
8

Modellus: Automated Modeling of Complex Internet Data
Center Applications

PETER DESNOYERS, Northeastern University
TIMOTHY WOOD, PRASHANT SHENOY, and RAHUL SINGH,
University of Massachusetts Amherst
SANGAMESHWAR PATIL and HARRICK VIN, Tata Research Development and Design Centre

The rising complexity of distributed server applications in Internet data centers has made the tasks of
modeling and analyzing their behavior increasingly difficult. This article presents Modellus, a novel system
for automated modeling of complex web-based data center applications using methods from queuing theory,
data mining, and machine learning. Modellus uses queuing theory and statistical methods to automatically
derive models to predict the resource usage of an application and the workload it triggers; these models can
be composed to capture multiple dependencies between interacting applications.

Model accuracy is maintained by fast, distributed testing, automated relearning of models when they
change, and methods to bound prediction errors in composite models. We have implemented a prototype of
Modellus, deployed it on a data center testbed, and evaluated its efficacy for modeling and analysis of several
distributed multitier web applications. Our results show that this feature-based modeling technique is able
to make predictions across several data center tiers, and maintain predictive accuracy (typically 95% or
better) in the face of significant shifts in workload composition; we also demonstrate practical applications
of the Modellus system to prediction and provisioning of real-world data center applications.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems—
Modeling techniques; C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms: Design, Performance

Additional Key Words and Phrases: Workload and performance modeling, internet applications

ACM Reference Format:
Desnoyers, P., Wood, T., Shenoy, P., Singh, R., Patil, S., and Vin, H. 2012. Modellus: Automated modeling of
complex internet data center applications. ACM Trans. Web 6, 2, Article 8 (May 2012), 29 pages.
DOI = 10.1145/2180861.2180865 http://doi.acm.org/10.1145/2180861.2180865

1. INTRODUCTION

Distributed server applications have become commonplace in today’s Internet and
business environments. The data centers hosting these applications—large clusters of
networked servers and storage—have in turn become increasingly complex. Some of
this is due to complexity of the applications themselves, which may have multiple tiers
and share resources across applications. Another factor contributing to data center
complexity, however, is evolution and change as hardware and software components
are added or replaced, often resulting in unknown or unforeseen system interactions.

This work is supported by the National Science Foundation, under grants CNS-0720616, CNS-0916972, and
OCI-1032765.
T. Wood is currently affiliated with the George Washington University.
Author’s e-mail address: Timothy Wood, timwood@gwu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1559-1131/2012/05-ART8 $10.00

DOI 10.1145/2180861.2180865 http://doi.acm.org/10.1145/2180861.2180865

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:2 P. Desnoyers et al.

Such systems, which must be managed to meet service-level agreements (SLAs) and
to minimize operating and capital costs, have become too complex to be comprehended
by a single human. This article proposes a new approach for conquering this complex-
ity, using queuing theory combined with statistical methods from data mining and
machine learning. Collectively, these methods create predictive models that capture
interactions within a system, allowing the user to relate input (i.e., user) behavior to
interactions and resource usage. Data from existing sources (log files, resource uti-
lization) is collected and used to train a model derived from queuing theory, so that
application models can be created “on the fly” from a running system. From this train-
ing data we then infer queuing network models that relate events or input at different
tiers of a data center application to resource usage at that tier, and to corresponding
requests sent to tiers further within the data center. By composing these models, we
are able to examine relationships across multiple tiers of an application, and to iso-
late these relationships from the effects of other applications that may share the same
components.

The models produced by our system can then be used by system administrators
to better understand the behavior and resource requirements of their applications.
System administrators can use these models to perform “as-is state analysis” to study
the health of and dependencies between running applications, or to perform “headroom
analysis” to determine the current resource usage and the remaining capacity in the
data center to handle workload growth or new applications. Such models can also be
used for “what-if analysis” studies that ask questions about how resource needs may
change depending on anticipated variations in application workloads. Currently, such
analysis is done using rules of thumb or manually developed models. The complexity
and scale of these manual approaches becomes a challenge as the size of applications
and data centers continues to grow, pointing to the need for automated methods.

The nature of modern web-based applications makes this analysis and modeling par-
ticularly difficult. These applications are typically composed of multiple components, so
models must account for the relationships between them. Further, the input workloads
seen by each component are comprised of many different request types and each type
may place a very different load on the server. To create models of inputs and responses,
we must classify them; yet request classes are typically unique to each application
component, and system administrators are unlikely to have the application-specific
knowledge required to differentiate them. Even with expert knowledge, classifying in-
puts by hand will not scale in practice due to the huge number of unique components
in a data center and their rate of change. Instead, if we are to use modeling as a tool in
data center management, we must automatically learn not only system responses but
input classifications themselves.

The benefits of an automated modeling method are several. It relieves humans from
the tedious task of tracking and modeling complex application dependencies in large
systems. The models created may be used for higher-level tasks such as analyzing data
center capacity (“headroom analysis”) or predicting the impact of workload variations
(“what-if analysis”). Finally, automated modeling can keep these models up-to-date as
the system changes via periodic testing and repetition of the learning process.

We have designed and implemented Modellus,1 a system that implements our auto-
mated modeling approach. Modellus combines classical results from queuing network
theory [Denning and Buzen 1978; Jackson 1957; Lazowska et al. 1984] with novel
techniques that “mine” the incoming web workload for features that best predict the
observed resource usage or workload at a downstream component. Specifically, model
inference in Modellus is based on stepwise regression—a technique used in statistical

1Latin. Root of “model”.

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:3

data mining—for determining features that best correlate with empirical observations
taken from monitoring of application request logs and OS-level resource usage mea-
surements. These features are used to parameterize network queuing models, which
can then be composed to capture dependencies between interacting applications. Mod-
ellus also implements automated model testing to verify that derived models remain
valid, and triggers relearning of a new model upon model failure.

We implement a host of optimizations to ensure that our queuing and statistical
methods are practical in large distributed systems. A fast, distributed model testing
algorithm performs frequent coarse-grain testing at local nodes, triggering full model
testing only when these tests fail. This improves scalability while reducing the latency
of detecting model failures. Techniques for estimating prediction errors are used to
prevent excessive errors due to the composition of a large number of models. Finally,
Modellus implements back-off heuristics to avoid scenarios where transient phase
changes in the workload or inherently “noisy” workloads cause frequent model failures,
triggering wasteful relearning.

We have implemented a prototype of Modellus, consisting of both a nucleus running
at the monitored systems and a control plane for model generation and testing. We
conducted detailed experiments on a prototype data center running a mix of realistic
web-based applications. Our results show that in many cases we predict server utiliza-
tion within 5% or less, based on measurements of the input to either that server or
upstream servers. In addition, we demonstrated the utility of our modeling techniques
in predicting responses to future traffic loads and patterns for use in capacity planning.

Overall, our contributions lie in the design of a system that combines queuing net-
work theory with statistical methods to automate the task of modeling distributed
application behavior, while being scalable and practical for deployment in large data
centers. Specific contributions include the following:

(1) automated data mining techniques that classify application requests into different
types;

(2) use of queuing network results in conjunction with statistical techniques to relate
incoming requests to resource utilization or workloads at downstream components;

(3) model composition rules that allow workloads at one application component to be
related to behavior at another;

(4) an automated model testing and revalidation component that ensures models are
kept up to date in an efficient manner;

(5) a thorough evaluation of the prediction accuracy of Modellus, as well as practical
use cases that describe how it can be used to answer questions in a real data center.

The remainder of this article is structured as follows. We present background and
formulate the modeling problem in Section 2, and describe our automated modeling
approach in Sections 3 to 5. Section 6 presents the Modellus implementation, while
Sections 7 and 8 present our experimental results. Finally, we survey related work in
Section 9, and conclude in Section 10.

2. BACKGROUND AND PROBLEM FORMULATION

Consider an Internet data center consisting of a large collection of computers, run-
ning a variety of applications and accessed remotely by clients via the Internet. The
data center will have resources for computation (i.e., the servers themselves), stor-
age, local communication (typically a high-speed LAN), and remote communication
with end-users. We define an application as a collection of components that are dis-
tributed across multiple servers. Each component typically resides on a separate server
and implements a portion of the application functionality. The various components

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:4 P. Desnoyers et al.

collectively implement the functionality of the distributed application and are assumed
to be structured as a directed acyclic graph from a request processing standpoint.

As an example, a web-based student course registration application might be com-
posed of three separate components: a frontend J2EE server, a legacy client-server
processing tier, and an enterprise database. Some of these components may be shared
between applications; for instance, our example backend database is likely to be shared
with other applications (e.g., tuition billing) that need access to course registration
data. In addition, in many cases, physical resources may be shared between different
components and applications, either by direct colocation or through the use of virtual
machines.

For our analysis, we can characterize these applications at various tiers in the data
center by their requests and the responses to them. In addition, we are interested
in both the computational and I/O load incurred by a component when it handles a
request, as well as any additional requests it may make to other tier components in
processing the request (e.g., database queries issued while responding to a request for
a dynamic web page). We note that a single component may receive intercomponent
requests from multiple sources, and may generate requests to several components
in turn. Thus, the example database server receives queries from components that
are part of multiple applications. Likewise, a single application component may make
requests to multiple databases or other components.

In this work we seek to model the overall operation of applications based on data gath-
ered at each of their components. Thus, we require data on the operations performed at
each component as well as their impact. We obtain request or event information from
application logs, which typically provide event timestamps, client identity, and infor-
mation identifying the specific request. Resource usage measurements are gathered
from the server OS, and primarily consist of CPU usage and disk operations over some
uniform sampling interval.

Problem Formulation. The automated modeling problem may be formulated as fol-
lows. In a system as described above, given the request and resource information
provided, we wish to automatically derive the following information.

(1) Request classifications that allow input request streams to be classified by type.
These request classes must be generated automatically by the system due to the large
number of applications in a modern data center. The classification is then combined
with workload information for the following models.

(2) A workload-to-utilization model that uses queuing theory to model the resource
usage of an application component as a function of its incoming workload. For instance,
the CPU utilization and disk I/O operations due to an application μcpu, μiop can be
captured as a function of its workload λ:

μcpu = fcpu(λ), μiop = fiop(λ).

(3) A workload-to-workload model that uses queuing networks to model the outgoing
workload of an application component as a function of its incoming workload. Since the
outgoing workload of an application component becomes the incoming workload of one
or more downstream components, our model derives the workload at one component
as a function of another:

λ j = g(λi).

We also seek techniques to compose these basic models to represent complex system
systems. Such model composition should capture transitive behavior, where pairwise
models between components i and j and j and k are composed to model the relationship
between i and k. Further, model composition should allow pairwise dependence to be

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:5

extended to n-way dependence, where a component’s workload is derived as a function
of the workloads seen by all its n upstream components.

3. DATA CENTER MODELING: BASICS

In this section, we present the intuition behind our basic models, followed by a discus-
sion on constructing composite models of complex data center applications. Our basic
models are based on results from queuing theory and queuing network theory. How-
ever, since each application is somewhat different, in a real system, the parameters of
these models, as well as system artifacts such as configuration parameters and caching,
govern how the application behaves in response to a particular request workload. Con-
sequently the challenge lies in automating the tasks of derving the paramaters of
our queuing and queuing network models to capture the behavior of the distributed
application.

3.1. Workload-to-Utilization Model

Consider an application comprising of multiple components. We model each component
as a M/G/1/PS queue, that is, the service times are assumed to have an arbitrary
distribution; the service discipline is asssumed to be processor sharing, and the request
interarrivals are assumed to have a Poisson distribution. Let us suppose that the input
stream consists of k distinct classes of requests, where requests in each class have
similar service times. For example, a web server might receive requests for small static
files and computationally-intensive scripts.

We model the entire application as an open network of queues [Jackson 1957; Den-
ning and Buzen 1978; Lazowska et al. 1984]. We can now apply the BCMP theorem
[Baskett et al. 1975] to analyze this network of queues by considering each queue in the
network independently. According to the utilization law [Denning and Buzen 1978], the
aggregate CPU utilization of an application component over the interval τ is a linear
sum of the usage due to each request type:

μ = λ1 · s1 + λ2 · s2 + · · · + λk · sk + ε, (1)

where λ1, λ2, . . . λk denote the observed rates for each request class over the interval τ ;
s1, s2, . . . sk denote the corresponding mean service times and ε is a error term assumed
random and independent.

If the request classes are well chosen, then we can sample the arrival rate of each
class empirically, derive the above linear model from these measurements, and use it
to yield an estimate μ̂ of the CPU utilization due to the incoming workload. Thus, in
our example above, λ1 and λ2 might represent requests for small static files and scripts;
and s2 would be greater than s1, representing the increased cost of script processing.
The value of this model is that it retains its accuracy when the request mix changes.
Thus, if the overall arrival rate in our example remained constant but the proportion
of script requests increased, the model would account for the workload change and
predict an increase in CPU load.

3.2. Workload-to-Workload Model

In addition to examining requests at a single component, we next consider two interact-
ing components, as shown in Figure 1(b), where incoming requests at i trigger requests
to component j. For simplicity, we assume that i is the source of all requests to j; the
extension to multiple upstream components is straightforward. Let there be k request
classes at components i and m classes in the workload seen by j. Let λI = {λi1, λi2, . . .}
and λJ = {λ j1, λ j2, . . .} denote the class-specific arrival rates at the two components.

To illustrate, suppose that i is a front-end web server and j is a back-end database,
and web requests at i may be grouped in classes R1 and R2. Similarly, SQL queries

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:6 P. Desnoyers et al.

Workload-to-Utilization Model

CPU

Disk I/O

Users

Server

(a) Workload-to-Utilization

Component i Component jRequests Requests

Workload-to-Workload Model

(b) Workload-to-Workload

Fig. 1. Application models may either relate workload to utilization or the workload at one component to
the workload at another.

DB tier

1:1

1:2

1:1

Input:
Query

Q1

Query
Q2

Web tier

Request
R1

Request
R2

Fig. 2. Example request flow for a 2-tier web application where different request types trigger different
down-stream queries.

at the database are grouped in classes Q1 and Q2, as shown in Figure 2. Each R1
web request triggers a Q1 database query, while each R2 web request triggers two Q1
queries and a single Q2 query.

Assuming job-flow balance [Denning and Buzen 1978], we can completely describe
the workload seen at the database in terms of the web server workload:

λQ1 = λR1 + 2λR2; λQ2 = λR2. (2)

More generally, assuming job-flow balance, each request type at component j can be
represented as a weighted sum of request types at component i, where the weights
denote the number of requests of this type triggered by each request class at component
i:

λ j1 = w11λi1 + w12λi2 + · · · + w1kλik + ε1

λ j2 = w21λi1 + w22λi2 + · · · + w2kλik + ε2 (3)
λ jm = wm1λi1 + wm2λi2 + · · · + wmkλik + εm

where εi denotes an error term. Thus, Eq. (3) yields the workload at system j, λJ ={
λ j1, λ j2, . . .

}
as a function of the workload at system i, λI = {λi1, λi2, . . .}.

It should be noted that the weights, wi j , computed by Modellus are not necessarily
integers. This allows Modellus to account for effects such as caching or requests that
have variable behavior. For example, a cache in front of a web tier may have an effective
hit rate of 70%, resulting in a weight of 0.30 when relating the workload at the cache
to the component behind it. Modellus automatically captures this behavior by basing
its weights on the statistical trends found in the input training data. Of course, it is
possible that these trends may change over time, requiring Modellus to “relearn” a new
model, which is why Modellus includes a model validation and retraining component,
as described in Section 5.1.

3.3. Model Composition

Modellus models the distributed application as a DAG, where the nodes represent
components and edges represent the flow of requests between components. Since we

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:7

i j

(a) Transitivity

i

j

h
(b) Splitting

i

j

h
(c) Joining

Fig. 3. Models may be composed transitively (e.g., for sequentially linked components), by splitting (e.g.,
from a load balancer to worker nodes), or by joining (e.g., from multiple processing nodes to a backend
database).

modeled each component as a queuing system, the DAG is essentially a network of
queuing. Given our workload-to-utilization and workload-to-workload models, for an
individual component, we can compose these models in our queuing network to de-
rive the workload and utilization at some component i as a function of one or more
upstream components (see Figure 3). Specifically, our workload-to-utilization (W2U)
model yields the utilization due to an application j as a function of its workload:
μ j = f (λJ); our workload-to-workload (W2W) model yields the workload at application
j as a function of the workload at application i: λJ = g(λI). Assuming flow balance,
substituting allows us to determine the utilization at j directly as a function of the
workload at i: μ j = f (g(λI)). Since f and g are both linear equations, the compos-
ite function, obtained by substituting Eq. (3) into Eq. (1), is also a linear equation.
This composition process is transitive: given cascaded components i, j, and k, it can
yield the workload and the utilization of the downstream application k as a function
of the workload at i. In a three-tier application, for instance, this lets us predict be-
havior at the database back-end as a function of user requests at the front-end web
server.

Our discussion has implicitly assumed a linear chain topology, where each appli-
cation sees requests from only one upstream component, illustrated schematically in
Figure 3(a). This is a simplification; in a complex data center, applications may both
receive requests from multiple upstream components, and in turn issues requests to
more than one downstream component. Thus an employee database may see requests
from multiple applications (e.g., payroll, directory), while an online retail store may
make requests to both a catalog database and a payment processing system. We must
therefore be able to model both: (i) “splitting”—triggering requests to multiple down-
stream components, and (ii) “merging,” where one component receives request streams
from multiple others. (see Figure 3(b) and (c)).

To model splits, consider a component i that makes requests to downstream compo-
nents j and h. Given the incoming request stream at i, λI , we consider the subset of
the outgoing workload from i that is sent to j, namely λJ. We can derive a model of
the inputs at i that trigger this subset of outgoing requests using Eq. (3): λJ = g1(λI).
Similarly, by considering only the subset of the outgoing requests that are sent to h,
we can derive a second model relating λH to λI : λH = g2(λI).

For joins, consider a component j that receives requests from upstream component i
and h. We first split the incoming request stream by source: λJ = {λJ|src = i}+{λJ|src =
h}. The workload contributions at j of i and h are then related to the input workloads
at the respective applications using Eq. (3): {λJ|src = i} = f1(λI) and {λJ|src = h} =
f2(λH), and the total workload at j is described in terms of inputs at i and h: λJ =
f1(λI) + f2(λH). Since f1 and f2 are linear equations, the composite function, which is
the summation of the two, f1 + f2, is also linear.

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:8 P. Desnoyers et al.

By modeling these three basic interactions—cascading, splitting, and joining—we are
able to compose single step workload-to-workload and workload-to-utilization models
to model any arbitrary application graph. Such a composite model allows workload or
utilization at each node to be calculated as a linear function of data from other points
in the system.

4. AUTOMATED MODEL GENERATION

We next present techniques for automatically learning models of the form described
above. In particular, these models require specification of the following parameters:
(i) request classes for each component; (ii) arrival rates in each class, λi; (iii) mean
service times si for each class i; and (iv) rates wi j at which type i requests trigger
type j requests. In order to apply the model, we must measure λi, and estimate si
and wi j .

If the set of classes and mapping from requests to classes was given, then mea-
surement of λi would be straightforward. In general, however, request classes for a
component are not known a priori. Manual determination of classes is impractical, as
it would require detailed knowledge of application behavior, which may change with
every modification or extension. Thus, our techniques must automatically determine
an appropriate classification of requests for each component, as part of the model gen-
eration process.

Once the request classes have been determined, we estimate the coefficients si and
wi j . Given measured arrival rates λi in each class i and the utilization μ within a
measurement interval, Eqs. (1) and (3) yield a set of linear equations with unknown
coefficients si and wi j . Measurements in subsequent intervals yield additional sets
of such equations; these equations can be solved using linear regression to yield the
unknown coefficients si and wi j that minimize the error term ε.

A key contribution of our automated model generation is to combine determination of
request classes with parameter estimation, in a single step. We do this by mechanically
enumerating possible request classes, and then using statistical techniques to select
the classes that are predictive of utilization or downstream workload. In essence, the
process may be viewed as “mining” the observed request stream to determine features
(classes) that are the best predictors of the resource usage and triggered workloads; we
rely on stepwise regression—a technique also used in data mining—for our automated
model generation.

In particular, for each request we first enumerate a set of possible features, primarily
drawn from the captured request string itself. Each of these features implies a classifi-
cation of requests into those that have this feature and those that do not. By repeating
this over all requests observed in an interval, we obtain a list of candidate classes. We
also measure arrival rates within each candidate class and resource usage over time.
Stepwise regression of feature rates against utilization is then used to select only those
features that are significant predictors of utilization and to estimate their weights,
giving us the workload-to-utilization model.

Derivation of W2W models is an extension of this. First we create a W2U model at
application j in order to determine the significant workload features. Then, we model
the arrival rate of these features, again by using stepwise regression. We model each
feature as a function of the input features at i; when we are done we have a model that
takes input features at i and predicts a vector of features λ̂J at j.

4.1. Feature Enumeration

For this approach to be effective, classes with stable behavior (mean resource require-
ments and request generation) must exist. In addition, information in the request log
must be sufficient to determine this classification. We present an intuitive argument for

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:9

the existence of such classes and features and a description of the feature enumeration
techniques used in Modellus.

We first assert that this classification is possible, within certain limits: in particular
that, in most cases, system responses to identical requests are similar across a broad
range of operating conditions. Consider, for example, two identical requests to a web
server for the same simple dynamic page—regardless of other factors, identical requests
will typically trigger the same queries to the back-end database. In triggering these
queries, the requests are likely to invoke the same code paths and operations, resulting
in (on average) similar resource demands.2

Assuming these request classes exist, we need an automated technique to derive
them from application logs, that is, we need to find requests that perform similar or
identical operations, on similar or identical data and group them into a class. The larger
and more general the groups produced by our classification, the more useful they will
be for actual model generation. At the same time, we cannot blindly try all possible
groupings, as each unrelated classification tested adds a small increment of noise to
our estimates and predictions.

In the cases we are interested in, for example, HTTP, SQL, or XML-encoded requests,
much or all of the information needed to determine request similarity is encoded by
convention or by syntax in the request itself. Thus, we would expect the query ’SELECT *

from cust WHERE cust.id=105’ to behave similarly to the same query with “cust.id=210”, while an
HTTP request for a URL ending in “images/map.gif” is unlikely to be similar to one ending
in “browse.php?category=5”.

Our enumeration strategy consists of extracting and listing features from request
strings, where each feature identifies a potential candidate request class. Each enu-
meration strategy is based on the formal or informal3 syntax of the request, and it
enumerates the portions of the request that identify the class of operation, the data
being operated on, and the operation itself, which are later tested for significance. We
note that the rules that define the feature enumeration strategy must be manually
specified for each application type, but that there are a relatively small number of such
types, and once these rules are specified for one request syntax it is applicable to any
application sharing that request syntax.

Modellus includes predefined feature enumeration rules for Apache HTTP server
logs and for MySQL database logs. The manual process of creating rules for additional
applications is a straightforward task of writing a simple parser that splits a logged
request string into a set of possible features. This process only needs to be performed
once per application type (e.g., just once for Apache, not once for each web application
that runs in the data center). The task is further simplified because Modellus will
automatically select which features are most effective for producing a model—thus,
the system administrator creating the feature rules does not need to worry about
enumerating the features that might be the most relevant.

The Modellus feature enumeration rules for HTTP requests are shown in Figure 4(a),
with features generated from an example URL. The aim of the feature enumeration
rules is to identify request elements that may identify common processing paths; thus
features include file extensions, URL prefixes, and query skeletons (i.e., a query with
arguments removed), each of which may identify common processing paths. In Fig-
ure 4(b) we see the feature enumeration rules for SQL database queries, which use

2Caching will violate this linearity assumption; however, we argue that in this case behavior will fall into
two domains—one dominated by caching, and the other not—and that a linear approximation is appropriate
within each domain.
3For example, HTTP, where hierarchy, suffixes, and query arguments are defined by convention rather than
standard.

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:10 P. Desnoyers et al.

Fig. 4. Example feature enumeration rules for SQL and HTTP.

Fig. 5. Feature enumeration algorithm.

table names, database names, query skeletons, and SQL phrases (which may be entire
queries in themselves) to generate a list of features. Feature enumeration is performed
on all requests present in an application’s log file over a measurement window, one
request at a time, to generate a list of candidate features. Figure 5 shows the feature
enumeration algorithm that generates the list of candidate features.

Note that the Modellus approach of having each request potentially match many
features is different from traditional request classification schemes that attempt to
match each request to a single class. The limited set of classes used by traditional
approaches are typically only effective if expert knowledge can be used to define the
classes. Modellus requires no such knowledge, and instead maps each request to many
different potentially useful features. The modeling component described in the next
section then determines which of these features are most useful for predicting either
utilization or downstream workloads.

4.2. Feature Selection Using Stepwise Linear Regression

Once the enumeration algorithm generates a list of candidate features, the next step is
to use training data to learn a model by choosing only those features whose coefficients
si and wi j minimize the error terms in Eqs. (1) and (3). In a theoretical investigation, we
might be able to compose benchmarks consisting only of particular requests, and thus
measure the exact system response to these particular requests. In practical systems,
however, we can only observe aggregate resource usage, given an input stream of
requests that we do not control. Consequently, the model coefficients si and wi j must
also be determined as part of the model generation process.

One naı̈veapproach is to use all candidate classes enumerated in the previous step
and to employ least squares regression on the inputs (here, arrival rates within each
candidate class) and outputs (utilization or downstream request rates) to determine a
set of coefficients that best fit the training data. However, this will generate spurious
features with no relationship to the behavior being modeled; if included in the model,

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:11

Fig. 6. Stepwise linear regression algorithm.

Feature Rule
Specifications

Workload to
Workload
Models

Modellus Automation

Data Collection
Feature

Enumeration
Stepwise

Regression

Model
Validation

Model
Composition

Application
Structure

Manual Inputs Outputs

Workload to
Utilization
Models

Fig. 7. After system administrators define application structure and feature enumeration rules, Modellus
automates data collection, request classification, model creation, and periodic validation.

they will degrade its accuracy, in a phenomena known as overfitting in the machine-
learning literature. In particular, some will be chosen due to random correlation with
the measured data, and will contribute noise to future predictions.

This results in a data mining problem: out of a large number of candidate classes and
measurements of arrival rates within each class, determining those that are predictive
of the output of interest and discarding the remainder. In statistics this is termed a
variable selection problem [Draper and Smith 1998], and may be solved by various tech-
niques that in effect determine the odds of whether each input variable influences the
output or not. Of these methods, we use stepwise linear regression [Efroymson 1960]
due in part to its scalability, along with a modern extension: the Foster and George’s
risk inflation criteria [Foster and George 1994]. We chose stepwise linear regression
over other variable selection methods because it offers a good balance between scal-
ability, robustness, and practicality from a computational standpoint, allowing us to
deploy it for modeling real data center applications.

A simplified version of this algorithm is shown in Figure 6, with input variables λi
and output variable μ. We begin with an empty model; as this predicts nothing, its
error is exactly μ. In the first step, the variable that explains the largest fraction of μ is
added to the model. At each successive step, the variable explaining the largest fraction
of the remaining error is chosen; in addition, a check is made to see if any variables
in the model have been made redundant by those added at a later step. The process
completes when no remaining variable explains a statistically significant fraction of
the response.

Figure 7 summarizes the various steps in Modellus to build application models. As
noted in the figure, a few steps such as specifying the application structure and fea-
ture enumeration rules are manual; Modellus automates the majority of the remain-
ing process, including steps that typically require significant application or statistical

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:12 P. Desnoyers et al.

knowledge such as request classification and model creation. Over time, models may
become obsolete, so Modellus also automates model testing and retraining, as described
in the following section.

5. ACCURACY, EFFICIENCY, AND STABILITY

We have presented techniques for automatic inference of our basic models and their
composition. However, several practical issues arise when implementing these tech-
niques into a system.

—Workload changes. Although our goal is to derive models that are resilient to shifts
in workload composition as well as volume, some workload changes will cause model
accuracy to decrease—for instance, the workload may become dominated by requests
not seen in the training data, or caching behavior may change over time. When this
occurs, prediction errors will persist until the relevant models are re-trained.

—Effective model validation and retraining. In order to quickly detect shifts in system
behavior, which may invalidate an existing model without unnecessarily retraining
other models that remain accurate, it is desirable to periodically test each model for
validity. The lower the overhead of this testing, the more frequently it may be done,
and thus the quicker the models may adjust to shifts in behavior.

—Cascading errors. Models may be composed to make predictions across multiple tiers
in a system; however, uncertainty in the prediction increases in doing so. Methods
are needed to estimate this uncertainty to avoid making unreliable predictions.

—Stability. Some systems will be difficult to predict with significant accuracy. Rather
than spending resources repeatedly deriving models of limited utility, we should
detect these systems and limit the resources expended on them.

In the following section we discuss these issues and the mechanisms in Modellus that
address them.

5.1. Model Validation and Adaptation

A trained model makes predictions by extrapolating from its training data, and the
accuracy of these predictions will degrade in the face of behavior not found in the
training data. Another source of errors can occur if the system response changes from
that recorded during the training window; for instance, a server might become slower
or faster due to failures or upgrades.

In order to maintain model accuracy, we must retrain models when this degradation
occurs. Rather than always relearning models, we instead test predictions against
actual measured data; if accuracy declines below a threshold, then new data is used to
relearn the model.

In particular, we sample arrival rates in each class (λ̂i) and measure resource uti-
lization μ̂. Given the model coefficients si and wi j , we substitute λ̂i and μ̂ into Eqs. (1)
and (3), yielding the prediction error ε. If this exceeds a threshold εT in k out of n
consecutive tests, the model is flagged for relearning.

A simple approach is to test all models at a central node; data from each system
is collected over a testing window and verified. Such continuous testing of tens or
hundreds of models could be computationally expensive. We instead propose a fast,
distributed model-testing algorithm based on the observation that although model
derivation is expensive in both computation and memory, model checking is cheap.
Hence model validation can be distributed to the systems being monitored themselves,
allowing nearly continuous checking.

In this approach, the model—the request classes and coefficients—is provided to
each server or node and can be tested locally. To test workload-to-usage models, a
node samples arrival rates and usages over a short window and compares the usage

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:13

predictions against observations. Workload-to-workload models are tested similarly,
except that communication with the downstream node is required to obtain observed
data. If the local tests fail in k out of n consecutive instances, then a full test is triggered
at the central node; full testing involves a larger test window and the computation of
confidence intervals of the prediction error. Distributed testing over short windows is
fast and imposes minimal overheads on server applications; due to this low overhead,
tests can be frequent to detect failures quickly.

5.2. Limiting Cascading Errors

In the absence of errors, we could monitor only the external inputs to a system and
then predict all internal behavior from models. In practice, models have uncertainties
and errors, which grow as multiple models are composed.

Since our models are linear, errors also grow linearly with model composition. This
may be seen by substituting Eq. (3) into Eq. (1), yielding a composite model with error
term

∑
si · εi + ε, a linear combination of individual errors. Similarly, a “join” again

yields an error term summing individual errors.
Given this linear error growth, there is a limit on the number of models that may

be composed before the total error exceeds any particular threshold. Hence, we can no
longer predict all internal workloads and resource usages solely by measuring external
inputs. In order to scale our techniques to arbitrary system sizes, we must measure
additional inputs inside the system, and use these measurement to drive further down-
stream predictions.

To illustrate how this may be done, consider a linear cascade of dependencies and
suppose εmax is the maximum tolerable prediction error. The first node in this chain
sees an external workload that is known and measured; we can compute the expected
prediction error at successive nodes in the chain until the error exceeds εmax. Since
further predictions will exceed this threshold, a new measurement point must be in-
serted here to measure, rather than predict, its workload; these measurements drive
predictions at subsequent downstream nodes.

This process may be repeated for the remaining nodes in the chain, yielding a set
of measurement points that are sufficient to predict responses at all other nodes in
the chain. This technique easily extends to an arbitrary graph; we begin by measuring
all external inputs and traverse the graph in a breadth-first manner, computing the
expected error at each node. A measurement point is inserted if a node’s error exceeds
εmax, and these measurements are then used to drive downstream predictions.

5.3. Stability Considerations

Under certain conditions, however, it will not be possible to derive a useful model
for predicting future behavior. If the system behavior is dominated by truly random
factors, for instance, model-based predictions will be inaccurate. A similar effect will
be seen in cases where there is insufficient information available. Even if the system
response is deterministically related to some attribute of the input, as described below,
the log data may not provide that attribute. In this case, models learned from random
data will result in random predictions.

In order to avoid spending a large fraction of system resources on the creation of
useless models, Modellus incorporates backoff heuristics to detect applications that
fail model validation more than k times within a period T (e.g., two times within the
last hour). These “misbehaving” applications are not modeled, and are only occasionally
examined to see whether their behavior has changed and modeling should be attempted
again.

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:14 P. Desnoyers et al.

Monitoring &
Scheduling Engine

Server

application OS

plugin

testing

plugin

Nucleus

reporting

Control Plane

(MSE)

MVE MVE MVE. . .

Model generation
&

validation tasks

Fig. 8. The Modellus nucleus runs on each server to gather resource information and perform periodic model
testing. The Modellus control plane runs on a cluster of servers dedicated to aggregating component data
and generating models.

6. MODELLUS DESIGN

Our Modellus system implements the statistical and learning methods described in
the previous sections. Figure 8 depicts the Modellus architecture. As shown, Modellus
implements a nucleus on each node to monitor the workload and resource usage and
to perform distributed testing. The Modellus control plane resides on one or more
dedicated nodes and comprises (i) a monitoring and scheduling engine (MSE) that
coordinates the gathering of monitoring data and scheduling of model generation and
validation tasks when needed; and (ii) one or more modeling and validation engines
(MVE) which implement the core numerical computations for model derivation and
testing. The Modellus control plane exposes a front-end, allowing derived models to
be applied to data center analysis tasks; the current front-end exports models and
sampled statistics to a Matlab engine for interactive analysis.

The Modellus nucleus and control plane are implemented in a combination of C++,
Python, and Numerical Python [Ascher et al. 2001], providing an efficient yet dynam-
ically extensible system. The remainder of this section discusses our implementation
of these components in detail.

6.1. Modellus Nucleus

The nucleus is deployed on each target system, and is responsible for both data collec-
tion and simple processing tasks. It monitors resource usage, tracks application events,
and translates events into rates. The nucleus reports these usages and rates to the con-
trol plane, and can also test a control plane-provided model against this data. A simple
HTTP-based interface is provided to the control plane, with commands falling into the
following groups: (i) monitoring configuration; (ii) data retrieval; and (iii) local model
validation.

Monitoring. The nucleus performs adaptive monitoring under the direction of the
control plane—it is instructed which variables to sample and at what rate. The nu-
clues implements a uniform naming model for data sources and an extensible plugin
architecture allowing support for new applications to be easily implemented.

Resource usage is monitored via standard OS interfaces, and collected as counts
or utilizations over fixed measurement intervals. Event monitoring is performed by
plugins that process event streams (i.e., logs) received from applications. These plugins
process logs in real time and generate a stream of request arrivals; class-specific arrival
rates are then measured by mapping each event using application-specific feature
enumeration rules and model-specified classes.

The Modellus nucleus is designed to be deployed on production servers, and thus
must require minimal resources. By representing feature strings by hash values, we are
able to implement feature enumeration and rate monitoring with minimal overhead,
as shown experimentally in Section 7.5. We have implemented plugins for HTTP and

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:15

waiting ready trained

revalid-
ating

unstable

prerequisites
ready

collecting done /
compute model

done /
recompute model

model validation
fails

timeout

too many failures

(collect data)

(collect data)

(validate model)

Fig. 9. Modellus uses a state machine to monitor the status of each application model. This allows Modellus
to track applications that require system administrator inputs or need to be retrained.

SQL, with particular adaptations for Apache, MySQL, Tomcat, and XML-based web
services.

Data retrieval. A monitoring agent such as the Modellus nucleus may either report
data asynchronously (push), or buffer it for the receiver to retrieve (pull). In Modellus
data is buffered for retrieval, with appropriate limits on buffer size if data is not
retrieved in a timely fashion. Data is serialized using Python’s pickle framework, and
then compressed to reduce demand on both bandwidth and buffering at the monitored
system.

Validation and reporting. The nucleus receives model validation requests from
the control plane, specifying input classes, model coefficients, output parameter, and
error thresholds. It periodically measures inputs, predicts outputs, and calculates
the error; if out of bounds k out of n times, the control plane is notified. Testing of
workload-to-workload models is similar, except that data from two systems (upstream
and downstream) is required; the systems share this information without control
plane involvement.

6.2. Monitoring and Scheduling Engine

The main goal of the Modellus control plane is to to generate up-to-date models and
maintain confidence in them by testing. Towards this end, the monitoring and schedul-
ing engine (MSE) is responsible for (i) initiating data collection from the nuclei for
model testing or generation; and (ii) scheduling testing or model regeneration tasks on
the modeling and validation engines (MVEs).

The monitoring engine issues data collection requests to remote nuclei, requesting
sampled rates for each request class when testing models, and the entire event stream
for model generation. For workload-to-workload models, multiple nuclei are involved
in order to gather upstream and downstream information. Once data collection is
initiated, the monitoring engine periodically polls for monitored data, and disables
data collection when a full training or testing window has been received.

The control plane has access to a list of workload-to-utilization and workload-to-
workload models to be inferred and maintained; this list may be provided by configu-
ration or discovery. These models pass through a number of states, which may be seen
in Figure 9: waiting for prerequisites, ready to train, trained, revalidating, and unsta-
ble. Each W2W model begins in the waiting state, with the downstream W2U model
as a prerequisite, as the feature list from this W2U model is needed to infer the W2W
model. Each W2U model begins directly in the ready state. The scheduler selects models
from the ready pool and schedules training data collection; when this is complete, the
model parameters may be calculated. Once parameters have been calculated, the model

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:16 P. Desnoyers et al.

enters the trained state; if the model is a prerequisite for another, the waiting model
is notified and enters the ready state.

Model validation as described above is performed in the trained state, and if at
any point the model fails, it enters the revalidating state, and training data collection
begins. Too many validation failures within an interval cause a model to enter the
unstable state, and training ceases, while from time to time the scheduler selects a
model in the unstable state and attempts to model it again. Finally, the scheduler is re-
sponsible for distributing computation load within the MVE, by assigning computation
tasks to appropriate systems.

6.3. Modeling and Validation Engine

The modeling and validation engine (MVE) is responsible for the numeric computations
at the core of the Modellus system. Since this task is computationally demanding, a
dedicated system or cluster is used, avoiding overhead on the data center servers
themselves. By implementing the MVE on multiple systems and testing and/or gener-
ating multiple models in parallel, Modellus will scale to large data centers, which may
experience multiple concurrent model failures or high testing load.

The following functions are implemented in the MVE:

Model generation. W2U models are derived directly; W2W models are derived using
request classes computed for the downstream node’s W2U model. In each case step-
wise regression is used to derive coefficients relating input variables (feature rates) to
output resource utilization (W2U models) or feature rates (W2W models).

Model validation. Full testing of the model at the control plane is similar but more
sophisticated than the fast testing implemented at the nucleus. To test an W2U model,
the sampled arrival rates within each class and measured utilization are substituted
into Eq. (1) to compute the prediction error. Given a series of prediction errors over
successive measurement intervals in a test window, we compute the 95% one-sided
confidence interval for the mean error. If the confidence bound exceeds the tolerance
threshold, the model is discarded.

The procedure for testing an W2W model is similar. The output feature rates are
estimated and compared with measured rates to determine prediction error and a
confidence bound; if the bound exceeds a threshold, the model is invalidated again.
Since absolute values of the different output rates in a W2W model may vary widely,
we normalize the error values before performing this test by using the downstream
model coefficients as weights, allowing us to calculate a scaled error magnitude.

6.4. Scaling to Large Data Centers

Modern data centers may have hundreds or thousands of servers running a large
number of applications. Our design of Modellus incorporates a number of decisions
that enables our system to scale to these sizes. First, Modellus models each application
component independently and then composes models to create an aggregate model
of the distributed application. Consequently, each component model can be computed
independently, and we can employ a cluster of servers to parallelize this process; model
composition does introduce dependencies (i.e., all component models must be computed
before they can be composed), and Figure 9 shows how these dependencies are handled
using the notion of prerequisites; various model compositions can also be parallelized
in a similar fashion.

Further, the sever cluster running the Modellus engine can be expanded as the
number of applications grows. Since there are no dependencies between models of
independent applications, the larger the cluster, the greater the parallelism and
scalability of Modellus’ modeling and validation engine. The Modellus scheduler

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:17

Web Services

OFBiz / TPC-W

RUBiS

Apache Tomcat MySQL

Apache / PHP

Apache / PHP Apache / PHP Apache / PHP

MySQL Cluster

Apache / PHP

CPU 1 x Pentium 4, 2.4 GHz, 512KB cache
Disk ATA 100, 2MB cache, 7200 RPM

Memory 1, 1.2, or 2GB
OS CentOS 4.4 (Linux kernel 2.6.9-42)

Servers Apache 2.0.52
MySQL 5.1.11 (cluster), 4.1.20 (single)
Tomcat 5.0.30, Sun Java 1.5.0

Applications RUBiS, TPC-W, OFBiz

Fig. 10. Data center testbed and system specifications.

described in Section 6.2 can distribute model creation tasks across the modeling
cluster as needed. Model verification is performed at each individual component,
further reducing the load on the modeling cluster.

In practice, the number and types of models produced by Modellus is based on the
system administrator’s needs. For each application of interest, Modellus will create a
W2W or a W2U model for each component, which can then be composed to produce
the overall application model. The computation cost of creating each component model
depends primarily on the number of features to be considered and is independent of
the number of other components in the application or data center. Thus, Modellus can
efficiently scale to large data centers and its model computation infrastructure can
easily be spread across a cluster of machines.

7. EXPERIMENTAL RESULTS

In this section we present experiments examining various performance aspects of the
proposed methods and system. To test feature-based regression modeling, we perform
modeling and prediction on multiple test scenarios and compare measured results
with predictions to determine accuracy. Additional experiments examine errors under
shifting load conditions and for multiple stages of prediction. Finally, we present mea-
surements and benchmarks of the system implementation in order to determine the
overhead, which may be placed on monitoring systems and the scaling limits of the
rest of the system.

7.1. Experimental Setup

The purpose of the Modellus system is to model and predict performance of real-world
web applications, and it was thus tested on results from a realistic data center testbed
and applications. The testbed is shown in Figure 10, with a brief synopsis of the
hardware and software specifications. Four web applications were tested:

(1) TPC-W [Smith ; Cain et al. 2001]: an e-commerce benchmark, implemented as
a 3-tier Java servlet-based application, consisting of a front-end server (Apache)
handling static content, a servlet container (Tomcat), and a back-end database
(MySQL);

(2) Apache Open For Business (OFBiz) [openforbiz 2007]: an ERP (Enterprise Resource
Planning) system in commercial use. Uses the same Apache, Tomcat, MySQL setup
as TPC-W;

(3) RUBiS [Cecchet et al. 2003]: a simulated auction site running as a 2-tier LAMP4

application; application logic written in PHP runs in an Apache front-end server,
while data is stored in a MySQL database cluster; and

4Linux/Apache/MySQL/PHP.

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:18 P. Desnoyers et al.

(4) Web Services Benchmark: a custom set of Apache/PHP-based components that can
be connected in arbitrary topologies through a RESTful web API.

Both RUBiS and TPC-W have associated workload generators, which simulate vary-
ing numbers of clients; the number of clients as well as their activity mix and think
times were varied over time to generate nonstationary workloads. A load generator for
OFBiz was created using JWebUnit [jwebunit 2007], which simulated multiple users
performing shopping tasks from browsing through checkout and payment information
entry. The httperf [Mosberger and Jin 1998] tool was used as a load generator for the
Web Services Benchmark.

Apache, Tomcat, and MySQL were configured to generate request logs, and system
resource usage was sampled using the sadc(8) utility with a 1-second collection inter-
val. Traces were collected and prediction was performed offline, in order to allow reuse
of the same data for validation. Cross-validation was used to measure prediction error:
each trace was divided into training windows of a particular length (e.g., 30 minutes),
and a model was constructed for each window. Each model was then used to predict
all data points outside of the window on which it was trained; deviations between
predicted and actual values were then measured.

7.2. Model Generation Accuracy

To test W2U model accuracy, we use the OFBiz, TPC-W and RUBiS applications and
model each of the tiers individually. Using traces from each application we compute
models over 30-minute training windows, and then use these models to predict utiliza-
tion μ̂, using cross-validation as described above. We report the root mean square (RMS)
error of prediction, and the 90th percentile absolute error (|μ − μ̂|). For comparison we
also show the standard deviation of the measured data itself, σ (y).

We use 30-second training and prediction intervals as that was the measurement
interval in the trace data. In general, the predictions should be made over similar
intervals as the training data for the best accuracy. Testing the model on a different
interval length than the one on which it was trained on might lead to lower accuracy
(e.g., predictions over 1-second intervals when the training is done over 30-second
intervals will not yield good results). Further, since the model is able to accurately
predict the utilization at even 30-second intervals, we believe that the accuracy will be
similar when the interval is longer, because the small scale variations and oscillations
that are hard to predict will be smoothed out while averaging over longer intervals. The
interval should be long enough to remove the momentary fluctuations and oscillations
that can make it difficult to fit an accurate model on data. The length of the training
window should be long enough to capture all the different characteristics of data. For
this experiment we found that a 30-minute duration was long enough to capture the
entire range of characteristics. For a different scenario, a longer duration might be
required to train an accurate model.

In Figure 11 we see results from these tests. Both RMS and 90th percentile predic-
tion error are shown for each server except the OFBiz Apache front-end, which was
too lightly loaded (< 3%) for accurate prediction. In addition, we plot the standard
deviation of the variable being predicted (CPU utilization), in order to indicate the de-
gree of error reduction provided by the model. In each case we are able to predict CPU
utilization to a high degree of accuracy—less than 5% except for the TPC-W Tomcat
server, and in all cases a significant reduction relative to the variance of the data being
predicted.

We examine the distribution of prediction errors more closely in Figures 12 and
13, using the RUBiS application. For each data point predicted by each model we
calculate the prediction error (|ŷ − y|), and display a cumulative histogram or CDF of

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:19

Apache

Tomcat

MySQL

Tomcat

MySQL

 0% 5% 10% 15% 20% 25% 30%

T
P

C
-W

O

F
B

iz

Error - Percent CPU Utilization

90th percentile error
RMS Error
Data std. dev.

Fig. 11. Workload-to-utilization prediction errors.

 0%

 20%

 40%

 60%

 80%

 100%

 0 5 10 15 20

C
um

ul
at

iv
e

P
er

ce
nt

Absolute Error (in percent CPU)

HTTP feature-based
HTTP rate only

Fig. 12. Error CDF : RUBiS Apache.

 0%

 20%

 40%

 60%

 80%

 100%

 0 5 10 15 20

C
um

ul
at

iv
e

P
er

ce
nt

Absolute Error (in percent CPU)

SQL feature-based
SQL rate-based

Fig. 13. Error CDF: RUBiS MySQL.

these errors. From these graphs we see that about 90% of the Apache data points are
predicted within 2.5%, and 90% of the MySQL data points within 5%.

In addition, in this figure we compare the performance of modeling and predict-
ing based on workload features vs. predictions made from the aggregate request rate
alone. Here we see that CPU on the RUBiS Apache server was predicted about twice
as accurately using feature-based prediction, while the difference between naı̈veand
feature-based prediction on the MySQL server was even greater.

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:20 P. Desnoyers et al.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

R
M

S
 p

re
di

ct
io

n
er

ro
r

(p
er

ce
nt

 C
P

U
)

Training Window (minutes)

HTTP -> DB CPU
HTTP -> SQL -> DB CPU
SQL
HTTP

Fig. 14. Composed vs. direct prediction: learning curves for error of MySQL CPU from RUBiS HTTP.

7.3. Model Composition

The results presented examine performance of single workload-to-utilization (W2U)
models. We next examine prediction performance when composing workload-to-
workload (W2W) and W2U models. We show results from the multitier experiments
described above, but we focus on cross-tier modeling and prediction.

As described earlier, the composition of two models is done in two steps. First, we
train a W2U model for the downstream system (e.g., the database server) and its
inputs. Next, we take the list of significant features identified in this model, and for
each feature we train a separate upstream model to predict it. For prediction, the W2W
model is used to predict input features to the W2U model, yielding the final result.
Prediction when multiple systems share a single back-end resource is similar, except
that the outputs of the two W2W models must be summed before input to the W2U
model.

In Figure 14 we compare learning curves for both composed and direct W2U models
of the RUBiS application. In the composed model (HTTP→SQL→DB CPU), the W2W
model translates from HTTP features to SQL features, then the W2U model is in turn
used to predict the CPU utilization of the database; the model achieves less than 10%
RMS error for training windows over eight minutes. Alternatively, the HTTP features
from the front tier can be used for a single W2U model that predicts CPU usage of the
database tier (HTTP→DB CPU), which has comparable error and requires a similar
training period.

In addition we validate our model composition approach by comparing its results to
two direct models made by training the HTTP or SQL server CPU utilization directly
from their own inputs. While the direct models have lower error, it may not always be
possible to observe all input features at every tier. Using model composition can lower
monitoring overhead by allowing measurements from one tier to predict resource needs
at downstream tiers.

7.4. Cascading Errors

We measured prediction performance of the Web Services application in order to in-
vestigate the relationship between model composition and errors. This benchmark
allows application components to be defined and connected in arbitrary topologies.
Three separate topologies were measured, corresponding to the model operations in
Figure 3—cascade, split, and join—and prediction errors were measured between each

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:21

i j h k

Prediction target
I J H K

I 0.47% 4.28% 3.45% 4.12%
J 0.82% 0.97% 1.21%
H 0.50% 0.70%
K 0.64%

Fig. 15. Cascade errors. Entry (x,y) gives RMS error predicting at y given inputs to x.

k

j

h

i +

Prediction target
I J H K

I 0.35% 0.47% 0.43% 0.57%
J 0.47% 0.43% 0.57%
H 0.39%
K 0.53%

Fig. 16. Split errors; composition with multiple downstream servers.

i

j

h

k

Prediction target
KJHI

I 0.55%
H 0.48%
I+H 0.59%
J 0.59%
K 0.82%

Fig. 17. Join error: composition by summing multiple upstream models.

pair of upstream and downstream nodes. In Figure 15 we see results for the cascade
topology, giving prediction errors for model composition across multiple tiers; errors
grow modestly, reaching at most about 4%.

In Figure 16 we see results for the split topology, and the join case in Figure 17.
In each case prediction, errors are negligible. Note that in the join case, downstream
predictions must be made using both of the upstream sources. This does not appear
to affect accuracy; although the final prediction contains errors from two upstream
models, they are each weighted proportionally.

7.5. System Overheads

We have benchmarked both the Modellus nucleus and the computationally intensive
portions of the control plane. The nucleus was benchmarked on the testbed machines
to determine both CPU utilization and volume of data produced. HTTP and SQL pro-
cessing overheads were measured on log data from the TPC-W benchmark; in addition,
HTTP measurements were performed for logfiles from the 1998 World Cup web site
[Arlitt and Jin 1999].

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:22 P. Desnoyers et al.

Table I. Overhead for Modellus Log Processing on Trace Workloads

CPU / Equiv.
event overhead Output data

HTTP (TPC-W) 16.5μs 2.7% 9.00 bytes/s
HTTP (World Cup) 11.8μs n/a 9.05 bytes/s
SQL 23.8μs 2.6%

Table II. Training Times for Workload-to-Utilization Models

W2U model features considered
Training window 500 1000 2000

short (8 min) 0.06s 0.12 0.24
medium (15 min) 0.10 0.20 0.42
long (30 min) 0.16 0.33 0.72

Table III. Training Times for Workload-to-Workload Models

W2W model features considered
Training window 500 1000 2000

short (8 min) 0.4s 0.3 0.3
medium (15 min) 0.8 0.7 0.8
long (30 min) 1.1 1.0 1.1

Based on the request rate in the trace logs and the CPU utilization while they were
being generated, we report the estimated overhead due to Modellus event processing
if the server were running at 100% CPU utilization. Figures include overhead for
compressing the data; in addition, we report the rate at which compressed data is
generated, as it must be buffered and then transmitted over the network. Results may
be seen in Table I; in each case Modellus incurs less than 3% overhead.

We measure the computationally intensive tasks of the modeling and validation
engine to determine the scalability of the system. Tests were run using two systems: a
2.8GHz Pentium 4 with 512K cache, and a 2.3GHz Xeon 5140 with 4M cache. Results
are reported in the following for the Xeon system only, which was approximately three
times faster on this task than the Pentium 4. Each test measured the time to train a
model; the length of the training window and the number of features considered was
varied, and multiple replications across different data sets were performed for each
combination.

Results for training W2U models are seen in Table II. For 30-minute training win-
dows and 1000 features considered, a single CPU core was able to compute three models
per second. Assuming that at most we would want to recompute models every 15 min-
utes that is, overlapping half of the previous training window a single CPU would
handle model computation for over 2500 monitored systems. W2W model training is
computationally more complex; results for the same range of model sizes are shown in
Table III. These measurements showed a very high data-dependent variation in com-
putation time, as complexity of computing the first-tier model is directly affected by the
number of significant features identified at the second tier. We see that computation
time was primarily determined by the training window length. For 30-minute windows
our system took about a second per model computation; calculating as above, it could
handle training data from nearly 1000 monitored systems.

Unlike model generation, model testing is computationally simple. Validation of a
W2U model across a window of 30 minutes of data, for example, required between 3
and 6 milliseconds on the system used.

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:23

 0%

 2%

 4%

 6%

 8%

 10%

 0 0.5 1 1.5 2

E
rr

or
 (

%
 u

ti
li

za
ti

on
)

Relative service time variability
(Coefficient of Variation)

Fig. 18. Prediction error vs. scaled data variability.

7.6. Limitations of our Approach

Our approach to modeling system performance based on input features has a number
of limitations, which we explore in this section. As with any statistical process, the
larger the random component of a given amount of measured data, the higher the
resulting error will be. In Modellus, such errors may be due to almost purely random
factors (e.g., scheduling and queuing delays) or to “hidden variables”—factors that may
deterministically affect system response, but which we are unable to measure. In this
section we demonstrate the effects of such errors via modification of testbed traces.

Simulated CPU traces were created from actual TPC-W data traces by assigning
weights to each of the TPC-W operations and then adding a lognormal-distributed
random component to each processing time. Workload-to-utilization models were then
trained on the original input stream and the resulting utilization data and prediction
results are reported. These may be seen in Figure 18, where prediction error for a fixed
training window size may be seen to grow roughly linearly with the variability of the
data. From this we see that increases in variability will result in either longer training
windows, lower accuracy, or some combination of the two.

The approach used in Modellus of relating request logs to application behavior also
limits its use to request-response systems. In practice, we believe that these types of
applications are the ones most likely to see varying workloads for which prediction
models are useful. Other modeling techniques would be required for batch processing
applications.

A final limitation of Modellus is that it is currently restricted to building linear
models due to its use of stepwise regression. While this is effective for building resource
utilization and workload models, linear models are generally not effective for modeling
performance metrics such as response time that exhibit nonlinear behavior. We note,
however, that Modellus can be easily extended to support piecewise linear models,
allowing it to be applied to a broader range of metrics. Our future work will investigate
how to utilize the Modellus framework to build nonlinear models of metrics such as
response time.

8. DATA CENTER ANALYSIS

In this section we apply the Modellus methodology to actual and simulated real-world
data center applications. As noted in Section 1, the models computed by Modellus
can be used by system administrators for a variety of management tasks such as the
analysis of as-is state and available headroom, answering what-if questions, and the
impact of system changes. We illustrate these tasks using two case studies.

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:24 P. Desnoyers et al.

Table IV. Case Study: Predicted Impact of Workload Changes

Application Mix Web reqs/sec Predicted Measured Error
Apache Browsing 90 32.00% 20.00% +12.00%

Browsing 114 40.53% 31.40% +9.13%
Ordering 90 43.00% 41.00% +2.00%

Tomcat Browsing 90 37.00% 32.00% +5.00%
Browsing 114 46.87% 45.00% +1.87%
Ordering 90 56.00% 51.00% +5.00%

MySQL Browsing 90 25.00% 17.30% +7.70%
Browsing 114 31.67% 26.00% +5.67%
Ordering 90 66.00% 69.00% −3.00%

8.1. Online Retail Scenario

First, we demonstrate the utility of our models for “what-if” analysis of data center
performance.

Consider an online retailer who is preparing for the busy annual holiday shopping
season. We assume that the retail application is represented by TPC-W, which is a
full-fledged implementation of an 3-tier online store and a workload generator that
has three traffic mixes: browsing, shopping, and ordering, each differing in the relative
fractions of requests related to browsing and buying activities. We assume that the
shopping mix represents the typical workload seen by the application. Suppose that
the retailer wishes to analyze the impact of changes in the workload mix and request
volume in order to plan for future capacity increases. For instance, during the holiday
season it is expected that the rate of buying will increase and so will the overall traffic
volume. We employ Modellus to learn models based on the typical shopping mix and
use it to predict system performance for various what-if scenarios where the workload
mix as well as the volume change.

We simulate this scenario on our data center testbed, as described in Section 7.1.
Model training was performed over a two-hour interval with varying TPC-W and RU-
BiS load, using the TPC-W “shopping” mixture. We then used this model to express
utilization of each system in terms of the different TPC-W requests, allowing us to
derive utilization as a function of requests per second for each of the TPC-W transac-
tion mixes. The system was then measured with several workloads consisting of either
TPC-W “browsing” or “ordering” mixtures.

Predictions are shown in Table IV for the three traffic mixes on the three servers in
the system: Apache, which only forwards traffic; Tomcat, which implements the logic;
and MySQL. Measurements are shown as well for two test runs with the browsing
mixture and one with ordering. Measured results correspond fairly accurately to pre-
dictions, capturing both the significant increase in database utilization with increased
buying traffic as well as the relative independence of the front-end Apache server to
request mix.

Model Revalidation. In the previous example, Modellus was able to make accurate
predictions about both the “ordering” and “browsing” workloads because it had been
trained on a “shopping” mix which included all of the request types used in both of the
other two scenarios. It is also possible that Modellus could be trained on a workload that
does not contain the full request set. For example, if Modellus only had access to training
data from the browsing workload, it would not be able to make accurate predictions of
the ordering scenario because the model would not recognize the computation-intensive
buying servlets and database updates. In this case, Modellus would be able to report
that the what-if workload contained many features not included in the model, alerting
system administrators that its predictions may not be accurate. Modellus’ automated

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:25

Table V. Trading System Traces

cpu preads reads (·1000)
Pre- Naive 38.95 6748 1151
upgrade Feature-based 47.46 10654 1794

Measured 47.20 8733 1448
Post- Measured 31.03 6856 2061
upgrade Outdated Model 71.18 4392 1369

Recomputed Model 24.34 4819 1471

Feature-based and naı̈verate-based estimation vs. measured values. The model
must be retrained after the hardware upgrade.

model revalidation component is able to detect this kind of behavior in the online
scenario where workload shifts or application modifications cause new request types
to appear. This causes the old model to be discarded and automatically retrained. In
practice, we expect these transitions to be infrequent, since entirely new features are
only rarely added to an application.

8.2. Financial Application Analysis

The second case study examines the utility of our methods on a large stock trading
application at a real financial firm, using traces of stock trading transactions executed
at a financial exchange. Resource usage logs were captured over two 72-hour periods in
early May, 2006; in the two-day period between these intervals a hardware upgrade was
performed. The event logs captured 240,000 events pre-upgrade and 100,000 events
after the upgrade occurred. We present the accuracy of Modellus modeling both CPU
utilization and disk I/O rates before and after the upgrade; this demonstrates the im-
portance of continuously validating models and adapting them to changes in hardware.

In contrast to the other experiments in this article, only a limited amount of informa-
tion is available in these traces. CPU utilization and disk traffic were averaged over 60s
intervals, and, for privacy reasons, the transaction log contained only a database table
name and status (success/failure) for each event. This results in a much smaller num-
ber of features to be used as inputs to the model. In Table V, we see predicted values for
three variables—CPU utilization, physical reads, and logical reads—compared to mea-
sured values and a naı̈verate-based model. The poor performance of the naı̈vemodel
indicates that Modellus can get significant accuracy gains, even from the coarse-grain
features available in this scenario.

After the upgrade is performed, the prediction accuracy of the model falls signifi-
cantly because it does not know that the underlying CPU and disk hardware has been
changed. However, the Modellus validation engine is able to detect that the predicted
CPU and disk utilizations have a high level of error, causing the system to recalculate
the model. After the model has been retrained, the accuracy returns to the level seen
prior to the upgrade.

8.3. Modellus Use Cases

The models provided by Modellus can be used for both “what-if” analysis that predicts
how an application will behave in the future and for “as-is” analysis that tries to better
understand an application’s current behavior. The previous sections demonstrated how
Modellus can be used for prediction analysis when workload mixes or volumes are
expected to change in the future. In these cases, Modellus is able to accurately predict
resource utilization across multiple components, making it an important tool for data
center capacity planning. This allows administrators to forecast the resource needs
of applications which are seeing workload growth and plan when to add additional
servers to the data center.

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:26 P. Desnoyers et al.

Headroom analysis tries to discover the amount of free capacity in a data center and
how much workloads can increase before servers will become overloaded. Modellus
can assist in this process by providing models that report utilization across multiple
components. System administrators can use the current workload as a starting input
to the model and then gradually increase the load. The model outputs can then be
examined to see when individual components in the application will become saturated,
allowing administrators to add capacity to precisely the components that will need
it. Traditionally, this process was done based on naı̈verate models that, for example,
predict that a 20% increase in workload results in a 20% increase in load. Modellus’s
feature-based models are significantly more accurate (as shown in Section 7.2) because
they account for workload mix specifics, and by using model composition can be applied
across multiple components in an application.

9. RELATED WORK

Application modeling. Server application models can be classified as either black-box
or white-box models. Black-box models describe externally visible performance charac-
teristics of a system, with minimal assumptions about the internal operations; white-
box models, in contrast, are based on knowledge of these internals. Black-box models
are used in a number of approaches to data center control via feedback mechanisms.
MUSE [Chase et al. 2001] uses a market bidding mechanism to optimize utility, while
Model-Driven Resource Provisioning (MDRP) [Doyle et al. 2003] uses dynamic resource
allocation to optimize SLA satisfaction. Several control theory-based systems use ad-
mission control instead, reducing the input to fit the resources available [Kamra et al.
2004; Parekh et al. 2002].

While black-box models concern themselves only with the inputs (requests) and out-
puts (measured response and resource usage), white-box models are based on causal
links between actions. Magpie [Barham et al. 2004] and Project5 [Aguilera et al. 2003]
use temporal correlation on OS and packet traces, respectively, to find event relation-
ships. In a variant of these methods, Jiang et al. [2006] use an alternate approach;
viewing events of a certain type as a flow, sampled over time, they find invariant ra-
tios between event flow rates, which are typically indicative of causal links. Likewise,
Menascé et al. [2000] characterized workloads using hierarchical models over multiple
time scales.

Queuing models. A popular technique for analyzing the behavior of an application
is to model its the components as a network of queues [Denning and Buzen 1978;
Jackson 1957]. Queuing theory results have been used to relate workloads between
tiers and predict resource utilization or response times [Lazowska et al. 1984; Baskett
et al. 1975; Menascé and Almeida 2000; Menascé et al. 2004]. However, these queu-
ing models typically assume knowledge of request classifications and service times.
In practice, classifying requests and measuring service times requires substantial ap-
plication knowledge and instrumentation, which may not be available in large-scale
data centers. To deal with this challenge, Modellus uses the resource utilization and
workload model formulations from queuing theory and combines them with automated
request classification and parameter estimation techniques. Our contributions lie in
automating this process and dealing with the practical systems issues of building a
scalable model generation and validation system.

These approaches have been applied for analysis of multitier applications. Given
knowledge of a system’s internal structure, a queuing model may be created, which
can then be calibrated against measured data and then used for analysis and pre-
diction. Stewart and Shen [2005] uses this approach to analyze multicomponent web
applications with a simple queuing model. Urgaonkar et al. [2005] uses more sophis-
ticated product-form queuing network models to predict application performance for

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:27

dynamic provisioning and capacity planning. The work by Liu et al. [2006] uses a
quadratic programming technique to calculate the service times which are then used
in a queuing theory model of application performance. While this solves part of the
problem, determining how to classify requests, particularly in a large data center with
thousands of different applications, remains a challenge. Modellus automates the re-
quest classification process using feature enumeration data mining techniques. It then
builds statistical workload or utilization models across tiers that are based on queuing
theoretic formulations.

Learning-based approaches. Other systems are predictive: NIMO [Shivam et al. 2006]
uses statistical learning with active sampling to model resource usage and predict
completion time for varying resource assignments. NIMO focuses on the completion
time of long-running applications, and does not address model composition, such as
done by Modellus.

The work of Zhang et al. [2007b] is closely related to ours; they use regression
to derive service times for queuing models of web applications, but require manual
classification of events and do not compose models over multiple systems. Other work
learns classifiers from monitored data: in Cohen et al. [2004] tree-augmented Bayesian
networks are used to predict SLA violations, and similarly in Chen et al. [2006] a
K-nearest-neighbor algorithm is used to for provisioning to meet SLAs. Independent
Component Analysis (ICA) has also been used to categorize request types based on
service demand by Sharma et al. [2008]. Modellus uses stepwise linear regression over
ICA or Bayesian methods, since it is a robust method that is computationally efficient
enough to be deployed for modeling real data center applications.

Application models have been employed for a variety of reasons. Performance mod-
els can be used to guide provisioning engines that determine how many resources to
allocate to an application [Bennani and Menasce 2005]. The R-Cappricio system uses
regression-based models for capacity planning as well as anomaly detection [Zhang
et al. 2007]. SelfTalk/Dena [Ghanbari et al. 2010] is a query language and runtime
system capable of describing interconnected application components and then evalu-
ating queries about expected system behavior. In Modellus, we automate the process
of building and updating application performance models, and demonstrate how these
can be used to answer “what if” questions about resource consumption under different
workloads and hardware configurations.

10. CONCLUSIONS

This article argue that the rising complexity of Internet data centers has made manual
modeling of application behavior difficult and proposed Modellus, a system to auto-
matically model the resource usage and workload dependencies between web applica-
tions using statistical methods from data mining and machine learning. We proposed a
number of enhancements to ensure that these statistical methods are practical in large
distributed systems. Modellus automates request classification, model generation, and
reevaluation, eliminating many manual steps that typically require significant appli-
cation knowledge or statistical expertise. This allows system administrators to focus on
using models for tasks such as capacity planning or “what if” analysis, so that they can
better understand the current and predicted behavior of their data center applications.

We implemented a prototype of Modellus and deployed it on a Linux data center
testbed. Our experimental results show the ability of this system to learn models and
make predictions across multiple systems in a data center, with accuracies in prediction
of CPU utilization on the order of 95% in many cases; in addition, benchmarks show
the overhead of our monitoring system to be low enough to allow deployment on heavily
loaded servers. We further demonstrated the usefulness of Modellus in two case studies
that illustrate the importance of adapting models after hardware upgrades and using

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

8:28 P. Desnoyers et al.

model predictions to answer “what if” questions about changing workload conditions.
As part of ongoing and future work, we are enhancing the Modellus framework to
capture nonlinear workload to response time relationships in data center applications,
and are building a query interface to enable rich interactive model-driven analysis of
data center applications.

ACKNOWLEDGMENTS

We would like to thank our reviewers and the TWEB editors for their help improving this article.

REFERENCES

AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P., AND MUTHITACHAROEN, A. 2003. Performance debug-
ging for distributed systems of black boxes. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03). ACM, New York.

ARLITT, M. AND JIN, T. 1999. Workload characterization. Tech. rep. HPL-1999-35R1. 1998 World Cup Web Site,
HP Labs.

ASCHER, D., DUBOIS, P., HINSEN, K., HUGUNIN, J., OLIPHANT, T., ET AL. 2001. Numerical Python. http: //
www.numpy.org.

BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R. 2004. Using Magpie for request extraction and workload
modeling. In Proceedings of the OSDI. 259–272.

BASKETT, F., CHANDY, K. M., MUNTZ, R. R., AND PALACIOS, F. G. 1975. Open, closed, and mixed networks of
queues with different classes of customers. J. ACM 22, 248–260.

BENNANI, M. N. AND MENASCE, D. A. 2005. Resource allocation for autonomic data centers using analytic
performance models. In Proceedings of the 2nd International Conference on Automatic Computing (ICAC
’05). IEEE, Los Alamitos, CA, 229–240.

CAIN, H. W., RAJWAR, R., MARDEN, M., AND LIPASTI, M. H. 2001. An architectural evaluation of Java TPC-W.
In Proceedings of the 7th International Symposium on High Performance Computer Architecture (HPCA
’01).

CECCHET, E., CHANDA, A., ELNIKETY, S., MARGUERITE, J., AND ZWAENEPOEL, W. 2003. In Proceedings of the
ACM/IFIP/USENIX International Conference on Middleware (Middleware ’03).

CHASE, J., ANDERSON, D., THAKAR, P., VAHDAT, A., AND DOYLE, R. 2001. Managing energy and server resources
in hosting centers. Oper. Syst. Rev. 35, 5, 103–116.

CHEN, J., SOUNDARARAJAN, G., AND AMZA, C. 2006. Autonomic provisioning of backend databases in dynamic
content web servers. In Proceedings of the IEEE International Conference on Autonomic Computing
(ICAC ’06), IEEE, Los Alamitos, CA, 231–242.

COHEN, I., CHASE, J. S., AND GOLDSZMIDT, M., ET AL. 2004. Correlating instrumentation data to system states: A
building block for automated diagnosis and control. In Proceedings of the OSDI. 231–244.

DENNING, P. J. AND BUZEN, J. P. 1978. The operational analysis of queuing network models. ACM Comput.
Surv. 10, 225–261.

DOYLE, R. P., CHASE, J. S., AND ASAD, O. M., ET AL. 2003. Model-based resource provisioning in a web service
utility. In Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems (USITS’03).
USENIX Association, Berkeley, CA.

DRAPER, N. R. AND SMITH, H. 1998. Applied Regression Analysis. Wiley, New York.
Efroymson, M.A. 1960. Mathematical Methods for Digital Computers. Wiley, New York.
FOSTER, D. P. AND GEORGE, E. I. 1994. The risk inflation criterion for multiple regression. Ann. Stat. 22, 4,

1947–1975.
GHANBARI, S., SOUNDARARAJAN, G., AND AMZA, C. 2010. A query language and runtime tool for evaluating

behavior of multi-tier servers. In Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’10). 131–142.

JACKSON, J. R. 1957. Networks of waiting lines. Oper. Res. 5, 518–521.
JIANG, G., CHEN, H., AND YOSHIHIRA, K. 2006. Discovering likely invariants of distributed transaction systems

for autonomic system management. In Cluster Computing, Springer, Berlin, 199–208.
jwebunit 2007. JWebUnit. http://jwebunit.sourceforge.net.
KAMRA, A., MISRA, V., AND NAHUM, E. 2004. Yaksha: A controller for managing the performance of 3-tiered

websites. In Proceedings of the 12th IEEE International Workshop on Quality of Service (IWQOS’04).

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

Modellus: Automated Modeling of Complex Internet Data Center Applications 8:29

LAZOWSKA, E. D., ZAHORJAN, J., GRAHAM, G. S., AND SEVCIK, K. C. 1984. Quantitative System Performance:
Computer System Analysis Using Queueing Network Models. Prentice-Hall, Upper Saddle River, NJ.

LIU, Z., WYNTER, L., XIA, C. H., AND ZHANG, F. 2006. Parameter inference of queueing models for it systems
using end-to-end measurements. Perform. Eval. 63, 1, 36–60.

MENASCE, D., ALMEIDA, V., RIEDI, R., RIBEIRO, F., FONSECA, R., AND MEIRA, W., JR. 2000. In search of invariants
for e-business workloads. In Proceedings of the 2nd ACM Conference on Electronic Commerce (EC ’00).
ACM, New York, 56–65.

MENASCE, D. A. AND ALMEIDA, V. 2000. Scaling for E-Business: Technologies, Models, Performance, and Capacity
Planning 1st Ed., Prentice Hall, Upper Saddle River, NJ.

MENASCE, D. A., ALMEIDA, V., AND DOWDY, L. W. 2004. Performance by Design. Prentice Hall, Upper Saddle
River, NJ.

MOSBERGER, D. AND JIN, T. 1998. httperf – A tool for measuring web server performance. In Proceedings of the
SIGMETRICS Workshop on Internet Server Performance. ACM, New York.

OPENFORBIZ. 2007. The Apache “open for business” project. http://ofbiz.apache.org.
PAREKH, S., GANDHI, N., HELLERSTEIN, J., TILBURY, D., JAYRAM, T. S., AND BIGUS, J. 2002. Using control theory to

achieve service level objectives in performance management. Real-Time Syst. 23, 1, 127–141.
SHARMA, A. B., BHAGWAN, R., CHOUDHURY, M., GOLUBCHIK, L., GOVINDAN, R., AND VOELKER, G. M. 2008. Automatic

request categorization in internet services. SIGMETRICS Perform. Eval. Rev. 36, 2,16–25.
SHIVAM, P., BABU, S., AND CHASE, J. 2006. Learning application models for utility resource planning. In Pro-

ceedings of the IEEE International Conference on Autonomic Computing (ICAC ’06). IEEE, Los Alamitos,
CA, 255–264.

SMITH, W. TPC-W: Benchmarking an ecommerce solution. http://www.tpc.org/information/other/techarticles
.asp.

STEWART, C. AND SHEN, K. 2005. Performance modeling and system management for multi-component on-
line services. In Proceedings of the 2nd conference on Symposium on Networked Systems Design and
Implementation (NSDI ’05). Vol. 2, USENIX Associations, Berkeley, CA.

URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M., AND TANTAWI, A. 2005. An analytical model for multi-tier
internet services and its applications. In Proceedings of the ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS ’05). ACM, New York.

ZHANG, Q., CHERKASOVA, L., MATHEWS, G., GREENE, W., AND SMIRNI, E. 2007a. R-capriccio: A capacity plan-
ning and anomaly detection tool for enterprise services with live workloads. In Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Middleware (Middleware ’07). Springer, Berlin,
244–265.

ZHANG, Q., CHERKASOVA, L., AND SMIRNI, E. 2007b. A regression-based analytic model for dynamic resource
provisioning of multi-tier applications. ACM Trans. Comput. Syst. 27, 3(Nov).

Received July 2010; revised March 2011; accepted October 2011

ACM Transactions on the Web, Vol. 6, No. 2, Article 8, Publication date: May 2012.

