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Abstract

Advances in consumer electronics technologies have led
to a proliferation of digital cameras and camcorders that
record images and video in digital form and has encour-
aged users to create ever-larger personal libraries of pic-
tures and movies. A concurrent trend is the emergence
of numerous sensor technologies such as RFID and low-
power sensors positioning technologies such as GPS and
ultrasound.

This paper proposes a new multimedia application that is
enabled by the confluence of these trends. In particular,
we study how a sensor-rich world can be exploited by dig-
ital recording devices such as cameras and camcorders to
improve an user’s ability to search through a large repos-
itory of image and video files. We design and implement
a digital recording system that records identities and loca-
tions of objects (as advertised by their sensors) along with
visual images (as recorded by a camera). The process,
which we refer to assensor-enhanced video annotation
(SEVA), combines a series of correlation, interpolation,
and extrapolation techniques. It produces a tagged stream
that later can be used to efficiently search for videos or
frames containing particular objects or people.

We present detailed experiments with a prototype of our
system using both stationary and mobile objects as well
as GPS and ultrasound. Our experiments show that: (i)
SEVA has zero error rates for static objects, except very
close to the boundary of the viewable area; (ii) for mov-
ing objects or a moving camera, SEVA only misses ob-
jects leaving or entering the viewable area by 1-2 frames;

(iii) SEVA can scale to10 fast moving objects using cur-
rent sensor technology; and (iv) SEVA runs online using
relatively inexpensive hardware.

1 Introduction

Advances in consumer electronics technologies have led
to a proliferation of digital cameras and camcorders that
record images and video in digital form and enable easy
manipulation of this data on laptops and desktop comput-
ers. This trend, coupled with the increasing capacities
of PC hard drives, has encouraged users to create ever-
larger personal libraries of pictures and movies. Navigat-
ing through collections containing tens of thousands of
pictures and hundreds of movies requires tools to quickly
search and locate content of interest. A concurrent trend
is the emergence of numerous sensor technologies such as
RFID [10] and low-power sensors [24]. In the future it is
likely that many objects will be equipped with sensors that
encode their identities. For instance barcodes on objects
such as books and food will be replaced with RFID sen-
sors that serve as electronic tags. Street signs, buildings,
and popular locations might be equipped with active sen-
sor beacons that electronically broadcast their addresses.
Another trend is the ubiquitous deployment of position-
ing technologies such as GPS [2] and ultrasound [30] that
triangulate the exact location of a user.
This paper proposes a new multimedia application that is
enabled by the confluence of these trends. In particular,
we study how a sensor-rich world can be exploited by dig-
ital recording devices such as cameras and camcorders to
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improve an user’s ability to search through a large repos-
itory of image and video files. We design and implement
a digital recording system that records identities and lo-
cations of objects (as advertised by their sensors) along
with visual images (as recorded by a camera). The pro-
cess, which we refer to assensor-enhanced video anno-
tation (SEVA), produces a tagged stream that later can be
used to efficiently search for videos or frames containing
particular objects or people.
SEVA is different from the numerous multimedia anno-
tation systems that have been developed in the literature.
Since manual annotation of each frame or image is cum-
bersome, numerous automated learning and vision-based
techniques for annotation of visual content have been de-
veloped [7, 8, 19, 22, 26, 35]. In contrast, SEVA ex-
ploits pervasive sensors to record locations and identities
of objects and uses this information to annotate and index
video. Thus, SEVA is an alternate method for annotation
and indexing and can complement existing annotation and
retrieval techniques by providing a new dimension of in-
formation.
The notion of stamping each picture with the GPS co-
ordinates of the camera has been proposed in the litera-
ture [1, 3, 12, 25, 34]—doing so enables the picture to be
automatically annotated with the place where the picture
was taken. SEVA substantially builds on this notion—it
not only envisions recording the location of the camera
but also the identities and locations of all objects in its
vicinity.

Research Challenges

Numerous practical challenges arise in the design and im-
plementation of SEVA.

• Mismatch in coverage and range: The SEVA
recorder includes a video camera and a wireless ra-
dio to record images and sensor data, respectively.
Typically, the camera is a directional image sensor
that captures a limited view of the scene depending
on where the lens is pointing. In contrast, the wire-
less radio antenna is an omnidirectional device and is
able to listen to sensors that are outside the viewable
area of the camera. This can result in false positives
since the radio may records objects that do not ac-
tually appear the captured image. Even with a di-

rectional antenna, it is difficult to precisely match
the coverage of the radio and the lens; focus and
zoom-capabilities of lens further complicate the is-
sue. Similarly, the lens can capture images of objects
that are infinitely far from the camera (e.g., a dis-
tant building), while the wireless radio has a limited
range and is unable to record identities of object that
are outside its range. This results in false negatives
where objects that are in the view of the camera are
unable to report their identities to the wireless radio.

• Mobility: Mobile objects and a moving camera
causes objects to move in and out of the field of view.
SEVA must correctly identifying which frames con-
tain a particular object with a high degree of accu-
racy.

• Inherent limitations of power-constrained,
bandwidth-poor sensors: Sensors attached to
objects are either battery-powered of passive. Due
to power-constraints, battery-powered sensors
aggressively duty-cycle and use sleep modes to
enhance their lifetimes. Passive sensors such as
RFID tags do not have a power source and instead
are powered by the electromagnetic signals from
the wireless radio, and hence, are inherently re-
source constrained. Further, both battery-powered
and passive sensors use low-bandwidth wireless
channels for communication. While a video camera
can record at a rate of 30 frames/second, due to the
resource constraints on sensors it is not feasible for
the wireless radio to query all objects every 33ms.
Thus, sensors will respond less frequently than the
intra-frame duration, necessitating extrapolation
techniques to annotate every frame.

• Limitations of positioning systems:SEVA requires
a high degree of positioning accuracy in order to
properly identify viewable objects. Unfortunately,
the current current generation of positioning systems
provide limited accuracy. For instance, current GPS
technology provides accuracy of 3-100 meters [2],
while handling moving objects in ultrasound has in-
herent problems [32]. SEVA must deal with the error
that is introduced as a result of these limitations.

The primary contribution of our work is to demonstrate
the feasibility and benefits of using sensors and location-
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ing systems to automatically annotate video frames with
the identities of objects. Our work has resulted in a num-
ber of novel techniques that are specifically designed to
address the above practical hurdles.

The mismatch in range and coverage of sensors is han-
dled using a combination of extrapolation and filtering.
In particular, false positives are eliminated using elemen-
tary optics and filtering techniques, while false negatives
caused by a visible object that moves out of radio range
are handled using path extrapolation. To address the issue
of mobile objects as well as a moving camera, we draw
upon the regression techniques to determine the path of a
mobile object and its location. To address the address the
issue of resource-constrained sensors, we employ interpo-
lation techniques to determine if an object is within range
even if it did not respond to a query when the frame was
captured. The mismatch in range and coverage of sen-
sors is handled using a combination of extrapolation and
filtering. In particular, false positives are eliminated us-
ing elementary optics and filtering techniques, while false
negatives caused by a visible object that moves out of ra-
dio range are handled using path extrapolation. Finally,
buffering and filtering are used to handle some, but not
all, of the inaccuracies of positioning systems.

These techniques enable a fully working prototype of
SEVA. We conducted detailed experiments using both sta-
tionary and mobile objects as well as GPS and ultrasound.
Our experiments show that: (i) SEVA has zero error rates
for static objects, except very close to the boundary of
the viewable area; (ii) for moving objects or a moving
camera SEVA only misses objects leaving or entering the
viewable area by 1-2 frames; (iii) SEVA prototype can
scale well to10 fast moving objects using current sensor
technology; and (iv) SEVA runs online using relatively
inexpensive hardware.

The rest of this paper is structured as follows. We present
background and assumptions in Section 2. Section 3
presents the design of SEVA. We present implementation
details in Section 4 and our experimental results in Sec-
tion 5. Section 6 and 7 present related work and our con-
clusions.

2 System Model

In this section, we present the key assumptions made in
our work. SEVA assumes a world rich in sensors—we
believe that, in the future, sensors will be pervasive, and
most objects will be equipped with one or more sensors.
Not all objects fall into this category—natural objects
such as trees and mountains may not be sensor-enhanced
and annotation requires techniques that are beyond the
scope of this paper. In general, sensors on objects will
be heterogeneous and will be based of a mix of technolo-
gies such as RFID, Bluetooth, Zigbee, and 802.11. Con-
sequently the recording device will need a radio to inter-
act with each type of sensor. For reasons of simplicity, our
current work assumes a homogeneous sensor environment
and assumes a recorder with a single wireless radio; it is
straightforward to extend our prototype to handle hetero-
geneity.
We assume that all sensors report their identities as well
as their locations when queried. For stationary objects
such as a building or a street sign, the precise location
can be hard-coded at sensor configuration time. To han-
dle mobile objects as well as those that do not hard-code
their locations, we assume the presence of a positioning
system. In this work, we consider two types of posi-
tioning systems: GPS and an ultrasound system named
Cricket [32]. GPS is an outdoor positioning system that
relies on satellites, and Cricket is an indoor system based
on ultra-sound beacons. For passive sensors such as RFID
we assume that they store their current coordinates and are
reprogrammed using emerging RFID triangulation tech-
niques [17, 27].
We also assume that the recording device incorporates
four key elements: (i) a video camera, (ii) a digital com-
pass, (iii) a locationing system, and (iv) a wireless ra-
dio. The camera is simply a digital recording device that
records video frames and the associated audio. We as-
sume that the parameters of the lens used in the cam-
era are precisely known. This is a reasonable assump-
tion since these parameters are published or advertised
for most models of digital cameras and camcorders. The
digital compass is used to determine the direction where
the camera is pointing at any instant; we use a 3D dig-
ital compass that precisely provides both the orientation
and the tilt of the camera. The camera is also assumed to
equipped with GPS and Cricket so that it can determine
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its coordinates both indoors and outdoors. Together, the
positioning device and the 3D Compass, in conjunction
with the lens parameters, are used to determine which part
of the scene can be seen by the camera. This automatic
computation of the visual range of the camera is used to
determine which objects are in view and which ones are
false positives. Finally, the wireless radio is used to query
objects for their identities and locations.
In addition to recording video, the SEVA recorder is as-
sumed to log (i) the orientation and tilt of the camera for
each frame, (ii) the GPS and/or Cricket coordinates of the
camera for each frame, (iii) a GPS time stamp for each
frame, and (iv) the identities and the locations of each
queried object and the time when the response was re-
ceived.
Assuming such an environment, we present the architec-
ture, design and implementation of oursensor-enhanced
video annotation (SEVA)application in the following sec-
tions.

3 System Architecture and Design

SEVA captures a stream of sensor data and a video stream
and fuses them together in a series of stages. Each step
requires careful filtering and melding locationing infor-
mation, object identification, and camera positioning and
lens parameters. SEVA is capable of feeding this anno-
tated stream of video into a database for offline query-
ing or to a streaming query system. This process is bro-
ken into six key stages:video recording, pervasive loca-
tion/identification, correlation, extrapolation and predic-
tion, filtering and elimination, and finallydatabase query-
ing. Next, we describe these stages detail.

3.1 Video Recording

SEVA provides a video recording module that receives
video input and camera parameters from any video
source. The source must provide frames at a constant
and known frame rate, or it must time stamp each frame.
This allows later stages to synchronize location informa-
tion with individual frames. The camera must also supply
a set of lens parameters to the recording module: the sen-
sor size and the lens focal length. For lenses with fixed
focal lengths—so called prime lenses—the focal length

will not change from frame to frame. However, SEVA is
also capable of handling zoom lenses with variable focal
lengths.

3.2 Pervasive Locationing/Identification

SEVA collects information about the location and identity
of proximate objects. This depends on a pervasive infras-
tructure that responds to broadcast messages from SEVA
through a wireless network. Any objects within wireless
range respond with information about their identity, in-
cluding properties of the object.
Such infrastructures have been proposed for a broad ar-
ray of systems [20, 21, 15, 31] and future systems may
use a variety of technologies and standards. SEVA is de-
signed to be independent from the exact technological im-
plementation so here we only describe an abstract set of
properties that SEVA depends on.
The pervasive locationing and identification shown in Fig-
ure 1 produces the sensor stream used by later stages of
SEVA. The system is organized as a set of modular lay-
ers: locationing, network, privacy, querying, and location
mapping:

Camera

Pervasive Locationing/
Identification

Network 
(RFID, WiFI)

Locationing 
(Ultrasound, 
GPS, Wifi)

Privacy Layer

Querying

Location Mapping Sensor 
Stream

Object

Locationing 
(Ultrasound, 
GPS, Wifi)

Querying

Network 
(RFID, WiFI)

Privacy Layer

Figure 1: Pervasive Locationing/Identification System.

The locationing layer provides location information to the
objects as well as the camera. The locationing system
can be active, passive, or static. Active systems, such as
active ultrasound, beacon to the infrastructure, which re-
sponds with a location. Passive systems, such as GPS, can
compute locations with no transmission and only passive
observations of radio signals. Static systems use a pro-
grammed location. Active and passive systems are best
for objects that move, such as people and automobiles,
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whereas static systems are only appropriate for immobile
objects such as buildings and landmarks. As we show the
evaluation section, the accuracy of these systems are ex-
tremely important to SEVA’s efficacy.
The network layer provides communication between the
camera and objects. As long as the interface supports
broadcasting, sending, and receiving, the particular tech-
nology used (WiFi, Bluetooth, Zigbee, RFID) is immate-
rial. The range of the communication should be sufficient
to capture most objects within camera range; however, too
great of a range will affect the scalability of the system.
The limited range does mean that large, distant objects
such as mountains will not be captured by the identifica-
tion system—future SEVA mechanisms will support this
feature through GIS information.
A privacy layer ensures that objects can control their own
visibility. While a complete implementation of such a sys-
tem is beyond the scope of this paper, the privacy layer
should permit people to provide varying levels of infor-
mation. For instance a person will provide her name to
her friend’s camera, whereas she will only provide meta-
information such as “a person” to an untrusted camera.
The querying layer manages interactions between the
camera and the objects. The camera broadcasts query
messages to objects, which respond with identifying and
location information, as shown in Figure 2.

Boundary of wireless range

(b) Response

Boundary of wireless range

(a) Query

Requestor

Broadcast Query

Requestor

Response Response

Response
Response

Responder

Responder

Responder Responder

Figure 2: Query and Response Model.

The locationing layer maps different object locations and
camera locations to the same frame of reference. Different
objects may use different locationing systems making it
difficult to compute relative positions. For instance, GPS
measures absolute positions using latitude, longitude and
altitude, while Cricket measures relative positions. Since
any coordinate system is relative to some frame of ref-

erence, as long as one coordinate system can be mapped
into the other, SEVA can compute visibility. SEVA han-
dles these differences by employing an internal coordinate
system and a frame of reference relative to the camera,
and maps all coordinates to internal coordinates, enabling
interoperability across locationing systems.

3.3 Stream Correlation

The sensor stream needs to be time synchronized with the
video stream in order tocorrelatethe location information
in the former with specific frames in the latter. Unfor-
tunately, transmission, contention, and processing delays
cause location information to be desynchronized with the
video.
Depending on whether sensors are active or passive, cor-
relation can be done in two ways. A straightforward
implementation assumes a synchronized clock present at
each object—SEVA uses GPS receivers, cellular phone
references, or NTP-based time sources. If the sensor does
not have a clock (e.g., RFID) or lacks resources to run a
synchronization protocol, then instead of a time stamp, it
provides an estimate of the time from query to response.
This includes MAC layer delays and internal processing.
The recorder subtracts this delay from the receipt time of
the response and assigns the corrected time stamp to the
sensory information (propagation delays are assumed to
be negligible). By performing this correlation, SEVA as-
sociates each query response to the appropriate frame.

3.4 Extrapolation and Prediction

Some per-object, per-frame location information will be
missing from the correlated sensor stream. This is due to
two factors. First, sensors duty-cycle to maximize their
battery lifetime and will respond to queries only when
awake. Broadcast requests will be sent out every frame
duration (e.g., every 33ms for 30 frames/s video) while
sensors may sleep for tens or hundreds of milliseconds
between two wakeups. Second, it is unlikely that the net-
work layer can scale its MAC protocol to the number of
awake objects (due to the possibility of MAC layer colli-
sions). In that case the individual objects must randomly
ignore broadcast requests.
SEVA explicitly deals with both of these scenarios by as-
suming that each query will obtain responses from only a
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time t1:
(x1,y1)

t2:(x2,y2)

t3:(x3,y3). . .

camera

field of
view

derived
path

Figure 3: Deriving an object’s path using curve fitting.

subsetof the objects within radio range and employs post-
processing techniques to account for missing responses.
Depending on whether the objects and the camera are sta-
tionary or mobile, such interpolation is done as follows:
Static objects: If the objects and the camera are static, ex-
tracting missing information is straightforward: we sim-
ply copy the reported location of the object to intermedi-
ate frames. In particular, if the object responds to queries
at time t1 and t2 and reports the same location for both
queries this location is tagged for all frames captured be-
tween times[t1, t2].
Mobile object: Next we consider a mobile object and
a stationary camera—determining missing location infor-
mation in this case requires a motion model. In particular,
the module needs to extract determine the path (trajec-
tory) of the object as a function of time. The location of
the object at any instant can be then easily be determined.
SEVA uses regression techniques [5] to derive a smooth
curve through the reported coordinates, which is then as-
sumed to be the path taken by the mobile object. As-
sume that the object has responded ton queries. Suppose
that the reported locations are(x1, y1, z1), (x2, y2, z2),
. . . (xn, yn, zn) at timest1, t2, . . . tn. If n = 2 then only
two locations are known, and this technique reduces to a
straight line between the two reported locations. When
n > 2, regression attempts to fit a curve through the re-
ported points. Since the fit is not exact, the curve that
yields the least error can be chosen. See Figure 3 for an
example.
Our regression technique systematically triesn − 1 dif-
ferent curves for the best fit: linear, a 2nd degree polyno-
mial, 3rd-degree and so on. The polynomial can have a
degree of up ton − 1 for n known locations. The coef-
ficients of each polynomial function are then determined

using the least squares method [5]. Finally, a coefficient
of determination is computed, which quantifies the good-
ness of the fit. The polynomial with the highest coeffi-
cient of determination is chosen; if all polynomials report
determination coefficients less than a threshold, then the
path of the object is too erratic to be approximated by a
smooth curve. In this case, we simply assume that the
object moves in a straight line between two successive re-
ported locations (i.e., approximate the path as a sequence
of linear segments).
Since the objects reports X-axis coordinates of
x1, x2, . . . xn at times t1, t2, . . . tn, respectively, the
regression analysis yields ak-degree polynomial,
1 ≤ k ≤ n − 1 that represents its location along the
X-axis as a function of time:

X(t) = a0 + a1t + a2t
2 + . . . + aktk (1)

wherea0, a1, . . . ak denote the coefficients as determined
by the least squares method. Similarly, the location along
the Y and the Z-axis as a function of time is obtained:

Y (t) = b0 + b1t + b2t
2 + . . . + bktk (2)

Z(t) = c0 + c1t + c2t
2 + . . . + cktk (3)

Together, the functionsX(t), Y (t) and Z(t) enable us
to determine the X, Y and Z coordinates of the object for
any time instantt between[t1, tn]. Thus, the missing loca-
tion information can be determined for every intermediate
frame.
Mobile camera: The final scenario is one where the cam-
era itself is mobile; objects can be stationary or mobile.
One approach to handle this scenario is to consider a
frame of reference relative to the camera. In this frame of
reference, the camera becomes stationary and the reported
location coordinates of objects are translated to this new
frame of reference. Doing so reduces this scenario to the
previous case of mobile objects and a stationary camera.
However, this can yield errors, since a stationary object
seen by a moving camera now becomes a mobile object
relative to the camera. Similarly, in this frame of refer-
ence simple paths of objects (e.g., an object moving in a
straight line) now become more complex trajectories.
Consequently, rather than considering locations that are
relative to the camera, SEVA considers theabsolutelo-
cations of both the camera and the objects and uses in-
telligent filtering techniques to account for the motion of

6



both entities. In particular, SEVA considers theactualre-
ported locations of objects and determines a trajectory of
the object using regression techniques as explained above.
The SEVA recorder is assumed to log the location of the
camera for every single frame; since fine grain location
information for the camera is already available, no inter-
polation is necessary.
Extrapolation: Our regression technique enables us to
interpolate the location of an object given its path for an
interval [t1, tn]. However, this does not yield any loca-
tion information for frames captured before timet1 and
those captured after timetn. This is useful when an ob-
ject goes out of the range of the wireless radio but re-
mains in view of the camera (e.g., an object that is steadily
backing away from the camera). Once the object leaves
the wireless radio range its presence is no longer detected
yielding false negatives. The trajectory computed by the
regression analysis can be used to extrapolate this infor-
mation and annotate a small number of frames beforet1
and aftertn. Extrapolation of the path beyond the inter-
vals [t1, tn] enables us to eliminate some of these false
negatives. This extrapolation can be done only for a few
frames (e.g., for a few seconds) in order to reduce errors
caused by a change in trajectory after the object leaves
the wireless range. Currently, our prototype uses a con-
figurable parameter to determine the number of frames
for which location information is extrapolated beyond the
[t1, tn] interval.

3.5 Filtering and Eliminating

After the extrapolation and prediction stage, every video
frame has been annotated with object location information
and SEVA must now determine which objects are within
the camera’s field of view.
For each frame SEVA constructs a field of view based on
an optics model, the camera’s focal length, and parame-
ters of the camera’s sensor. As shown in Figure 4, letf de-
note the focal length of the lens and lety denote the height
of the CMOS sensor of digital camcorder. This implies
that the camcorder has a viewable angleα = 2tan−1 y

2f .
At a distanced from the lens, the camera can see a view
that ish = f

d · y. So if the object is withinh
2 of the cam-

era’s axis, it is considered in view, otherwise it is out of
view. In Figure 4, the objectA is in the view and object
B is out of view. Although the figure only shows a one
dimensional model, it easily extends to three dimensions.

Using this model, combined with the location informa-
tion, SEVA determines which objects are in the view of
the camera.

Camera 
Sensor

Focal Length (f)

S
en

so
r H

ei
gh

t (
y)

Distance to Object (d)

Field of View
 

H
eight (h)Object A

Object B

Figure 4: The Basic Optics Model

This model does not take obstructions into account and
SEVA will believe that some objects that are hidden by
walls are actually visible. One possible solution is to
use the calculated distance with radio power control and
a free-space communications model to estimate whether
the object is obstructed. Similarly the object may be out
of focus and therefore not visible. Some cameras have
variable apertures and optics can then provide a measure-
ment of the depth-of-field of the image. This allows us
to compute whether objects are in or out of focus and tag
them appropriately. SEVA does not include either of these
mechanisms yet.

3.6 Query and Retrieval

This module consists of a storage system for annotated
video and tools for query and retrieval. The storage sys-
tem stores videos and corresponding annotations sepa-
rately; the annotations and videos are synchronized by the
video’s frame index. A tool allows users to query and re-
trieve videos of interest. Queries can specifywhena video
was captured,where it was captured, andwho is in the
video. The search engine then searches video annotations
produced by SEVA and returns video clips satisfying the
query.

4 Implementation

To provide a test platform, we have constructed a pro-
totype system based on a Sony Motion Eye web-camera
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Figure 5: SEVA recorder laptop equipped with a cam-
era, a 3D digital compass, a Mote with wireless radio and
Cricket receiver, a GPS receiver, and 802.11b wireless.

connected to a Vaio laptop. The location and identity
querying, correlation, extrapolation and prediction, filter-
ing and elimination, and database storage software runs
on the laptop. SEVA currently uses two 3-D locationing
systems for the camera and objects: GPS and the Cricket
Ultrasound locationing system. To obtain the orientation
of the camera we augmented the laptop with a Sparton
SP3003D Digital Compass that provides the orientation
(heading, pitch, and roll) of the camera’s lens.

Video Recording. The CMOS-based camera pro-
vides uncompressed 320x240 video at12 frames-per-
second. The camera has been set to a fixed focal
length of2.75mm, and uses a sensor size of2.4mm by
1.8mm. The video recording module uses an MPEG en-
coder(ffmpeg0.4.8 [9]) to record video.

Pervasive Location/Identification. Outdoors, SEVA
uses Deluo GPS receivers equipped with WAAS correc-
tion [4], connected to the laptop to locate the camera and
the object. The GPS unit provides latitude, longitude, and
altitude, and it provides an accuracy of 5-15 meters [4].
Indoors, SEVA employs an ultrasound locationing system
called Cricket [30]. Using a network of ultrasound sen-
sors built onto sensor boards, Cricket can provide 3-D lo-
cations with an accuracy of a few centimeters. Cricket can
be used in two modes: active and passive. In the current
implementation, SEVA uses the active mode as it is more
accurate. In the future SEVA will use the passive mode as
it scales to a larger number of objects.
To provide an accurate position in active mode, at least
four fixed sensors must receive the object’s beacon. Each

receiver computes its distance to the object and sends a ra-
dio message to the laptop. The laptop then computes the
location of the object using a set of linear equations [29].
When the object is not not moving this scheme works
quite well. When moving, receivers sometimes provide
inaccurate distance estimates, and/or the object fails to
reach four ultrasound receivers simultaneously.
To correct for these, we chose to use: (i) a simple filter-
ing scheme to filter out the obviously incorrect distance
measurements; for example, a distance measurement to a
reference point that changes significantly from the previ-
ous measurement while the measurements to other refer-
ence points only change by a small amount; (ii) a simple
buffering scheme, rather than a complex filter as has been
previously proposed [32], to deal with the case of object
failing to reach four ultrasound receivers simultaneously.
This scheme has a buffer to store the most recent valid
distance measurements to each reference point, and we
use the most recent distance measurements in this buffer
to compensate for missing data.
The pervasive locationing and identification system uses
two different network layers to communicate with the
objects. Outdoors objects are laptops equipped with
WiFi and indoors objects are Mica2 [18] low-power sen-
sor boards equipped with 900 MHz short-range radios.
The laptop communicates with the objects using a sensor
board of the same type. These particular sensors can han-
dle a limited number (42.93) of messages per-second ne-
cessitating a higher-layer backoff layer when using large
numbers of objects. To reduce MAC contention, objects
wait for a random period before sending a message and
give up after some number of unsuccessful attempts. A
simple broadcast-based query protocol is implemented
between the Linux-based recorder and the Mica2 nodes.

Correlation. As GPS provides a globally synchronized
clock among GPS receivers, we use this clock to corre-
late the location information with specific frames. Since
Cricket system doesn’t provide such a globally synchro-
nized clock, SEVA simply correlates the location infor-
mation with specific frames via subtracting the mean pro-
cessing and MAC layer delay from the receiving time of
sensor data and assigning the corrected time stamp to the
sensory information.

Extrapolation and Prediction. As discussed in Section

8



3.4, we use regression analysis to find the mathematical
relationship between location and time. Because the cam-
era’s 3D orientation will affect the result of filtering and
elimination, we also apply regression analysis on cam-
era’s 3D orientation when their data are missed. In order
to reduce the computational complexity, we use the frame
index instead of the real clock time to represent the time.

Filtering and Elimination. In this stage, objects’ coordi-
nates are transformed into coordinates of space with cam-
era as the origin and centimeter as the tick unit. This
transformation is quite straightforward for Cricket sys-
tem since we can easily subtract the camera’s coordinate
from objects’ coordinates. The transformation for GPS
system requires computing the distance between camera
and object, and we use the GPS Drive package for this
purpose [14].

Indexing and Querying . The results of filtering and
elimination are put into a MySQL database. We have
also implemented a simple GUI retrieval tool for content-
aware queries on this database. This tool supports queries
on where the video was captured (e.g., CS Building,
Room 101),whenit was captured (e.g., morning of May
23, 2005), andwhois present in the video (e.g., car, book,
building) and retrieves all annotated frames that match
this query.

5 Experimental Evaluation

In evaluating SEVA, we set out to answer the following
questions:

• How accurate is SEVA in tagging frames with a mov-
ing camera, moving objects, and with different loca-
tioning systems?

• How well does SEVA scale to larger numbers of ob-
jects?

• What is the overhead in using SEVA?

To answer these questions we used three different loca-
tioning systems: the Cricket ultrasound system, GPS, and
static locationing. We setup the Cricket locationing sys-
tem in a4m x 10m x 3m room with five Cricket receivers

mounted on the ceiling that serve as the reference points
for object and camera locationing. The origin of the co-
ordinate system is one of the corners of the room and the
range of x, y and z is[0cm, 400cm], [0cm, 1000cm], and
[0cm, 300cm], respectively. Our GPS experiments were
conducted in a large parking lot with a clear view of the
southern horizon. As the altitude did not vary signifi-
cantly for object and camera positions, we did not use it
in any of our experiments. The camera records all videos
at a rate of 12.5 frames/s.
To determine SEVA’s accuracy in tagging frames, we sub-
ject the system to four experiments: a) the object and cam-
era are both static, b) the object is moving in a straight line
and the camera is static, c) the camera is moving in differ-
ent patterns and the objects are static, and d) the object is
moving with semi-random trajectories and the camera is
static. In these experiments, we place the object in differ-
ent positions—some inside the view of camera and some
outside the view of camera—and evaluate the error rate of
our system when determining the viewability of objects.
We selected the error rate or number of frames in error as
the evaluation criteria. An error occurs when SEVA tags a
frame as containing an object when it doesn’t (false posi-
tives), or it tags a frame as not containing an object when
it does (false negatives).
It is important to note that the objects that we are using
to evaluate the system are only a few square centimeters
in size. In a sense this represents a worst-case. Larger
objects such as people may have inaccuracies in the posi-
tioning information that is made up by straddling the line
between viewable and non-viewable. We leave the issue
of partially viewable objects as future work.

5.1 Static Object, Static Camera

5.1.1 Cricket Locationing System

To evaluate SEVA’s performance with static objects and a
static camera, we place an object at a large number of po-
sitions along three different trajectories. The setup for this
experiment is shown in Figure 6. The camera is set up at
(223, 350, 57) with its lens pointing horizontally along the
positiveY axis and having0◦ pitch and roll. We place a
single object (simply a Cricket node) at different positions
along the three trajectories:y = 550cm, y = 650cm and
x = 200cm. As most of the errors are made very close to
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Trajectory 3
(x=200cm,

z=3cm)

Trajectory 1
(y=550cm,

z=3cm)

Trajectory 2
(y=650cm,

z=3cm)

Camera
Position

(x=223cm, 
y=350cm,
z=57cm)

Figure 6: The layout of static experiments using Cricket.

the viewability boundary, we took readings every2.5cm
near the boundary, and every5cm when the object was a
least30cm from the boundary.

For each object position we take100 frames and for each
we record the 3D orientation of the camera and the co-
ordinates of the camera and object. These coordinates are
then fed into the SEVA system and we manually reviewed
SEVA’s results to evaluate the error rate (false positive for
non-viewable objects and false negative for viewable ob-
jects). The results of this experiment are shown in Fig-
ure 7.

As shown in Figure 7(a) and 7(b), the error rate is less
than20% when the object is along the boundary, and the
error rate quickly drops to single digits when the object is
only 2.5cm away from the boundary and to zero when it
is only 7.5cm away. One exception occurs on Trajectory
2, and we get close to40% error rate when the object
is along the viewable boundary. We believe that this is
caused by interference with the ultrasound system from a
nearby structural pillar.

Figure 7(c) shows that the error rate along the viewable
boundary for Trajectory 3 is around50%, and it drops to
zero percent when the object is only10cm away from the
boundary. The reason for this larger error rate along the
viewable boundary is that the measured location of the
camera is5cm to 7cm lower than its real position, and
the measured location of the object is2cm to 3cm higher
than its real position in most cases. This type of error may
come from the arrangement of Cricket reference points’
position and could possibly be corrected by a different
arrangement of the Cricket reference points.

Trajectory 
1: y=10m
2: y=20m
3: y=80m

Camera
Position
(x=0m, 
y=0m,
z=0m)

Figure 8: The layout of experiments using GPS.

5.1.2 GPS Locationing System

We conducted a similar experiment with a GPS location-
ing system. GPS provides latitudes and longitudes rela-
tive to the equator and prime meridian; however, for read-
ability we translate this coordinate system into (x, y) co-
ordinates with the camera at the origin and the camera
pointing along the Y axis.
As shown in Figure 8, we used different positions along
three trajectories:y = 10m, y = 20m, andy = 80m.
The positions are separated by a3m step size starting30m
from the viewable boundary and ending at the the center
of the field of the view. For each position, we take100
pictures, and for each picture we record the 3D orientation
of the camera and the (x, y) coordinates of the camera
and object. We then manually verify that SEVA produces
the correct results and record the error rate (false positive
for non-viewable objects and false negative for viewable
objects). The results are shown in Figure 9.
Our results show that SEVA has more than20% error rate
when the object is within15 meters from the boundary,
and when the distance to boundary is more than18 me-
ters the error rate drops to zero. The low performance is
due to the low accuracy of GPS (5-15m); however, we
expect that SEVA’s performance using GPS will increase
dramatically in a few years as GPS is expected to reach
1 − 5m accuracy by the year 2013 with further improve-
ments after 2016 [13].

5.2 Dynamic Experiments

To evaluate SEVA’s extrapolation and prediction mecha-
nisms, we performed two sets of experiments: (i) mobile
object with a stationary camera and (ii) stationary object
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Figure 7: The error rate of static experiments using Cricket.
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Figure 9: The error rate of static experiments using GPS.

with a mobile camera. The video clips were reviewed
manually as before to determine which frames had erro-
neous annotations.

5.2.1 Static Camera, Dynamic Objects

When the object is moving and the camera is static the
critical factor affecting SEVA’s accuracy is the speed of
the object relative to how often SEVA updates the object
location. If the object speed is very high in relation to the
object location, it will mis-extrapolate the object position
and make mistakes in tagging objects as in or out of the
field of view.
To explore this point we constructed two experiments: a
repeatable experiment using a straight-line trajectory, and
a non-repeatable experiment using a semi-random path.
Repeatable Experiment: To construct a repeatable ex-
periment we use an object moving at different speeds and
updating its position at different intervals. In order to

make the experiments as repeatable as possible we de-
signed a test apparatus. We hung a fishing line across the
camera’s field of view at an angle and attached the object
to a pulley (see Figure 10). When we release the object
it accelerates down the line and then stops at the bottom.
We can change the acceleration of the object by chang-
ing the gradient of fishing line. We accelerated the ob-
ject across the camera’s field of view using three different
slopes:7.6◦, 10.93◦, and19.47◦ and the characteristics of
these different slopes are shown in Table 1.

The object updates its position using the Cricket ultra-
sound system and it can reliably update its position at
most once every250ms. In this experiment we used three
different beacon intervals:250ms, 500ms, and1000ms.

For each slope and each beacon interval we encoded ten
videos and used SEVA to determine the object’s viewa-
bility of each frame. We manually compared SEVA’s re-
sults with the original video on a frame-by-frame basis
and evaluate which frame tags were in error.

As before, incorrect decisions are made only when the
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Gradient Length AVG. Speed Time Length in Viewable Area AVG. Speed in Viewable Area Time in Viewable Area
Slope 1 7.6◦ 303cm 86.57cm/s 3.5s 150cm 112.06cm/s 1.34s

Slope 2 10.93◦ 350cm 145.83cm/s 2.4s 228cm 181.90cm/s 1.25s

Slope 3 19.47◦ 360cm 205.71cm/s 1.75s 240cm 271.77cm/s 0.88s

Table 1: Characteristics of different slopes.

pulley+
object

field of view

camera

Figure 10: Mobile object on a pulley.

object is close to the viewable boundary. In these experi-
ments that occurs either when the object enters or exits the
viewable area. The large number of frames in these exper-
iments would make the error rate appear very small, so in-
stead of presenting an error rate, we present the absolute
number of frames that are in error. When later querying
the video for sequences including a particular object, this
metric determines how many extra or missing frames will
be included or excluded from the sequence. The result is
taken over the average of all ten experiments. We com-
pare two systems: a full version of SEVA and a version
of SEVA that does not perform any extrapolation. The
results are shown in Figure 11.
The results demonstrate that without extrapolation the av-
erage number of frames in error increases from1.8 to 7.0
as the beacon interval increases from250ms to 1000ms.
The slower beacon interval forces SEVA to use old mea-
surements of the object’s position and cannot correct for
them using extrapolation. With extrapolation the average
number of frames in error is less than1 and is fairly con-
stant across beacon intervals.
The worst case occurs when the object is exiting the view-
able area under the highest acceleration and the beacon
interval is the slowest. In this scenario the object leaves
the viewable area at375cm/sec, reaches the end of the
wire, and suddenly stops. This rapid deceleration causes

the extrapolation method to fail and SEVA misplaces the
object at intervening frame intervals. Given a faster bea-
con interval it is more likely that a beacon will occur after
the object leaves the viewable area, but before the object
stops. This means that two beacons straddle the exit from
the viewable area and SEVA extrapolates the position cor-
rectly.
Non-Repeatable Experiment: In the repeatable experi-
ment, the object moves in a straight line. Although this
stresses SEVA’s extrapolation system, it does not require
higher-order regression analysis to determine the linear
path. To test a more complex path we recorded a new ob-
ject: a remote control toy car with a Cricket node attached
to the top. We randomly moved the car around the room
for 5 minutes while recording the car with the SEVA sys-
tem. The car moved in and out of the camera’s field of
many times during the experiment and we evaluated the
performance in the same manner as before. Our results
show that the mean number of frames in error is 2. This is
only slightly larger than object moving in a straight line.

5.2.2 Dynamic Camera, Static Object

If the camera is moving, but the objects are static, SEVA
must interpolate the position as well as the orientation
of the camera. To test this function with a variety of
movement patterns, we placed4− 5 objects separated by
equal distance, and moved the camera in three patterns as
shown in Figure 12: (a)straight line, the camera moves
in a straight line without changing the orientation of the
lens; (b)rotation , the camera moves and the lens’ orien-
tation changes; (c)z-line, the camera moves in a z-shaped
line without changing its lens’ orientation. We evaluated
SEVA’s performance using the frame error metric as be-
fore. For each movement pattern we ran experiments un-
der two different speeds labeled slow and fast. The char-
acteristics of these speeds are shown in Table 2. In all
cases we used the full SEVA system with a location bea-
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Figure 11: Mean frames in error for a mobile object and static camera.

Straight Line Rotation z Line
Slow 50cm/sec 25◦/sec 50cm/sec
Fast 80cm/sec 60◦/sec 80cm/sec

Table 2: Characteristics of different speeds.

con interval250ms. Again we only report the number of
frames that are in error. The results are shown in Table 3.

Object

Direction
Camera Moving

(c) z−Line

(a) Straight Line

(b) Rotation

Figure 12: Path of a mobile camera.

The results show that for the straight line the average num-
ber of error frames, which is less than1.0, is comparable
to when the object is moving and the camera is station-
ary. When the camera moves in a circle the average er-
ror frames is less than 2. We have traced these errors
to variances in the digital compass’s readings when the
heading changes and the latency of digital compass (up to
100ms). When the camera moves in a z-line the average
error frames is around1.2. Although we don’t change the
lens’ heading, SEVA’s interpolation fails when the camera
makes a sharp turn, slightly increasing the average num-
ber of error frames.

Straight Line Rotation z - Line
Slow 0.8 1.78 1.2

Fast 0.7 1.67 1.3

Table 3: Mean frames in error for a mobile camera.

5.3 Scalability

As discussed in Section 3.2, the camera uses periodic
broadcast messages to query for nearby objects. If there
are a large number of objects within radio range, the ra-
dio’s MAC layer may not scale to handle a large number
of simultaneous responses. To test the scalability of our
current prototype we video recorded a large number of
objects programmed with static locations.
To create a larger number of objects we used low-bit
rate wireless sensor nodes called Motes [18], specifically
Mica2 and Mica2dots. These nodes are representative of
future object tags due to their small size, low computa-
tional power and low energy consumption. The Mica2 ra-
dio only supports a raw transmission rate of19.2 Kbps,
and the effective throughput is12.364 Kbps or 42.93
packets/sec. Coincidentally, the packet rate is similar to
the rate at which RFID tags (another possible object tag)
can be queried.
The scalability of the system is determined by the fre-
quency at which the camera sends queries relative to the
number of objects and the rate of messages the radio can
handle. The maximum packet rate is fixed so we con-
structed an experiment with a variable number of objects
and query frequencies. We measure the response rate,
which is the ratio of responses the camera got (we only
considered responses that were at most one beacon be-
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hind) compared to the number of objects. The results are
shown in Figure 13.
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Figure 13: Response rate of Motes.

The results show that the prototype can can achieve100%
response rate for up to4 objects under all beacon frequen-
cies. It achieves more than90% response rate for up to10
responders under all beacon frequencies. However the re-
sponse rate for4 beacons/sec drops quickly and almost
linearly with more than10 responders, and it is72.3%
with 15 responders and43.4% with 25 responders. The
response rates for1 beacon/sec and2 beacons/sec are al-
most the same with up to20 responders, while the re-
sponse rate of2 beacons/sec drops quicker than the re-
sponse rate of1 beacons/sec after that.
A combination of these results with those of the dy-
namic object experiments indicate that the current proto-
type should scale well to 10 fast moving objects. If the
environment includes a mix of fast moving objects and
slow moving objects, further scalability can be achieved
if slow moving objects respond less frequently to beacons.

5.4 Computational Requirements

We measured the computational requirements of SEVA’s
stages. The correlation and the extrapolation modules im-
pose a small computational overhead on the laptop (less
than100µs for each object); the filtering module imposes
a 200µs overhead for each object. Unlike GPS systems,
the Cricket sensor gives the distances to beacons instead
of 3D coordinates, thus the laptop must solve a set of lin-
ear equations to compute the the 3D coordinates. This
computation costs around150µs for each object. These

results show that our system incurs small overhead and
will run online on relatively inexpensive hardware.

6 Related Work

SEVA draws from several related research areas, which
we survey here. Due to the overwhelming amount of re-
lated work in image retrieval, annotation, sensor systems,
and locationing systems, we only highlight the most rele-
vant work.
Content-based media retrieval: Searching and retriev-
ing media is greatly enhanced by textual annotations. The
annotations are either manually entered [11] or automati-
cally generated by a combination of learning- and vision-
based object/face recognition techniques [7, 8, 19, 22, 26,
35]. Manual annotation of each frame or image is cumber-
some and faces the difficulty of imprecise human mem-
ory, and thus it is not suitable for large collections of me-
dia archives. Automatic annotation by the learning and
vision-based techniques is error prone and has high com-
putational requirements.
Sensor Annotation of Multimedia: Several systems an-
notate images, videos, and audio with sensor data such as
GPS readings, light readings, temperature readings [1, 3,
6, 12, 25, 33, 34], and use these sensor data to help media
retrieval. Many of these systems automatically tag images
with time and GPS coordinates of where the image was
taken, and then infer other information about the image
later. All of these systems only record two parameters of
video capture—whenandwhere, unlike SEVA which also
recordswhatobjects are in each video frame, thereby pro-
viding a richer set of annotations.
Sensor Systems: A great deal of recent work has focused
on developing new sensor technologies. Several hard-
ware platforms have been developed recently, such as the
Mica Motes [18], Telos [28], and the XYZ [23]. These
nodes consume anywhere from 10-70mW of power in ac-
tive mode, and are designed for portability, extensibility,
and research prototyping. RFID, both active and pas-
sive, has significant potential to provide low-cost, short-
range, identification for many consumer goods and can
help identify objects in SEVA [10].
Locationing Systems: A critical component in SEVA is
the locationing system. Its accuracy, deployability, and
cost are crucial factors in SEVA’s success. The current
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prototype uses GPS [2], and the Cricket ultrasound sys-
tem [30], but there are many other locationing systems
available. Hightower and Borriello provide an excellent
overview of current systems [16]. Additional work has
also been done lately on the SpotON system [17] and
LANDMARC [27], as locationing systems for RFID tags,
providing another locationing system for future SEVA
systems.

7 Conclusions

This paper presents the design and implementation of
an automatic, sensor-enhanced video annotation and re-
trieval system named SEVA. It operates by querying
nearby objects for their identities and locations, extrap-
olating and filtering those results, and recording this in-
formation with the video stream. Through a large set of
experiments we have shown SEVA’s overall effectiveness
in tracking static and moving objects using a moving cam-
era and two different locationing systems.
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