}, \ldots}$ denote the class-specific arrival rates at the two components.

To illustrate, suppose that i is a front-end web server and j is a back-end database, and web requests at i may be grouped in classes R1 and R2. Similarly, SQL queries

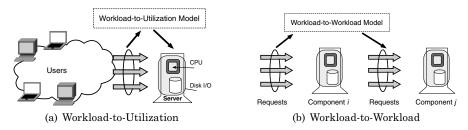


Fig. 1. Application models may either relate workload to utilization or the workload at one component to the workload at another.

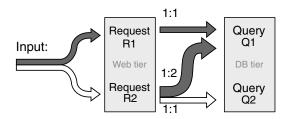


Fig. 2. Example request flow for a 2-tier web application where different request types trigger different down-stream queries.

at the database are grouped in classes Q1 and Q2, as shown in Figure 2. Each R1 web request triggers a Q1 database query, while each R2 web request triggers two Q1 queries and a single Q2 query.

Assuming job-flow balance [Denning and Buzen 1978], we can completely describe the workload seen at the database in terms of the web server workload:

$$\lambda_{Q1} = \lambda_{R1} + 2\lambda_{R2}; \quad \lambda_{Q2} = \lambda_{R2}. \tag{2}$$

More generally, assuming job-flow balance, each request type at component j can be represented as a weighted sum of request types at component i, where the weights denote the number of requests of this type triggered by each request class at component i:

$$\lambda_{j1} = w_{11}\lambda_{i1} + w_{12}\lambda_{i2} + \dots + w_{1k}\lambda_{ik} + \epsilon_1$$

$$\lambda_{j2} = w_{21}\lambda_{i1} + w_{22}\lambda_{i2} + \dots + w_{2k}\lambda_{ik} + \epsilon_2$$

$$\lambda_{jm} = w_{m1}\lambda_{i1} + w_{m2}\lambda_{i2} + \dots + w_{mk}\lambda_{ik} + \epsilon_m$$
(3)

where ϵ_i denotes an error term. Thus, Eq. (3) yields the workload at system j, $\lambda_J = \{\lambda_{j1}, \lambda_{j2}, \ldots\}$ as a function of the workload at system i, $\lambda_I = \{\lambda_{i1}, \lambda_{i2}, \ldots\}$.

It should be noted that the weights, w_{ij} , computed by Modellus are not necessarily integers. This allows Modellus to account for effects such as caching or requests that have variable behavior. For example, a cache in front of a web tier may have an effective hit rate of 70%, resulting in a weight of 0.30 when relating the workload at the cache to the component behind it. Modellus automatically captures this behavior by basing its weights on the statistical trends found in the input training data. Of course, it is possible that these trends may change over time, requiring Modellus to "relearn" a new model, which is why Modellus includes a model validation and retraining component, as described in Section 5.1.

3.3. Model Composition

Modellus models the distributed application as a DAG, where the nodes represent components and edges represent the flow of requests between components. Since we

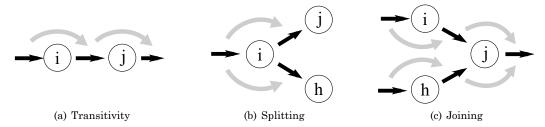


Fig. 3. Models may be composed transitively (e.g., for sequentially linked components), by splitting (e.g., from a load balancer to worker nodes), or by joining (e.g., from multiple processing nodes to a backend database).

modeled each component as a queuing system, the DAG is essentially a network of queuing. Given our workload-to-utilization and workload-to-workload models, for an individual component, we can compose these models in our queuing network to derive the workload and utilization at some component *i* as a function of one or more upstream components (see Figure 3). Specifically, our workload-to-utilization (W₂U) model yields the utilization due to an application *j* as a function of its workload: $\mu_j = f(\lambda_J)$; our workload-to-workload (W₂W) model yields the workload at application *j* as a function of the workload at application *i*: $\lambda_J = g(\lambda_I)$. Assuming flow balance, substituting allows us to determine the utilization at *j* directly as a function of the workload at *i*: $\mu_j = f(g(\lambda_I))$. Since *f* and *g* are both linear equations, the composite function, obtained by substituting Eq. (3) into Eq. (1), is also a linear equation. This composition process is transitive: given cascaded components *i*, *j*, and *k*, it can yield the workload at *i*. In a three-tier application, for instance, this lets us predict behavior at the database back-end as a function of user requests at the front-end web server.

Our discussion has implicitly assumed a linear chain topology, where each application sees requests from only one upstream component, illustrated schematically in Figure 3(a). This is a simplification; in a complex data center, applications may both receive requests from multiple upstream components, and in turn issues requests to more than one downstream component. Thus an employee database may see requests from multiple applications (e.g., payroll, directory), while an online retail store may make requests to both a catalog database and a payment processing system. We must therefore be able to model both: (i) "splitting"—triggering requests to multiple downstream components, and (ii) "merging," where one component receives request streams from multiple others. (see Figure 3(b) and (c)).

To model splits, consider a component *i* that makes requests to downstream components *j* and *h*. Given the incoming request stream at *i*, λ_I , we consider the subset of the outgoing workload from *i* that is sent to *j*, namely λ_J . We can derive a model of the inputs at *i* that trigger this subset of outgoing requests using Eq. (3): $\lambda_J = g_1(\lambda_I)$. Similarly, by considering only the subset of the outgoing requests that are sent to *h*, we can derive a second model relating λ_H to λ_I : $\lambda_H = g_2(\lambda_I)$.

For joins, consider a component j that receives requests from upstream component i and h. We first split the incoming request stream by source: $\lambda_J = \{\lambda_J | src = i\} + \{\lambda_J | src = h\}$. The workload contributions at j of i and h are then related to the input workloads at the respective applications using Eq. (3): $\{\lambda_J | src = i\} = f_1(\lambda_I)$ and $\{\lambda_J | src = h\} = f_2(\lambda_H)$, and the total workload at j is described in terms of inputs at i and h: $\lambda_J = f_1(\lambda_I) + f_2(\lambda_H)$. Since f_1 and f_2 are linear equations, the composite function, which is the summation of the two, $f_1 + f_2$, is also linear.

By modeling these three basic interactions—cascading, splitting, and joining—we are able to compose single step workload-to-workload and workload-to-utilization models to model any arbitrary application graph. Such a composite model allows workload or utilization at each node to be calculated as a linear function of data from other points in the system.

4. AUTOMATED MODEL GENERATION

We next present techniques for automatically learning models of the form described above. In particular, these models require specification of the following parameters: (i) request classes for each component; (ii) arrival rates in each class, λ_i ; (iii) mean service times s_i for each class i; and (iv) rates w_{ij} at which type i requests trigger type j requests. In order to apply the model, we must measure λ_i , and estimate s_i and w_{ij} .

If the set of classes and mapping from requests to classes was given, then measurement of λ_i would be straightforward. In general, however, request classes for a component are not known *a priori*. Manual determination of classes is impractical, as it would require detailed knowledge of application behavior, which may change with every modification or extension. Thus, our techniques must *automatically determine an appropriate classification of requests* for each component, as part of the model generation process.

Once the request classes have been determined, we estimate the coefficients s_i and w_{ij} . Given measured arrival rates λ_i in each class *i* and the utilization μ within a measurement interval, Eqs. (1) and (3) yield a set of linear equations with unknown coefficients s_i and w_{ij} . Measurements in subsequent intervals yield additional sets of such equations; these equations can be solved using linear regression to yield the unknown coefficients s_i and w_{ij} that minimize the error term ϵ .

A key contribution of our automated model generation is to combine determination of request classes with parameter estimation, in a single step. We do this by mechanically enumerating possible request classes, and then using statistical techniques to select the classes that are predictive of utilization or downstream workload. In essence, the process may be viewed as "mining" the observed request stream to determine features (classes) that are the best predictors of the resource usage and triggered workloads; we rely on stepwise regression—a technique also used in data mining—for our automated model generation.

In particular, for each request we first enumerate a set of possible features, primarily drawn from the captured request string itself. Each of these features implies a classification of requests into those that have this feature and those that do not. By repeating this over all requests observed in an interval, we obtain a list of candidate classes. We also measure arrival rates within each candidate class and resource usage over time. Stepwise regression of feature rates against utilization is then used to select only those features that are significant predictors of utilization and to estimate their weights, giving us the workload-to-utilization model.

Derivation of W₂W models is an extension of this. First we create a W₂U model at application j in order to determine the significant workload features. Then, we model the arrival rate of these features, again by using stepwise regression. We model each feature as a function of the input features at i; when we are done we have a model that takes input features at i and predicts a vector of features $\hat{\lambda}_J$ at j.

4.1. Feature Enumeration

For this approach to be effective, classes with stable behavior (mean resource requirements and request generation) must exist. In addition, information in the request log must be sufficient to determine this classification. We present an intuitive argument for

the existence of such classes and features and a description of the feature enumeration techniques used in Modellus.

We first assert that this classification is possible, within certain limits: in particular that, in most cases, system responses to identical requests are similar across a broad range of operating conditions. Consider, for example, two identical requests to a web server for the same simple dynamic page—regardless of other factors, identical requests will typically trigger the same queries to the back-end database. In triggering these queries, the requests are likely to invoke the same code paths and operations, resulting in (on average) similar resource demands.²

Assuming these request classes exist, we need an automated technique to derive them from application logs, that is, we need to find requests that perform similar or identical operations, on similar or identical data and group them into a class. The larger and more general the groups produced by our classification, the more useful they will be for actual model generation. At the same time, we cannot blindly try all possible groupings, as each unrelated classification tested adds a small increment of noise to our estimates and predictions.

In the cases we are interested in, for example, HTTP, SQL, or XML-encoded requests, much or all of the information needed to determine request similarity is encoded by convention or by syntax in the request itself. Thus, we would expect the query 'select * from cust WHERE cust.id=105' to behave similarly to the same query with "cust.id=210", while an HTTP request for a URL ending in "images/map.gif" is unlikely to be similar to one ending in "browse.php?category=5".

Our enumeration strategy consists of extracting and listing *features* from request strings, where each feature identifies a potential candidate request class. Each enumeration strategy is based on the formal or informal³ syntax of the request, and it enumerates the portions of the request that identify the class of operation, the data being operated on, and the operation itself, which are later tested for significance. We note that the rules that define the feature enumeration strategy must be manually specified for each application type, but that there are a relatively small number of such types, and once these rules are specified for one request syntax it is applicable to any application sharing that request syntax.

Modellus includes predefined feature enumeration rules for Apache HTTP server logs and for MySQL database logs. The manual process of creating rules for additional applications is a straightforward task of writing a simple parser that splits a logged request string into a set of possible features. This process only needs to be performed once per application type (e.g., just once for Apache, not once for each web application that runs in the data center). The task is further simplified because Modellus will automatically select which features are most effective for producing a model—thus, the system administrator creating the feature rules does not need to worry about enumerating the features that might be the most relevant.

The Modellus feature enumeration rules for HTTP requests are shown in Figure 4(a), with features generated from an example URL. The aim of the feature enumeration rules is to identify request elements that may identify common processing paths; thus features include file extensions, URL prefixes, and query skeletons (i.e., a query with arguments removed), each of which may identify common processing paths. In Figure 4(b) we see the feature enumeration rules for SQL database queries, which use

²Caching will violate this linearity assumption; however, we argue that in this case behavior will fall into two domains—one dominated by caching, and the other not—and that a linear approximation is appropriate within each domain.

³For example, HTTP, where hierarchy, suffixes, and query arguments are defined by convention rather than standard.

P. Desnoyers et al.

1: the entire URL: 1: the entire query: /test/PHP/AboutMe.php?name=user5&pw=joe SELECT * FROM item, author WHERE 2: each URL prefix plus extension: item.i_a_id=author.a_id AND i_id=1217 /test/.php, /test/PHP/.php 2: database: TPCW /test/PHP/AboutMe.php 3: database and table(s): TPCW:item,author 3: each URL suffix plus extension: 4: query "skeleton": AboutMe.php, PHP/AboutMe.php SELECT * FROM item, author WHERE 4: each query variable and argument: item.i_a_id=author.a_id AND i_id=? /test/PHP/AboutMe.php?name=user5 5: query phrase: /test/PHP/AboutMe.php?pw=joe WHERE item.i_a_id=author.a_id AND i_id=1217 6: query phrase skeleton: 5: all query variables, without arguments: WHERE item.i_a_id=author.a_id AND i_id=? (b) SQL /test/PHP/AboutMe.php?name=&pw= (a) HTTP Fig. 4. Example feature enumeration rules for SQL and HTTP. 1: Let $CandidateFeatures = \{\}$ 2: for R_i in RequestStrings do $StringFeatures \leftarrow ExtractFeatures(R_i)$ {Use the feature enumeration rules to 3: extract features from the request string} 4: for F_i in StringFeatures do 5: if $F_i \notin CandidateFeatures$ then $CandidateFeatures \leftarrow CandidateFeatures \cup F_i$ 6:

Fig. 5. Feature enumeration algorithm.

table names, database names, query skeletons, and SQL phrases (which may be entire queries in themselves) to generate a list of features. Feature enumeration is performed on all requests present in an application's log file over a measurement window, one request at a time, to generate a list of candidate features. Figure 5 shows the feature enumeration algorithm that generates the list of candidate features.

Note that the Modellus approach of having each request potentially match many features is different from traditional request classification schemes that attempt to match each request to a single class. The limited set of classes used by traditional approaches are typically only effective if expert knowledge can be used to define the classes. Modellus requires no such knowledge, and instead maps each request to many different potentially useful features. The modeling component described in the next section then determines which of these features are most useful for predicting either utilization or downstream workloads.

4.2. Feature Selection Using Stepwise Linear Regression

Once the enumeration algorithm generates a list of candidate features, the next step is to use training data to learn a model by choosing only those features whose coefficients s_i and w_{ij} minimize the error terms in Eqs. (1) and (3). In a theoretical investigation, we might be able to compose benchmarks consisting only of particular requests, and thus measure the exact system response to these particular requests. In practical systems, however, we can only observe aggregate resource usage, given an input stream of requests that we do not control. Consequently, the model coefficients s_i and w_{ii} must also be determined as part of the model generation process.

One naïveapproach is to use all candidate classes enumerated in the previous step and to employ least squares regression on the inputs (here, arrival rates within each candidate class) and outputs (utilization or downstream request rates) to determine a set of coefficients that best fit the training data. However, this will generate spurious features with no relationship to the behavior being modeled; if included in the model,

8:10

7:

8:

end if

end for 9: end for

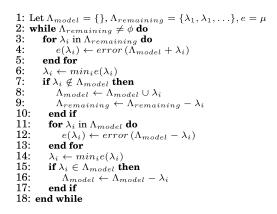


Fig. 6. Stepwise linear regression algorithm.

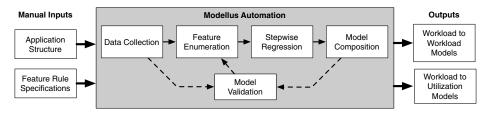


Fig. 7. After system administrators define application structure and feature enumeration rules, Modellus automates data collection, request classification, model creation, and periodic validation.

they will degrade its accuracy, in a phenomena known as *overfitting* in the machinelearning literature. In particular, some will be chosen due to random correlation with the measured data, and will contribute noise to future predictions.

This results in a data mining problem: out of a large number of candidate classes and measurements of arrival rates within each class, determining those that are predictive of the output of interest and discarding the remainder. In statistics this is termed a *variable selection* problem [Draper and Smith 1998], and may be solved by various techniques that in effect determine the odds of whether each input variable influences the output or not. Of these methods, we use stepwise linear regression [Efroymson 1960] due in part to its scalability, along with a modern extension: the Foster and George's risk inflation criteria [Foster and George 1994]. We chose stepwise linear regression over other variable selection methods because it offers a good balance between scalability, robustness, and practicality from a computational standpoint, allowing us to deploy it for modeling real data center applications.

A simplified version of this algorithm is shown in Figure 6, with input variables λ_i and output variable μ . We begin with an empty model; as this predicts nothing, its error is exactly μ . In the first step, the variable that explains the largest fraction of μ is added to the model. At each successive step, the variable explaining the largest fraction of the remaining error is chosen; in addition, a check is made to see if any variables in the model have been made redundant by those added at a later step. The process completes when no remaining variable explains a statistically significant fraction of the response.

Figure 7 summarizes the various steps in Modellus to build application models. As noted in the figure, a few steps such as specifying the application structure and feature enumeration rules are manual; Modellus automates the majority of the remaining process, including steps that typically require significant application or statistical

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

knowledge such as request classification and model creation. Over time, models may become obsolete, so Modellus also automates model testing and retraining, as described in the following section.

5. ACCURACY, EFFICIENCY, AND STABILITY

We have presented techniques for automatic inference of our basic models and their composition. However, several practical issues arise when implementing these techniques into a system.

- —*Workload changes.* Although our goal is to derive models that are resilient to shifts in workload composition as well as volume, some workload changes will cause model accuracy to decrease—for instance, the workload may become dominated by requests not seen in the training data, or caching behavior may change over time. When this occurs, prediction errors will persist until the relevant models are re-trained.
- -*Effective model validation and retraining.* In order to quickly detect shifts in system behavior, which may invalidate an existing model without unnecessarily retraining other models that remain accurate, it is desirable to periodically test each model for validity. The lower the overhead of this testing, the more frequently it may be done, and thus the quicker the models may adjust to shifts in behavior.
- -*Cascading errors.* Models may be composed to make predictions across multiple tiers in a system; however, uncertainty in the prediction increases in doing so. Methods are needed to estimate this uncertainty to avoid making unreliable predictions.
- -Stability. Some systems will be difficult to predict with significant accuracy. Rather than spending resources repeatedly deriving models of limited utility, we should detect these systems and limit the resources expended on them.

In the following section we discuss these issues and the mechanisms in Modellus that address them.

5.1. Model Validation and Adaptation

A trained model makes predictions by extrapolating from its training data, and the accuracy of these predictions will degrade in the face of behavior not found in the training data. Another source of errors can occur if the system response changes from that recorded during the training window; for instance, a server might become slower or faster due to failures or upgrades.

In order to maintain model accuracy, we must retrain models when this degradation occurs. Rather than always relearning models, we instead test predictions against actual measured data; if accuracy declines below a threshold, then new data is used to relearn the model.

In particular, we sample arrival rates in each class $(\hat{\lambda}_i)$ and measure resource utilization $\hat{\mu}$. Given the model coefficients s_i and w_{ij} , we substitute $\hat{\lambda}_i$ and $\hat{\mu}$ into Eqs. (1) and (3), yielding the prediction error ϵ . If this exceeds a threshold ϵ_T in k out of n consecutive tests, the model is flagged for relearning.

A simple approach is to test all models at a central node; data from each system is collected over a testing window and verified. Such continuous testing of tens or hundreds of models could be computationally expensive. We instead propose a fast, distributed model-testing algorithm based on the observation that although model derivation is expensive in both computation and memory, model checking is cheap. Hence model validation can be distributed to the systems being monitored themselves, allowing nearly continuous checking.

In this approach, the model—the request classes and coefficients—is provided to each server or node and can be tested locally. To test workload-to-usage models, a node samples arrival rates and usages over a short window and compares the usage

predictions against observations. Workload-to-workload models are tested similarly, except that communication with the downstream node is required to obtain observed data. If the local tests fail in k out of n consecutive instances, then a full test is triggered at the central node; full testing involves a larger test window and the computation of confidence intervals of the prediction error. Distributed testing over short windows is fast and imposes minimal overheads on server applications; due to this low overhead, tests can be frequent to detect failures quickly.

5.2. Limiting Cascading Errors

In the absence of errors, we could monitor only the external inputs to a system and then predict all internal behavior from models. In practice, models have uncertainties and errors, which grow as multiple models are composed.

Since our models are linear, errors also grow linearly with model composition. This may be seen by substituting Eq. (3) into Eq. (1), yielding a composite model with error term $\sum s_i \cdot \epsilon_i + \epsilon$, a linear combination of individual errors. Similarly, a "join" again yields an error term summing individual errors.

Given this linear error growth, there is a limit on the number of models that may be composed before the total error exceeds any particular threshold. Hence, we can no longer predict all internal workloads and resource usages solely by measuring external inputs. In order to scale our techniques to arbitrary system sizes, we must measure additional inputs inside the system, and use these measurement to drive further downstream predictions.

To illustrate how this may be done, consider a linear cascade of dependencies and suppose ϵ_{max} is the maximum tolerable prediction error. The first node in this chain sees an external workload that is known and measured; we can compute the expected prediction error at successive nodes in the chain until the error exceeds ϵ_{max} . Since further predictions will exceed this threshold, a new measurement point must be inserted here to measure, rather than predict, its workload; these measurements drive predictions at subsequent downstream nodes.

This process may be repeated for the remaining nodes in the chain, yielding a set of measurement points that are sufficient to predict responses at all other nodes in the chain. This technique easily extends to an arbitrary graph; we begin by measuring all external inputs and traverse the graph in a breadth-first manner, computing the expected error at each node. A measurement point is inserted if a node's error exceeds ϵ_{max} , and these measurements are then used to drive downstream predictions.

5.3. Stability Considerations

Under certain conditions, however, it will not be possible to derive a useful model for predicting future behavior. If the system behavior is dominated by truly random factors, for instance, model-based predictions will be inaccurate. A similar effect will be seen in cases where there is insufficient information available. Even if the system response is deterministically related to some attribute of the input, as described below, the log data may not provide that attribute. In this case, models learned from random data will result in random predictions.

In order to avoid spending a large fraction of system resources on the creation of useless models, Modellus incorporates backoff heuristics to detect applications that fail model validation more than k times within a period T (e.g., two times within the last hour). These "misbehaving" applications are not modeled, and are only occasionally examined to see whether their behavior has changed and modeling should be attempted again.

P. Desnoyers et al.

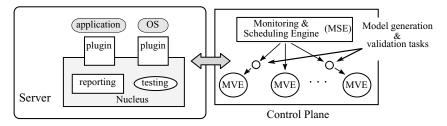


Fig. 8. The Modellus nucleus runs on each server to gather resource information and perform periodic model testing. The Modellus control plane runs on a cluster of servers dedicated to aggregating component data and generating models.

6. MODELLUS DESIGN

Our Modellus system implements the statistical and learning methods described in the previous sections. Figure 8 depicts the Modellus architecture. As shown, Modellus implements a *nucleus* on each node to monitor the workload and resource usage and to perform distributed testing. The Modellus *control plane* resides on one or more dedicated nodes and comprises (i) a *monitoring and scheduling engine* (MSE) that coordinates the gathering of monitoring data and scheduling of model generation and validation tasks when needed; and (ii) one or more *modeling and validation engines* (MVE) which implement the core numerical computations for model derivation and testing. The Modellus control plane exposes a front-end, allowing derived models to be applied to data center analysis tasks; the current front-end exports models and sampled statistics to a Matlab engine for interactive analysis.

The Modellus nucleus and control plane are implemented in a combination of C++, Python, and Numerical Python [Ascher et al. 2001], providing an efficient yet dynamically extensible system. The remainder of this section discusses our implementation of these components in detail.

6.1. Modellus Nucleus

The nucleus is deployed on each target system, and is responsible for both data collection and simple processing tasks. It monitors resource usage, tracks application events, and translates events into rates. The nucleus reports these usages and rates to the control plane, and can also test a control plane-provided model against this data. A simple HTTP-based interface is provided to the control plane, with commands falling into the following groups: (i) monitoring configuration; (ii) data retrieval; and (iii) local model validation.

Monitoring. The nucleus performs *adaptive monitoring* under the direction of the control plane—it is instructed which variables to sample and at what rate. The nucleus implements a uniform naming model for data sources and an extensible plugin architecture allowing support for new applications to be easily implemented.

Resource usage is monitored via standard OS interfaces, and collected as counts or utilizations over fixed measurement intervals. Event monitoring is performed by plugins that process event streams (i.e., logs) received from applications. These plugins process logs in real time and generate a stream of request arrivals; class-specific arrival rates are then measured by mapping each event using application-specific feature enumeration rules and model-specified classes.

The Modellus nucleus is designed to be deployed on production servers, and thus must require minimal resources. By representing feature strings by hash values, we are able to implement feature enumeration and rate monitoring with minimal overhead, as shown experimentally in Section 7.5. We have implemented plugins for HTTP and

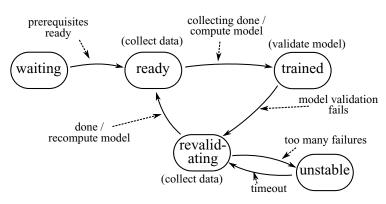


Fig. 9. Modellus uses a state machine to monitor the status of each application model. This allows Modellus to track applications that require system administrator inputs or need to be retrained.

SQL, with particular adaptations for Apache, MySQL, Tomcat, and XML-based web services.

Data retrieval. A monitoring agent such as the Modellus nucleus may either report data asynchronously (*push*), or buffer it for the receiver to retrieve (*pull*). In Modellus data is buffered for retrieval, with appropriate limits on buffer size if data is not retrieved in a timely fashion. Data is serialized using Python's *pickle* framework, and then compressed to reduce demand on both bandwidth and buffering at the monitored system.

Validation and reporting. The nucleus receives model validation requests from the control plane, specifying input classes, model coefficients, output parameter, and error thresholds. It periodically measures inputs, predicts outputs, and calculates the error; if out of bounds k out of n times, the control plane is notified. Testing of workload-to-workload models is similar, except that data from two systems (upstream and downstream) is required; the systems share this information without control plane involvement.

6.2. Monitoring and Scheduling Engine

The main goal of the Modellus control plane is to to generate up-to-date models and maintain confidence in them by testing. Towards this end, the monitoring and scheduling engine (MSE) is responsible for (i) initiating data collection from the nuclei for model testing or generation; and (ii) scheduling testing or model regeneration tasks on the modeling and validation engines (MVEs).

The monitoring engine issues data collection requests to remote nuclei, requesting sampled rates for each request class when testing models, and the entire event stream for model generation. For workload-to-workload models, multiple nuclei are involved in order to gather upstream and downstream information. Once data collection is initiated, the monitoring engine periodically polls for monitored data, and disables data collection when a full training or testing window has been received.

The control plane has access to a list of workload-to-utilization and workload-toworkload models to be inferred and maintained; this list may be provided by configuration or discovery. These models pass through a number of states, which may be seen in Figure 9: *waiting* for prerequisites, *ready* to train, *trained*, *revalidating*, and *unstable*. Each W_2W model begins in the *waiting* state, with the downstream W_2U model as a prerequisite, as the feature list from this W_2U model is needed to infer the W_2W model. Each W_2U model begins directly in the *ready* state. The scheduler selects models from the ready pool and schedules training data collection; when this is complete, the model parameters may be calculated. Once parameters have been calculated, the model

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

enters the *trained* state; if the model is a prerequisite for another, the waiting model is notified and enters the *ready* state.

Model validation as described above is performed in the *trained* state, and if at any point the model fails, it enters the *revalidating* state, and training data collection begins. Too many validation failures within an interval cause a model to enter the *unstable* state, and training ceases, while from time to time the scheduler selects a model in the unstable state and attempts to model it again. Finally, the scheduler is responsible for distributing computation load within the MVE, by assigning computation tasks to appropriate systems.

6.3. Modeling and Validation Engine

The modeling and validation engine (MVE) is responsible for the numeric computations at the core of the Modellus system. Since this task is computationally demanding, a dedicated system or cluster is used, avoiding overhead on the data center servers themselves. By implementing the MVE on multiple systems and testing and/or generating multiple models in parallel, Modellus will scale to large data centers, which may experience multiple concurrent model failures or high testing load.

The following functions are implemented in the MVE:

Model generation. W_2U models are derived directly; W_2W models are derived using request classes computed for the downstream node's W_2U model. In each case stepwise regression is used to derive coefficients relating input variables (feature rates) to output resource utilization (W_2U models) or feature rates (W_2W models).

Model validation. Full testing of the model at the control plane is similar but more sophisticated than the fast testing implemented at the nucleus. To test an W_2U model, the sampled arrival rates within each class and measured utilization are substituted into Eq. (1) to compute the prediction error. Given a series of prediction errors over successive measurement intervals in a test window, we compute the 95% one-sided confidence interval for the mean error. If the confidence bound exceeds the tolerance threshold, the model is discarded.

The procedure for testing an W_2W model is similar. The output feature rates are estimated and compared with measured rates to determine prediction error and a confidence bound; if the bound exceeds a threshold, the model is invalidated again. Since absolute values of the different output rates in a W_2W model may vary widely, we normalize the error values before performing this test by using the downstream model coefficients as weights, allowing us to calculate a scaled error magnitude.

6.4. Scaling to Large Data Centers

Modern data centers may have hundreds or thousands of servers running a large number of applications. Our design of Modellus incorporates a number of decisions that enables our system to scale to these sizes. First, Modellus models each application component independently and then composes models to create an aggregate model of the distributed application. Consequently, each component model can be computed independently, and we can employ a cluster of servers to parallelize this process; model composition does introduce dependencies (i.e., all component models must be computed before they can be composed), and Figure 9 shows how these dependencies are handled using the notion of prerequisites; various model compositions can also be parallelized in a similar fashion.

Further, the sever cluster running the Modellus engine can be expanded as the number of applications grows. Since there are no dependencies between models of independent applications, the larger the cluster, the greater the parallelism and scalability of Modellus' modeling and validation engine. The Modellus scheduler

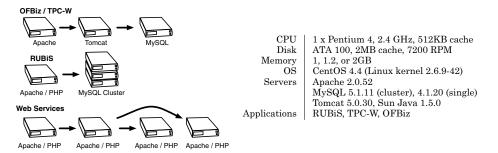


Fig. 10. Data center testbed and system specifications.

described in Section 6.2 can distribute model creation tasks across the modeling cluster as needed. Model verification is performed at each individual component, further reducing the load on the modeling cluster.

In practice, the number and types of models produced by Modellus is based on the system administrator's needs. For each application of interest, Modellus will create a W_2W or a W_2U model for each component, which can then be composed to produce the overall application model. The computation cost of creating each component model depends primarily on the number of features to be considered and is independent of the number of other components in the application or data center. Thus, Modellus can efficiently scale to large data centers and its model computation infrastructure can easily be spread across a cluster of machines.

7. EXPERIMENTAL RESULTS

In this section we present experiments examining various performance aspects of the proposed methods and system. To test feature-based regression modeling, we perform modeling and prediction on multiple test scenarios and compare measured results with predictions to determine accuracy. Additional experiments examine errors under shifting load conditions and for multiple stages of prediction. Finally, we present measurements and benchmarks of the system implementation in order to determine the overhead, which may be placed on monitoring systems and the scaling limits of the rest of the system.

7.1. Experimental Setup

The purpose of the Modellus system is to model and predict performance of real-world web applications, and it was thus tested on results from a realistic data center testbed and applications. The testbed is shown in Figure 10, with a brief synopsis of the hardware and software specifications. Four web applications were tested:

- (1) TPC-W [Smith ; Cain et al. 2001]: an e-commerce benchmark, implemented as a 3-tier Java servlet-based application, consisting of a front-end server (Apache) handling static content, a servlet container (Tomcat), and a back-end database (MySQL);
- (2) Apache Open For Business (OFBiz) [openforbiz 2007]: an ERP (Enterprise Resource Planning) system in commercial use. Uses the same Apache, Tomcat, MySQL setup as TPC-W;
- (3) RUBiS [Cecchet et al. 2003]: a simulated auction site running as a 2-tier LAMP⁴ application; application logic written in PHP runs in an Apache front-end server, while data is stored in a MySQL database cluster; and

⁴Linux/Apache/MySQL/PHP.

(4) Web Services Benchmark: a custom set of Apache/PHP-based components that can be connected in arbitrary topologies through a RESTful web API.

Both RUBiS and TPC-W have associated workload generators, which simulate varying numbers of clients; the number of clients as well as their activity mix and think times were varied over time to generate nonstationary workloads. A load generator for OFBiz was created using JWebUnit [jwebunit 2007], which simulated multiple users performing shopping tasks from browsing through checkout and payment information entry. The httperf [Mosberger and Jin 1998] tool was used as a load generator for the Web Services Benchmark.

Apache, Tomcat, and MySQL were configured to generate request logs, and system resource usage was sampled using the sadc(8) utility with a 1-second collection interval. Traces were collected and prediction was performed offline, in order to allow reuse of the same data for validation. Cross-validation was used to measure prediction error: each trace was divided into training windows of a particular length (e.g., 30 minutes), and a model was constructed for each window. Each model was then used to predict all data points outside of the window on which it was trained; deviations between predicted and actual values were then measured.

7.2. Model Generation Accuracy

To test W₂U model accuracy, we use the OFBiz, TPC-W and RUBiS applications and model each of the tiers individually. Using traces from each application we compute models over 30-minute training windows, and then use these models to predict utilization $\hat{\mu}$, using cross-validation as described above. We report the root mean square (RMS) error of prediction, and the 90th percentile absolute error ($|\mu - \hat{\mu}|$). For comparison we also show the standard deviation of the measured data itself, $\sigma(y)$.

We use 30-second training and prediction intervals as that was the measurement interval in the trace data. In general, the predictions should be made over similar intervals as the training data for the best accuracy. Testing the model on a different interval length than the one on which it was trained on might lead to lower accuracy (e.g., predictions over 1-second intervals when the training is done over 30-second intervals will not yield good results). Further, since the model is able to accurately predict the utilization at even 30-second intervals, we believe that the accuracy will be similar when the interval is longer, because the small scale variations and oscillations that are hard to predict will be smoothed out while averaging over longer intervals. The interval should be long enough to remove the momentary fluctuations and oscillations that can make it difficult to fit an accurate model on data. The length of the training window should be long enough to capture all the different characteristics of data. For this experiment we found that a 30-minute duration was long enough to capture the entire range of characteristics. For a different scenario, a longer duration might be required to train an accurate model.

In Figure 11 we see results from these tests. Both RMS and 90^{th} percentile prediction error are shown for each server except the OFBiz Apache front-end, which was too lightly loaded (< 3%) for accurate prediction. In addition, we plot the standard deviation of the variable being predicted (CPU utilization), in order to indicate the degree of error reduction provided by the model. In each case we are able to predict CPU utilization to a high degree of accuracy—less than 5% except for the TPC-W Tomcat server, and in all cases a significant reduction relative to the variance of the data being predicted.

We examine the distribution of prediction errors more closely in Figures 12 and 13, using the RUBiS application. For each data point predicted by each model we calculate the prediction error $(|\hat{y} - y|)$, and display a cumulative histogram or CDF of

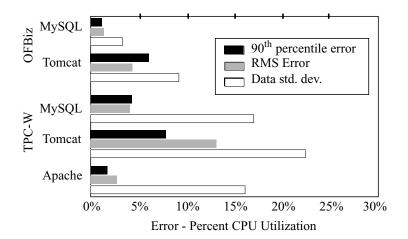


Fig. 11. Workload-to-utilization prediction errors.

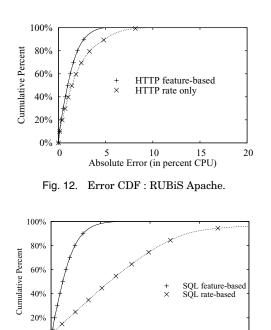


Fig. 13. Error CDF: RUBiS MySQL.

5 10 15 Absolute Error (in percent CPU) 20

these errors. From these graphs we see that about 90% of the Apache data points are predicted within 2.5%, and 90% of the MySQL data points within 5%.

In addition, in this figure we compare the performance of modeling and predicting based on workload features vs. predictions made from the aggregate request rate alone. Here we see that CPU on the RUBiS Apache server was predicted about twice as accurately using feature-based prediction, while the difference between naïveand feature-based prediction on the MySQL server was even greater.

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

0% **f** 0

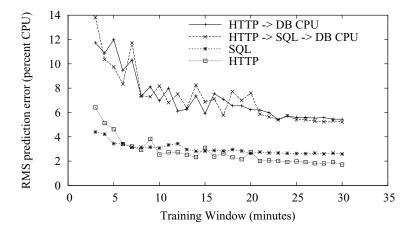


Fig. 14. Composed vs. direct prediction: learning curves for error of MySQL CPU from RUBIS HTTP.

7.3. Model Composition

The results presented examine performance of single workload-to-utilization (W_2U) models. We next examine prediction performance when composing workload-to-workload (W_2W) and W_2U models. We show results from the multitier experiments described above, but we focus on cross-tier modeling and prediction.

As described earlier, the composition of two models is done in two steps. First, we train a W_2U model for the downstream system (e.g., the database server) and its inputs. Next, we take the list of significant features identified in this model, and for each feature we train a separate upstream model to predict it. For prediction, the W_2W model is used to predict input features to the W_2U model, yielding the final result. Prediction when multiple systems share a single back-end resource is similar, except that the outputs of the two W_2W models must be summed before input to the W_2U model.

In Figure 14 we compare learning curves for both composed and direct W_2U models of the RUBiS application. In the composed model (HTTP \rightarrow SQL \rightarrow DB CPU), the W_2W model translates from HTTP features to SQL features, then the W_2U model is in turn used to predict the CPU utilization of the database; the model achieves less than 10% RMS error for training windows over eight minutes. Alternatively, the HTTP features from the front tier can be used for a single W_2U model that predicts CPU usage of the database tier (HTTP \rightarrow DB CPU), which has comparable error and requires a similar training period.

In addition we validate our model composition approach by comparing its results to two direct models made by training the HTTP or SQL server CPU utilization directly from their own inputs. While the direct models have lower error, it may not always be possible to observe all input features at every tier. Using model composition can lower monitoring overhead by allowing measurements from one tier to predict resource needs at downstream tiers.

7.4. Cascading Errors

We measured prediction performance of the Web Services application in order to investigate the relationship between model composition and errors. This benchmark allows application components to be defined and connected in arbitrary topologies. Three separate topologies were measured, corresponding to the model operations in Figure 3—cascade, split, and join—and prediction errors were measured between each

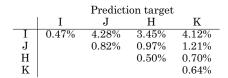


Fig. 15. Cascade errors. Entry (x,y) gives RMS error predicting at y given inputs to x.

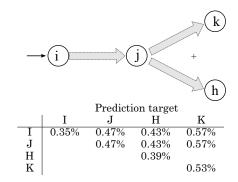


Fig. 16. Split errors; composition with multiple downstream servers.

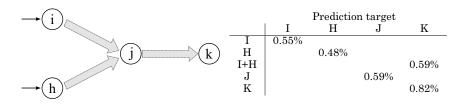


Fig. 17. Join error: composition by summing multiple upstream models.

pair of upstream and downstream nodes. In Figure 15 we see results for the cascade topology, giving prediction errors for model composition across multiple tiers; errors grow modestly, reaching at most about 4%.

In Figure 16 we see results for the split topology, and the join case in Figure 17. In each case prediction, errors are negligible. Note that in the join case, downstream predictions must be made using both of the upstream sources. This does not appear to affect accuracy; although the final prediction contains errors from two upstream models, they are each weighted proportionally.

7.5. System Overheads

We have benchmarked both the Modellus nucleus and the computationally intensive portions of the control plane. The nucleus was benchmarked on the testbed machines to determine both CPU utilization and volume of data produced. HTTP and SQL processing overheads were measured on log data from the TPC-W benchmark; in addition, HTTP measurements were performed for logfiles from the 1998 World Cup web site [Arlitt and Jin 1999].

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

0	0	
CPU/	Equiv.	
event	overhead	Output data
$16.5 \mu s$	2.7%	9.00 bytes/s
$11.8 \mu s$	n/a	9.05 bytes/s
$23.8 \mu s$	2.6%	
	$\frac{\text{event}}{16.5\mu s}$ $11.8\mu s$	$\begin{array}{c c} \hline event & overhead \\ \hline 16.5 \mu s & 2.7 \% \\ \hline 11.8 \mu s & n/a \\ \hline \end{array}$

Table I. Overhead for Modellus Log Processing on Trace Workloads

Table II. Training Times for Workload-to-Utilization Models

W ₂ U model	features	considered	
Training window	500	1000	2000
short (8 min)	0.06s	0.12	0.24
medium (15 min)	0.10	0.20	0.42
long (30 min)	0.16	0.33	0.72

Table III.	Training	Times for	Workload-to-Workload Models	

W_2W model	features	considered	
Training window	500	1000	2000
short (8 min)	0.4s	0.3	0.3
medium (15 min)	0.8	0.7	0.8
long (30 min)	1.1	1.0	1.1

Based on the request rate in the trace logs and the CPU utilization while they were being generated, we report the estimated overhead due to Modellus event processing if the server were running at 100% CPU utilization. Figures include overhead for compressing the data; in addition, we report the rate at which compressed data is generated, as it must be buffered and then transmitted over the network. Results may be seen in Table I; in each case Modellus incurs less than 3% overhead.

We measure the computationally intensive tasks of the modeling and validation engine to determine the scalability of the system. Tests were run using two systems: a 2.8GHz Pentium 4 with 512K cache, and a 2.3GHz Xeon 5140 with 4M cache. Results are reported in the following for the Xeon system only, which was approximately three times faster on this task than the Pentium 4. Each test measured the time to train a model; the length of the training window and the number of features considered was varied, and multiple replications across different data sets were performed for each combination.

Results for training W_2U models are seen in Table II. For 30-minute training windows and 1000 features considered, a single CPU core was able to compute three models per second. Assuming that at most we would want to recompute models every 15 minutes that is, overlapping half of the previous training window a single CPU would handle model computation for over 2500 monitored systems. W_2W model training is computationally more complex; results for the same range of model sizes are shown in Table III. These measurements showed a very high data-dependent variation in computation time, as complexity of computing the first-tier model is directly affected by the number of significant features identified at the second tier. We see that computation time was primarily determined by the training window length. For 30-minute windows our system took about a second per model computation; calculating as above, it could handle training data from nearly 1000 monitored systems.

Unlike model generation, model testing is computationally simple. Validation of a W_2U model across a window of 30 minutes of data, for example, required between 3 and 6 milliseconds on the system used.

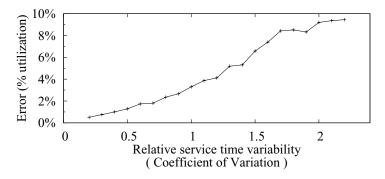


Fig. 18. Prediction error vs. scaled data variability.

7.6. Limitations of our Approach

Our approach to modeling system performance based on input features has a number of limitations, which we explore in this section. As with any statistical process, the larger the random component of a given amount of measured data, the higher the resulting error will be. In Modellus, such errors may be due to almost purely random factors (e.g., scheduling and queuing delays) or to "hidden variables"—factors that may deterministically affect system response, but which we are unable to measure. In this section we demonstrate the effects of such errors via modification of testbed traces.

Simulated CPU traces were created from actual TPC-W data traces by assigning weights to each of the TPC-W operations and then adding a lognormal-distributed random component to each processing time. Workload-to-utilization models were then trained on the original input stream and the resulting utilization data and prediction results are reported. These may be seen in Figure 18, where prediction error for a fixed training window size may be seen to grow roughly linearly with the variability of the data. From this we see that increases in variability will result in either longer training windows, lower accuracy, or some combination of the two.

The approach used in Modellus of relating request logs to application behavior also limits its use to request-response systems. In practice, we believe that these types of applications are the ones most likely to see varying workloads for which prediction models are useful. Other modeling techniques would be required for batch processing applications.

A final limitation of Modellus is that it is currently restricted to building linear models due to its use of stepwise regression. While this is effective for building resource utilization and workload models, linear models are generally not effective for modeling performance metrics such as response time that exhibit nonlinear behavior. We note, however, that Modellus can be easily extended to support piecewise linear models, allowing it to be applied to a broader range of metrics. Our future work will investigate how to utilize the Modellus framework to build nonlinear models of metrics such as response time.

8. DATA CENTER ANALYSIS

In this section we apply the Modellus methodology to actual and simulated real-world data center applications. As noted in Section 1, the models computed by Modellus can be used by system administrators for a variety of management tasks such as the analysis of as-is state and available headroom, answering what-if questions, and the impact of system changes. We illustrate these tasks using two case studies.

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

		,	•	0	
Application	Mix	Web reqs/sec	Predicted	Measured	Error
Apache	Browsing	90	32.00%	20.00%	+12.00%
-	Browsing	114	40.53%	31.40%	+9.13%
	Ordering	90	43.00%	41.00%	+2.00%
Tomcat	Browsing	90	37.00%	32.00%	+5.00%
	Browsing	114	46.87%	45.00%	+1.87%
	Ordering	90	56.00%	51.00%	+5.00%
MySQL	Browsing	90	25.00%	17.30%	+7.70%
	Browsing	114	31.67%	26.00%	+5.67%
	Ordering	90	66.00%	69.00%	-3.00%

Table IV. Case Study: Predicted Impact of Workload Changes

8.1. Online Retail Scenario

First, we demonstrate the utility of our models for "what-if" analysis of data center performance.

Consider an online retailer who is preparing for the busy annual holiday shopping season. We assume that the retail application is represented by TPC-W, which is a full-fledged implementation of an 3-tier online store and a workload generator that has three traffic mixes: *browsing*, *shopping*, and *ordering*, each differing in the relative fractions of requests related to browsing and buying activities. We assume that the shopping mix represents the typical workload seen by the application. Suppose that the retailer wishes to analyze the impact of changes in the workload mix and request volume in order to plan for future capacity increases. For instance, during the holiday season it is expected that the rate of buying will increase and so will the overall traffic volume. We employ Modellus to learn models based on the typical shopping mix and use it to predict system performance for various what-if scenarios where the workload mix as well as the volume change.

We simulate this scenario on our data center testbed, as described in Section 7.1. Model training was performed over a two-hour interval with varying TPC-W and RU-BiS load, using the TPC-W "shopping" mixture. We then used this model to express utilization of each system in terms of the different TPC-W requests, allowing us to derive utilization as a function of requests per second for each of the TPC-W transaction mixes. The system was then measured with several workloads consisting of either TPC-W "browsing" or "ordering" mixtures.

Predictions are shown in Table IV for the three traffic mixes on the three servers in the system: Apache, which only forwards traffic; Tomcat, which implements the logic; and MySQL. Measurements are shown as well for two test runs with the browsing mixture and one with ordering. Measured results correspond fairly accurately to predictions, capturing both the significant increase in database utilization with increased buying traffic as well as the relative independence of the front-end Apache server to request mix.

Model Revalidation. In the previous example, Modellus was able to make accurate predictions about both the "ordering" and "browsing" workloads because it had been trained on a "shopping" mix which included all of the request types used in both of the other two scenarios. It is also possible that Modellus could be trained on a workload that does not contain the full request set. For example, if Modellus only had access to training data from the browsing workload, it would not be able to make accurate predictions of the ordering scenario because the model would not recognize the computation-intensive buying servlets and database updates. In this case, Modellus would be able to report that the what-if workload contained many features not included in the model, alerting system administrators that its predictions may not be accurate. Modellus' automated

		0,		
		cpu	preads	reads (.1000)
Pre-	Naive	38.95	6748	1151
upgrade	Feature-based	47.46	10654	1794
	Measured	47.20	8733	1448
Post-	Measured	31.03	6856	2061
upgrade	Outdated Model	71.18	4392	1369
	Recomputed Model	24.34	4819	1471

Table V. Trading System Traces

Feature-based and naïverate-based estimation vs. measured values. The model must be retrained after the hardware upgrade.

model revalidation component is able to detect this kind of behavior in the online scenario where workload shifts or application modifications cause new request types to appear. This causes the old model to be discarded and automatically retrained. In practice, we expect these transitions to be infrequent, since entirely new features are only rarely added to an application.

8.2. Financial Application Analysis

The second case study examines the utility of our methods on a large stock trading application at a real financial firm, using traces of stock trading transactions executed at a financial exchange. Resource usage logs were captured over two 72-hour periods in early May, 2006; in the two-day period between these intervals a hardware upgrade was performed. The event logs captured 240,000 events pre-upgrade and 100,000 events after the upgrade occurred. We present the accuracy of Modellus modeling both CPU utilization and disk I/O rates before and after the upgrade; this demonstrates the importance of continuously validating models and adapting them to changes in hardware.

In contrast to the other experiments in this article, only a limited amount of information is available in these traces. CPU utilization and disk traffic were averaged over 60s intervals, and, for privacy reasons, the transaction log contained only a database table name and status (success/failure) for each event. This results in a much smaller number of features to be used as inputs to the model. In Table V, we see predicted values for three variables—CPU utilization, physical reads, and logical reads—compared to measured values and a naïverate-based model. The poor performance of the naïvemodel indicates that Modellus can get significant accuracy gains, even from the coarse-grain features available in this scenario.

After the upgrade is performed, the prediction accuracy of the model falls significantly because it does not know that the underlying CPU and disk hardware has been changed. However, the Modellus validation engine is able to detect that the predicted CPU and disk utilizations have a high level of error, causing the system to recalculate the model. After the model has been retrained, the accuracy returns to the level seen prior to the upgrade.

8.3. Modellus Use Cases

The models provided by Modellus can be used for both "what-if" analysis that predicts how an application will behave in the future and for "as-is" analysis that tries to better understand an application's current behavior. The previous sections demonstrated how Modellus can be used for prediction analysis when workload mixes or volumes are expected to change in the future. In these cases, Modellus is able to accurately predict resource utilization across multiple components, making it an important tool for data center capacity planning. This allows administrators to forecast the resource needs of applications which are seeing workload growth and plan when to add additional servers to the data center.

Headroom analysis tries to discover the amount of free capacity in a data center and how much workloads can increase before servers will become overloaded. Modellus can assist in this process by providing models that report utilization across multiple components. System administrators can use the current workload as a starting input to the model and then gradually increase the load. The model outputs can then be examined to see when individual components in the application will become saturated, allowing administrators to add capacity to precisely the components that will need it. Traditionally, this process was done based on naïverate models that, for example, predict that a 20% increase in workload results in a 20% increase in load. Modellus's feature-based models are significantly more accurate (as shown in Section 7.2) because they account for workload mix specifics, and by using model composition can be applied across multiple components in an application.

9. RELATED WORK

Application modeling. Server application models can be classified as either *black-box* or *white-box* models. Black-box models describe externally visible performance characteristics of a system, with minimal assumptions about the internal operations; whitebox models, in contrast, are based on knowledge of these internals. Black-box models are used in a number of approaches to data center control via feedback mechanisms. MUSE [Chase et al. 2001] uses a market bidding mechanism to optimize utility, while Model-Driven Resource Provisioning (MDRP) [Doyle et al. 2003] uses dynamic resource allocation to optimize SLA satisfaction. Several control theory-based systems use admission control instead, reducing the input to fit the resources available [Kamra et al. 2004; Parekh et al. 2002].

While black-box models concern themselves only with the inputs (requests) and outputs (measured response and resource usage), white-box models are based on causal links between actions. Magpie [Barham et al. 2004] and Project5 [Aguilera et al. 2003] use temporal correlation on OS and packet traces, respectively, to find event relationships. In a variant of these methods, Jiang et al. [2006] use an alternate approach; viewing events of a certain type as a *flow*, sampled over time, they find invariant ratios between event flow rates, which are typically indicative of causal links. Likewise, Menascé et al. [2000] characterized workloads using hierarchical models over multiple time scales.

Queuing models. A popular technique for analyzing the behavior of an application is to model its the components as a network of queues [Denning and Buzen 1978; Jackson 1957]. Queuing theory results have been used to relate workloads between tiers and predict resource utilization or response times [Lazowska et al. 1984; Baskett et al. 1975; Menascé and Almeida 2000; Menascé et al. 2004]. However, these queuing models typically assume knowledge of request classifications and service times. In practice, classifying requests and measuring service times requires substantial application knowledge and instrumentation, which may not be available in large-scale data centers. To deal with this challenge, Modellus uses the resource utilization and workload model formulations from queuing theory and combines them with automated request classification and parameter estimation techniques. Our contributions lie in automating this process and dealing with the practical systems issues of building a scalable model generation and validation system.

These approaches have been applied for analysis of multitier applications. Given knowledge of a system's internal structure, a queuing model may be created, which can then be calibrated against measured data and then used for analysis and prediction. Stewart and Shen [2005] uses this approach to analyze multicomponent web applications with a simple queuing model. Urgaonkar et al. [2005] uses more sophisticated product-form queuing network models to predict application performance for

dynamic provisioning and capacity planning. The work by Liu et al. [2006] uses a quadratic programming technique to calculate the service times which are then used in a queuing theory model of application performance. While this solves part of the problem, determining how to classify requests, particularly in a large data center with thousands of different applications, remains a challenge. Modellus automates the request classification process using feature enumeration data mining techniques. It then builds statistical workload or utilization models across tiers that are based on queuing theoretic formulations.

Learning-based approaches. Other systems are predictive: NIMO [Shivam et al. 2006] uses statistical learning with active sampling to model resource usage and predict completion time for varying resource assignments. NIMO focuses on the completion time of long-running applications, and does not address model composition, such as done by Modellus.

The work of Zhang et al. [2007b] is closely related to ours; they use regression to derive service times for queuing models of web applications, but require manual classification of events and do not compose models over multiple systems. Other work learns classifiers from monitored data: in Cohen et al. [2004] tree-augmented Bayesian networks are used to predict SLA violations, and similarly in Chen et al. [2006] a K-nearest-neighbor algorithm is used to for provisioning to meet SLAs. Independent Component Analysis (ICA) has also been used to categorize request types based on service demand by Sharma et al. [2008]. Modellus uses stepwise linear regression over ICA or Bayesian methods, since it is a robust method that is computationally efficient enough to be deployed for modeling real data center applications.

Application models have been employed for a variety of reasons. Performance models can be used to guide provisioning engines that determine how many resources to allocate to an application [Bennani and Menasce 2005]. The R-Cappricio system uses regression-based models for capacity planning as well as anomaly detection [Zhang et al. 2007]. SelfTalk/Dena [Ghanbari et al. 2010] is a query language and runtime system capable of describing interconnected application components and then evaluating queries about expected system behavior. In Modellus, we automate the process of building and updating application performance models, and demonstrate how these can be used to answer "what if" questions about resource consumption under different workloads and hardware configurations.

10. CONCLUSIONS

This article argue that the rising complexity of Internet data centers has made manual modeling of application behavior difficult and proposed Modellus, a system to automatically model the resource usage and workload dependencies between web applications using statistical methods from data mining and machine learning. We proposed a number of enhancements to ensure that these statistical methods are practical in large distributed systems. Modellus automates request classification, model generation, and reevaluation, eliminating many manual steps that typically require significant application knowledge or statistical expertise. This allows system administrators to focus on using models for tasks such as capacity planning or "what if" analysis, so that they can better understand the current and predicted behavior of their data center applications.

We implemented a prototype of Modellus and deployed it on a Linux data center testbed. Our experimental results show the ability of this system to learn models and make predictions across multiple systems in a data center, with accuracies in prediction of CPU utilization on the order of 95% in many cases; in addition, benchmarks show the overhead of our monitoring system to be low enough to allow deployment on heavily loaded servers. We further demonstrated the usefulness of Modellus in two case studies that illustrate the importance of adapting models after hardware upgrades and using

P. Desnoyers et al.

model predictions to answer "what if" questions about changing workload conditions. As part of ongoing and future work, we are enhancing the Modellus framework to capture nonlinear workload to response time relationships in data center applications, and are building a query interface to enable rich interactive model-driven analysis of data center applications.

ACKNOWLEDGMENTS

We would like to thank our reviewers and the TWEB editors for their help improving this article.

REFERENCES

- AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P., AND MUTHITACHAROEN, A. 2003. Performance debugging for distributed systems of black boxes. In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP '03). ACM, New York.
- ARLITT, M. AND JIN, T. 1999. Workload characterization. Tech. rep. HPL-1999-35R1. 1998 World Cup Web Site, HP Labs.
- Ascher, D., Dubois, P., Hinsen, K., Hugunin, J., Oliphant, T., et al. 2001. Numerical Python. http://www.numpy.org.
- BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R. 2004. Using Magpie for request extraction and workload modeling. In *Proceedings of the OSDI*. 259–272.
- BASKETT, F., CHANDY, K. M., MUNTZ, R. R., AND PALACIOS, F. G. 1975. Open, closed, and mixed networks of queues with different classes of customers. J. ACM 22, 248–260.
- BENNANI, M. N. AND MENASCE, D. A. 2005. Resource allocation for autonomic data centers using analytic performance models. In Proceedings of the 2nd International Conference on Automatic Computing (ICAC '05). IEEE, Los Alamitos, CA, 229–240.
- CAIN, H. W., RAJWAR, R., MARDEN, M., AND LIPASTI, M. H. 2001. An architectural evaluation of Java TPC-W. In Proceedings of the 7th International Symposium on High Performance Computer Architecture (HPCA '01).
- CECCHET, E., CHANDA, A., ELNIKETY, S., MARGUERITE, J., AND ZWAENEPOEL, W. 2003. In Proceedings of the ACM/IFIP/USENIX International Conference on Middleware (Middleware '03).
- CHASE, J., ANDERSON, D., THAKAR, P., VAHDAT, A., AND DOYLE, R. 2001. Managing energy and server resources in hosting centers. *Oper. Syst. Rev.* 35, 5, 103–116.
- CHEN, J., SOUNDARARAJAN, G., AND AMZA, C. 2006. Autonomic provisioning of backend databases in dynamic content web servers. In Proceedings of the IEEE International Conference on Autonomic Computing (ICAC '06), IEEE, Los Alamitos, CA, 231–242.
- COHEN, I., CHASE, J. S., AND GOLDSZMIDT, M., ET AL. 2004. Correlating instrumentation data to system states: A building block for automated diagnosis and control. In *Proceedings of the OSDI*. 231–244.
- DENNING, P. J. AND BUZEN, J. P. 1978. The operational analysis of queuing network models. ACM Comput. Surv. 10, 225–261.
- DOYLE, R. P., CHASE, J. S., AND ASAD, O. M., ET AL. 2003. Model-based resource provisioning in a web service utility. In *Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems (USITS'03)*. USENIX Association, Berkeley, CA.
- DRAPER, N. R. AND SMITH, H. 1998. Applied Regression Analysis. Wiley, New York.
- Efroymson, M.A. 1960. Mathematical Methods for Digital Computers. Wiley, New York.
- FOSTER, D. P. AND GEORGE, E. I. 1994. The risk inflation criterion for multiple regression. Ann. Stat. 22, 4, 1947–1975.
- GHANBARI, S., SOUNDARARAJAN, G., AND AMZA, C. 2010. A query language and runtime tool for evaluating behavior of multi-tier servers. In Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS '10). 131–142.
- JACKSON, J. R. 1957. Networks of waiting lines. Oper. Res. 5, 518-521.
- JIANG, G., CHEN, H., AND YOSHIHIRA, K. 2006. Discovering likely invariants of distributed transaction systems for autonomic system management. In *Cluster Computing*, Springer, Berlin, 199–208.
- jwebunit 2007. JWebUnit. http://jwebunit.sourceforge.net.
- KAMRA, A., MISRA, V., AND NAHUM, E. 2004. Yaksha: A controller for managing the performance of 3-tiered websites. In Proceedings of the 12th IEEE International Workshop on Quality of Service (IWQOS'04).

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

- LAZOWSKA, E. D., ZAHORJAN, J., GRAHAM, G. S., AND SEVCIK, K. C. 1984. *Quantitative System Performance:* Computer System Analysis Using Queueing Network Models. Prentice-Hall, Upper Saddle River, NJ.
- LIU, Z., WYNTER, L., XIA, C. H., AND ZHANG, F. 2006. Parameter inference of queueing models for it systems using end-to-end measurements. *Perform. Eval.* 63, 1, 36–60.
- MENASCE, D., ALMEIDA, V., RIEDI, R., RIBEIRO, F., FONSECA, R., AND MEIRA, W., JR. 2000. In search of invariants for e-business workloads. In Proceedings of the 2nd ACM Conference on Electronic Commerce (EC '00). ACM, New York, 56–65.
- MENASCE, D. A. AND ALMEIDA, V. 2000. Scaling for E-Business: Technologies, Models, Performance, and Capacity Planning 1st Ed., Prentice Hall, Upper Saddle River, NJ.
- MENASCE, D. A., ALMEIDA, V., AND DOWDY, L. W. 2004. Performance by Design. Prentice Hall, Upper Saddle River, NJ.
- MOSBERGER, D. AND JIN, T. 1998. httperf A tool for measuring web server performance. In Proceedings of the SIGMETRICS Workshop on Internet Server Performance. ACM, New York.
- OPENFORBIZ. 2007. The Apache "open for business" project. http://ofbiz.apache.org.
- PAREKH, S., GANDHI, N., HELLERSTEIN, J., TILBURY, D., JAYRAM, T. S., AND BIGUS, J. 2002. Using control theory to achieve service level objectives in performance management. *Real-Time Syst.* 23, 1, 127–141.
- SHARMA, A. B., BHAGWAN, R., CHOUDHURY, M., GOLUBCHIK, L., GOVINDAN, R., AND VOELKER, G. M. 2008. Automatic request categorization in internet services. SIGMETRICS Perform. Eval. Rev. 36, 2,16–25.
- SHIVAM, P., BABU, S., AND CHASE, J. 2006. Learning application models for utility resource planning. In Proceedings of the IEEE International Conference on Autonomic Computing (ICAC '06). IEEE, Los Alamitos, CA, 255–264.
- SMITH, W. TPC-W: Benchmarking an ecommerce solution. http://www.tpc.org/information/other/techarticles .asp.
- STEWART, C. AND SHEN, K. 2005. Performance modeling and system management for multi-component online services. In Proceedings of the 2nd conference on Symposium on Networked Systems Design and Implementation (NSDI '05). Vol. 2, USENIX Associations, Berkeley, CA.
- URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M., AND TANTAWI, A. 2005. An analytical model for multi-tier internet services and its applications. In *Proceedings of the ACM SIGMETRICS International Conference* on Measurement and Modeling of Computer Systems (SIGMETRICS '05). ACM, New York.
- ZHANG, Q., CHERKASOVA, L., MATHEWS, G., GREENE, W., AND SMIRNI, E. 2007a. R-capriccio: A capacity planning and anomaly detection tool for enterprise services with live workloads. In Proceedings of the ACM/IFIP/USENIX 2007 International Conference on Middleware (Middleware '07). Springer, Berlin, 244-265.
- ZHANG, Q., CHERKASOVA, L., AND SMIRNI, E. 2007b. A regression-based analytic model for dynamic resource provisioning of multi-tier applications. ACM Trans. Comput. Syst. 27, 3(Nov).

Received July 2010; revised March 2011; accepted October 2011