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Abstract (iii) SEVA can scale tal0 fast moving objects using cur-
rent sensor technology; and (iv) SEVA runs online using

Advances in consumer electronics technologies have [E{ptively inexpensive hardware.
to a proliferation of digital cameras and camcorders that
record images and video in digital form and has encouy-
aged users to create ever-larger personal libraries of

tures and movies. A concurrent trend is the emergen . . .
9€NE&vances in consumer electronics technologies have led

of numerous sensor technologies such as RFID and lqw- . : L
o ) 0 a proliferation of digital cameras and camcorders that

power sensors positioning technologies such as GPS an . . IR

ultrasound record images and video in digital form and enable easy

manipulation of this data on laptops and desktop comput-
This paper proposes a new multimedia application thaldgs. This trend, coupled with the increasing capacities
enabled by the confluence of these trends. In particulgf,pC hard drives, has encouraged users to create ever-
we study how a sensor-rich world can be exploited by digyger personal libraries of pictures and movies. Navigat-
ital recording devices such as cameras and camcorderg¢pthrough collections containing tens of thousands of
improve an user’s ability to search through a large repQfictures and hundreds of movies requires tools to quickly
itory of image and video files. We design and implemeggarch and locate content of interest. A concurrent trend
a digital recording system that records identities and 10Gathe emergence of numerous sensor technologies such as
tions of objects (as advertised by their sensors) along wiilt|p [10] and low-power sensors [24]. In the future it is
visual images (as recorded by a camera). The proceggly that many objects will be equipped with sensors that
which we refer to asensor-enhanced video annotatiogncode their identities. For instance barcodes on objects
(SEVA) combines a series of correlation, interpolatiogych as books and food will be replaced with RFID sen-
and extrapolation techniques. It produces a tagged stregiys that serve as electronic tags. Street signs, buildings,
that later can be used to efficiently search for videos grq popular locations might be equipped with active sen-
frames containing particular objects or people. sor beacons that electronically broadcast their addresses.
We present detailed experiments with a prototype of oinother trend is the ubiquitous deployment of position-
system using both stationary and mobile objects as wielj) technologies such as GPS [2] and ultrasound [30] that
as GPS and ultrasound. Our experiments show that: t(iingulate the exact location of a user.
SEVA has zero error rates for static objects, except veriis paper proposes a new multimedia application that is
close to the boundary of the viewable area; (ii) for moenabled by the confluence of these trends. In particular,
ing objects or a moving camera, SEVA only misses otae study how a sensor-rich world can be exploited by dig-
jects leaving or entering the viewable area by 1-2 framéisil recording devices such as cameras and camcorders to
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improve an user’s ability to search through a large repos-
itory of image and video files. We design and implement
a digital recording system that records identities and lo-
cations of objects (as advertised by their sensors) along
with visual images (as recorded by a camera). The pro-
cess, which we refer to aensor-enhanced video anno-
tation (SEVA)produces a tagged stream that later can be
used to efficiently search for videos or frames containing
particular objects or people.

SEVA is different from the numerous multimedia anno-
tation systems that have been developed in the literature.
Since manual annotation of each frame or image is cum-
bersome, numerous automated learning and vision-based
techniques for annotation of visual content have been de-
veloped [7, 8, 19, 22, 26, 35]. In contrast, SEVA ex-
ploits pervasive sensors to record locations and identities
of objects and uses this information to annotate and inde
video. Thus, SEVA is an alternate method for annotation
and indexing and can complement existing annotation and
retrieval techniques by providing a new dimension of in-
formation.

The notion of stamping each picture with the GPS co-
ordinates of the camera has been proposed in the litera-
ture [1, 3, 12, 25, 34]—doing so enables the picture to be
automatically annotated with the place where the picture
was taken. SEVA substantially builds on this notion—it
not only envisions recording the location of the camera
but also the identities and locations of all objects in its
vicinity.

Research Challenges

Numerous practical challenges arise in the design and im-
plementation of SEVA.

e Mismatch in coverage and range: The SEVA °

recorder includes a video camera and a wireless ra-
dio to record images and sensor data, respectively.
Typically, the camera is a directional image sensor
that captures a limited view of the scene depending
on where the lens is pointing. In contrast, the wire-

less radio antenna is an omnidirectional device and is
able to listen to sensors that are outside the viewable
area of the camera. This can result in false positives

rectional antenna, it is difficult to precisely match
the coverage of the radio and the lens; focus and
zoom-capabilities of lens further complicate the is-
sue. Similarly, the lens can capture images of objects
that are infinitely far from the camera (e.g., a dis-
tant building), while the wireless radio has a limited
range and is unable to record identities of object that
are outside its range. This results in false negatives
where objects that are in the view of the camera are
unable to report their identities to the wireless radio.

Mobility: Mobile objects and a moving camera

causes objects to move in and out of the field of view.
SEVA must correctly identifying which frames con-

tain a particular object with a high degree of accu-
racy.

Inherent limitations of power-constrained,
bandwidth-poor sensors: Sensors attached to
objects are either battery-powered of passive. Due
to power-constraints, battery-powered sensors
aggressively duty-cycle and use sleep modes to
enhance their lifetimes. Passive sensors such as
RFID tags do not have a power source and instead
are powered by the electromagnetic signals from
the wireless radio, and hence, are inherently re-
source constrained. Further, both battery-powered
and passive sensors use low-bandwidth wireless
channels for communication. While a video camera
can record at a rate of 30 frames/second, due to the
resource constraints on sensors it is not feasible for
the wireless radio to query all objects every 33ms.
Thus, sensors will respond less frequently than the
intra-frame duration, necessitating extrapolation
techniques to annotate every frame.

Limitations of positioning systems: SEVA requires

a high degree of positioning accuracy in order to
properly identify viewable objects. Unfortunately,
the current current generation of positioning systems
provide limited accuracy. For instance, current GPS
technology provides accuracy of 3-100 meters [2],
while handling moving objects in ultrasound has in-
herent problems [32]. SEVA must deal with the error
that is introduced as a result of these limitations.

since the radio may records objects that do not athe primary contribution of our work is to demonstrate
tually appear the captured image. Even with a dhe feasibility and benefits of using sensors and location-



ing systems to automatically annotate video frames wigh System Model
the identities of objects. Our work has resulted in a num-
ber of novel techniques that are specifically designedltothis section, we present the key assumptions made in
address the above practical hurdles. our work. SEVA assumes a world rich in sensors—we
believe that, in the future, sensors will be pervasive, and
] ) _most objects will be equipped with one or more sensors.
The mismatch in range and coverage of sensors is hgy all objects fall into this category—natural objects
dled using a combination of extrapolation and filtering,,ch as trees and mountains may not be sensor-enhanced
In particular, false positives are eliminated using elemegyg annotation requires techniques that are beyond the
tary optics and filtering techniques, while false negativggope of this paper. In general, sensors on objects will
caused by a visible object that moves out of radio rangg neterogeneous and will be based of a mix of technolo-
are handled using path extrapolation. To address the isg;& such as RFID, Bluetooth, Zigbee, and 802.11. Con-
of mobile objects as well as a moving camera, we drafquently the recording device will need a radio to inter-
upon the regression techniques to determine the path @fwith each type of sensor. For reasons of simplicity, our
mobile object and its location. To address the address thgrent work assumes a homogeneous sensor environment
issue of resource-constrained sensors, we employ intergq assumes a recorder with a single wireless radio; it is
lation techniques to determine if an object is within ran@graightforward to extend our prototype to handle hetero-
even if it did not rgspond to a query when the frame Wagneity.
captured. The mismatch in range and coverage of sgfis assume that all sensors report their identities as well
sors is handled using a combination of extrapolation agd their locations when queried. For stationary objects
filtering. In particular, false positives are eliminated Ugy,ch as a building or a street sign, the precise location
ing elementary optics and filtering techniques, while fal$g, e hard-coded at sensor configuration time. To han-
negatives caused by a visible object that moves out of i mobile objects as well as those that do not hard-code
dio range are handled using path extrapolation. Finaljjer |ocations, we assume the presence of a positioning
buffering and filtering are used to handle some, but nQistem. In this work, we consider two types of posi-
all, of the inaccuracies of positioning systems. tioning systems: GPS and an ultrasound system named
Cricket [32]. GPS is an outdoor positioning system that

These techniques enable a fully working prototype Bqlies on satellites, and Cricket is an indoor system based
SEVA. We conducted detailed experiments using both sH4! ultra-sound beacons. For passive sensors such as RFID
tionary and mobile objects as well as GPS and ultrasoul§ assume that they store their current coordinates and are
Our experiments show that: (i) SEVA has zero error ratigProgrammed using emerging RFID triangulation tech-
for static objects, except very close to the boundary Bfaues [17, 27]. _ o

the viewable area; (ii) for moving objects or a movin%\j also assume that the recording device incorporates
camera SEVA only misses objects leaving or entering tH&!" ke)'/"elements.: ([) a video camera, .(II) a dlgltal com-
viewable area by 1-2 frames: (i) SEVA prototype caR@SS: (iii) a locationing system, and (iv) a wireless ra-
scale well tol0 fast moving objects using current senséfi0: The camera is simply a digital recording device that

technology; and (iv) SEVA runs online using relativel{/ecords video frames and the associated auQio. We as-
inexpensive hardware. sume that the parameters of the lens used in the cam-

era are precisely known. This is a reasonable assump-

tion since these parameters are published or advertised
The rest of this paper is structured as follows. We presdot most models of digital cameras and camcorders. The
background and assumptions in Section 2. Sectiordigital compass is used to determine the direction where
presents the design of SEVA. We present implementatitr® camera is pointing at any instant; we use a 3D dig-
details in Section 4 and our experimental results in Sétal compass that precisely provides both the orientation
tion 5. Section 6 and 7 present related work and our camd the tilt of the camera. The camera is also assumed to
clusions. equipped with GPS and Cricket so that it can determine



its coordinates both indoors and outdoors. Together, thi#l not change from frame to frame. However, SEVA is
positioning device and the 3D Compass, in conjuncti@bso capable of handling zoom lenses with variable focal
with the lens parameters, are used to determine which pgartgths.

of the scene can be seen by the camera. This automatic

computation of the visual range of the camera is used o2 =) ive L tionina/ldentificati
determine which objects are in view and which ones are €rvasive Locationing/identiiication

false positives. Finally, the wireless radio is used to queg¢vA collects information about the location and identity
objects for their identities and locations. of proximate objects. This depends on a pervasive infras-
In addition to recording video, the SEVA recorder is agncture that responds to broadcast messages from SEVA
sumed to log (i) the orientation and tilt of the camera fhrough a wireless network. Any objects within wireless
each frame, (ii) the GPS and/or Cricket coordinates of tighge respond with information about their identity, in-
camera for each frame, (i) a GPS time stamp for eagfyding properties of the object.

frame, and (iv) the identities and the locations of eagfj,ch infrastructures have been proposed for a broad ar-
queried object and the time when the response was (g of systems [20, 21, 15, 31] and future systems may
ceived. use a variety of technologies and standards. SEVA is de-
Assuming such an environment, we present the architgggned to be independent from the exact technological im-
ture, design and implementation of cagnsor-enhancedplementation so here we only describe an abstract set of
video annotation (SEVApplication in the following sec- properties that SEVA depends on.

tions. The pervasive locationing and identification shown in Fig-
ure 1 produces the sensor stream used by later stages of
SEVA. The system is organized as a set of modular lay-

3 SyStem Architecture and DeSIgn ers: locationing, network, privacy, querying, and location

. mapping:
SEVA captures a stream of sensor data and a video strean{3 ping

and fuses them together in a series of stages. Each step Camera

requires careful filtering and melding locationing infor- : _

mation, object identification, and camera positioning and P emtioaton

lens parameters. SEVA is capable of feeding this anr Object Losaton gy -2E%00
tated stream of video into a database for offline que Querying Querying

ing or to a streaming query system. This process is b i vy e vy Lare

ken into six key stageszideo recording pervasive loca- | [ ocationng Locationing
tion/identification correlation, extrapolation and predic- | | ‘sswi || @b wir wroowiey | | Gr iy

tion, filtering and eliminationand finallydatabase query- A

ing. Next, we describe these stages detail.

3.1 Video Recording Figure 1: Pervasive Locationing/ldentification System.

SEVA provides a video recording module that receivd$e locationing layer provides location information to the
video input and camera parameters from any videbjects as well as the camera. The locationing system
source. The source must provide frames at a consteanh be active, passive, or static. Active systems, such as
and known frame rate, or it must time stamp each fransetive ultrasound, beacon to the infrastructure, which re-
This allows later stages to synchronize location informaponds with a location. Passive systems, such as GPS, can
tion with individual frames. The camera must also supptpmpute locations with no transmission and only passive
a set of lens parameters to the recording module: the sebservations of radio signals. Static systems use a pro-
sor size and the lens focal length. For lenses with fixgdammed location. Active and passive systems are best
focal lengths—so called prime lenses—the focal lengftr objects that move, such as people and automobiles,



whereas static systems are only appropriate for immobéigeence, as long as one coordinate system can be mapped
objects such as buildings and landmarks. As we show th& the other, SEVA can compute visibility. SEVA han-
evaluation section, the accuracy of these systems aredigs these differences by employing an internal coordinate
tremely important to SEVA's efficacy. system and a frame of reference relative to the camera,
The network layer provides communication between thaed maps all coordinates to internal coordinates, enabling
camera and objects. As long as the interface supponteroperability across locationing systems.

broadcasting, sending, and receiving, the particular tech-

nplogy used (WiFi, Bluetooth, Zigpee, RFID) is imm.a.te3_3 Stream Correlation

rial. The range of the communication should be sufficient

to capture most objects within camera range; however, tbloe sensor stream needs to be time synchronized with the
great of a range will affect the scalability of the systemideo stream in order toorrelatethe location information

The limited range does mean that large, distant objetitsthe former with specific frames in the latter. Unfor-
such as mountains will not be captured by the identificamnately, transmission, contention, and processing delays
tion system—future SEVA mechanisms will support thisause location information to be desynchronized with the
feature through GIS information. video.

A privacy layer ensures that objects can control their ovirepending on whether sensors are active or passive, cor-
visibility. While a complete implementation of such a sysgelation can be done in two ways. A straightforward
tem is beyond the scope of this paper, the privacy laysrplementation assumes a synchronized clock present at
should permit people to provide varying levels of inforeach object—SEVA uses GPS receivers, cellular phone
mation. For instance a person will provide her name teferences, or NTP-based time sources. If the sensor does
her friend’s camera, whereas she will only provide metaet have a clock (e.g., RFID) or lacks resources to run a
information such as “a person” to an untrusted camerasynchronization protocol, then instead of a time stamp, it
The querying layer manages interactions between wrevides an estimate of the time from query to response.
camera and the objects. The camera broadcasts qudrig includes MAC layer delays and internal processing.
messages to objects, which respond with identifying aitie recorder subtracts this delay from the receipt time of
location information, as shown in Figure 2. the response and assigns the corrected time stamp to the
sensory information (propagation delays are assumed to
be negligible). By performing this correlation, SEVA as-
sociates each query response to the appropriate frame.

o Boundary of wireless range o Boundary of wireless range
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, Broadcast Query ;"l Response Response . _

%mm ;O i fepr | © 3.4 Extrapolation and Prediction

| ’," Response ’,"

o . &é X&“"’"ﬁ Some per-object, per-frame location information will be

Rmngg,.f' missing from the correlated sensor stream. This is due to

"""""" ‘ two factors. First, sensors duty-cycle to maximize their
(@) Query (b) Response y-Cy

battery lifetime and will respond to queries only when
Figure 2: Query and Response Model. awake. Broadcast requests will be sent out every frame

duration (e.g., every 33ms for 30 frames/s video) while

sensors may sleep for tens or hundreds of milliseconds
The locationing layer maps different object locations armttween two wakeups. Second, it is unlikely that the net-
camera locations to the same frame of reference. Differendrk layer can scale its MAC protocol to the number of
objects may use different locationing systems makingaitvake objects (due to the possibility of MAC layer colli-
difficult to compute relative positions. For instance, GPSons). In that case the individual objects must randomly
measures absolute positions using latitude, longitude agore broadcast requests.
altitude, while Cricket measures relative positions. Sin&EVA explicitly deals with both of these scenarios by as-
any coordinate system is relative to some frame of refuming that each query will obtain responses from only a



time 11: , using the least squares method [5]. Finally, a coefficient
(x1,y1)  13:(x3,y3), . . . . oo

. </ of determination is computed, which quantifies the good-
ness of the fit. The polynomial with the highest coeffi-

2:(x2,y2)
,/ derived

/, / path cient of determination is chosen; if all polynomials report
fedot determination coefficients less than a threshold, then the
e |i‘| path of the object is too erratic to be approximated by a

camera smooth curve. In this case, we simply assume that the

object moves in a straight line between two successive re-
Figure 3: Deriving an object’s path using curve fitting. ported locations (i.e., approximate the path as a sequence
of linear segments).
Since the objects reports X-axis coordinates of
Ty1,%9,...T, at timesty ts,...t,, respectively, the
subsebf the objects within radio range and employs posegression analysis vyields &-degree polynomial,

processing techniques to account for missing responsesc . < p — 1 that represents its location along the
Depending on whether the objects and the camera are §tayis as a function of time:

tionary or mobile, such interpolation is done as follows:

Static objects: If the objects and the camera are static, ex- X(t) =ao+art + ast® + ...+ ajt” (1)
tracting missing information is straightforward: we sim-

oly copy the reported location of the object to intermed}f)‘-’hereao’ a1, ...ay denote the coefficients as determined

. . . the least squares method. Similarly, the location along
ate frames. In particular, if the object responds to queri : : 7 o
. . e Y and the Z-axis as a function of time is obtained:
at timet; and¢, and reports the same location for bot

queries this location is tagged for all frames captured be- Y (t) = bo + byt 4 bot* + ... + byt" )
tween timegty, to). , .
Mobile object: Next we consider a mobile object and Z(t) = co+eat +eat” + .+ cxt ®3)

a stationary camera—determining missing location infaTogether, the functions((¢), Y (t) and Z(t) enable us
mation in this case requires a motion model. In particulas determine the X, Y and Z coordinates of the object for
the module needs to extract determine the path (traje@y time instant betweerjt,, ¢,,]. Thus, the missing loca-
tory) of the object as a function of time. The location afon information can be determined for every intermediate
the object at any instant can be then easily be determingdme.

SEVA uses regression techniques [5] to derive a smodfiobile camera: The final scenario is one where the cam-
curve through the reported coordinates, which is then &sa itself is mobile; objects can be stationary or mobile.
sumed to be the path taken by the mobile object. ASne approach to handle this scenario is to consider a
sume that the object has responded tpueries. Supposeframe of reference relative to the camera. In this frame of
that the reported locations afe:,y1,21), (z2,y2,22), reference, the camera becomes stationary and the reported
oo (@n, Yn, zn) At timesty, to, ... t,. If n = 2then only location coordinates of objects are translated to this new
two locations are known, and this technique reduces térame of reference. Doing so reduces this scenario to the
straight line between the two reported locations. Wheinevious case of mobile objects and a stationary camera.
n > 2, regression attempts to fit a curve through the refowever, this can yield errors, since a stationary object
ported points. Since the fit is not exact, the curve theéen by a moving camera now becomes a mobile object
yields the least error can be chosen. See Figure 3 forrafative to the camera. Similarly, in this frame of refer-
example. ence simple paths of objects (e.g., an object moving in a
Our regression technique systematically ties- 1 dif- straight line) now become more complex trajectories.
ferent curves for the best fit: linear, a 2nd degree polynGensequently, rather than considering locations that are
mial, 3rd-degree and so on. The polynomial can haveedative to the camera, SEVA considers thgsolutelo-
degree of up tm — 1 for n known locations. The coef-cations of both the camera and the objects and uses in-
ficients of each polynomial function are then determineelligent filtering techniques to account for the motion of



both entities. In particular, SEVA considers thetualre- Using this model, combined with the location informa-
ported locations of objects and determines a trajectorytimin, SEVA determines which objects are in the view of
the object using regression techniques as explained abdie.camera.

The SEVA recorder is assumed to log the location of the
camera for every single frame; since fine grain location
information for the camera is already available, no inter-
polation is necessary.

Extrapolation: Our regression technique enables us to
interpolate the location of an object given its path for an
interval [¢1,t,]. However, this does not yield any loca-
tion information for frames captured before timeand
those captured after timeg,. This is useful when an ob-
ject goes out of the range of the wireless radio but re- Figure 4: The Basic Optics Model

mains in view of the camera (e.g., an object that is steadily

backing away from the camera). Once the object leaves

the wireless radio range its presence is no longer detectégs model does not take obstructions into account and
yielding false negatives. The trajectory computed by tf&EVA will believe that some objects that are hidden by
regression analysis can be used to extrapolate this inf@lls are actually visible. One possible solution is to
mation and annotate a small number of frames befpreuse the calculated distance with radio power control and
and aftert,,. Extrapolation of the path beyond the inter2 free-space communications model to estimate whether
vals [t1,t,] enables us to eliminate some of these falége object is obstructed. Similarly the object may be out
negatives. This extrapolation can be done only for a f&f focus and therefore not visible. Some cameras have
frames (e.g., for a few seconds) in order to reduce erryg¥iable apertures and optics can then provide a measure-
caused by a change in trajectory after the object leavagnt of the depth-of-field of the image. This allows us
the wireless range. Currently, our prototype uses a cé@-compute whether objects are in or out of focus and tag
figurable parameter to determine the number of fram&@em appropriately. SEVA does notinclude either of these
for which location information is extrapolated beyond th@echanisms yet.

[t1,t,] interval.

Video Camera 3o
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3.6 Query and Retrieval

3.5 Filtering and Eliminating _ _
This module consists of a storage system for annotated

After the extrapolation and prediction stage, every videgdeo and tools for query and retrieval. The storage sys-
frame has been annotated with object location informatiggm stores videos and corresponding annotations sepa-
and SEVA must now determine which objects are withiaitely; the annotations and videos are synchronized by the
the camera’s field of view. video’s frame index. A tool allows users to query and re-
For each frame SEVA constructs a field of view based @iieve videos of interest. Queries can spewifyena video

an optics model, the camera’s focal length, and paranas capturedwhereit was captured, andhois in the

ters of the camera’s sensor. As shown in Figure 4f - video. The search engine then searches video annotations
note the focal length of the lens and{edenote the height produced by SEVA and returns video clips satisfying the
of the CMOS sensor of digital camcorder. This implieguery.

that the camcorder has a viewable angle- 2tan*1%.

At a distancel from the lens, the camera can see a view ]

thatish = £ - . So if the object is withirk of the cam- 4 Implementation

era’s axis, it is considered in view, otherwise it is out of

view. In Figure 4, the object is in the view and object To provide a test platform, we have constructed a pro-
B is out of view. Although the figure only shows a onéotype system based on a Sony Motion Eye web-camera
dimensional model, it easily extends to three dimensions.

7



receiver computes its distance to the object and sends ara-
dio message to the laptop. The laptop then computes the
location of the object using a set of linear equations [29].
When the object is not not moving this scheme works
quite well. When moving, receivers sometimes provide
inaccurate distance estimates, and/or the object fails to
reach four ultrasound receivers simultaneously.

To correct for these, we chose to use: (i) a simple filter-
Figure 5: SEVA recorder laptop equipped with a cang scheme to filter out the obviously incorrect distance
era, a 3D digital compass, a Mote with wireless radio apgeasurements; for example, a distance measurement to a
CriCket receiver, a GPS receiver, a.nd 80211b WireIeSSreference point that Changes Signiﬁcant'y from the previ_
ous measurement while the measurements to other refer-
ence points only change by a small amount; (ii) a simple
Puﬁering scheme, rather than a complex filter as has been
P_/reviously proposed [32], to deal with the case of object
ailing to reach four ultrasound receivers simultaneously.

l‘\nhs|s scheme has a buffer to store the most recent valid

on the laptop. SEVA currently uses two 3-D locationing. :
%lg{ance measurements to each reference point, and we

systems for the camera and objects: GPS and the Cric : R
o . . -use the most recent distance measurements in this buffer

Ultrasound locationing system. To obtain the orientatign o
0 compensate for missing data.

of the camera we augmented the Iaptop with a Spar_tPHe pervasive locationing and identification system uses
SP3003D Digital Compass that provides the orlentatut)vr\}o different network layers to communicate with the

(heading, pitch, and roll) of the camera’s lens. objects. Outdoors objects are laptops equipped with
i ) WiFi and indoors objects are Mica2 [18] low-power sen-
y|deo Recording.  The CMOS-based camera proggr poards equipped with 900 MHz short-range radios.
vides uncompressed 320x240 video 18t frames-per- rpq anton communicates with the objects using a sensor
second. The camera has been set. to a fixed foﬁ%rd of the same type. These particular sensors can han-

length °f2-75”_””' and Uses a sensor sizelmm by dle a limited number42.93) of messages per-second ne-
1.8mm. The video recording module uses an MPEG efagitating a higher-layer backoff layer when using large
coder(ffmpeg0.4.8 [9]) to record video. numbers of objects. To reduce MAC contention, objects
wait for a random period before sending a message and
Pervasive Location/ldentification. Outdoors, SEVA give up after some number of unsuccessful attempts. A
uses Deluo GPS receivers equipped with WAAS corregmple broadcast-based query protocol is implemented
tion [4], connected to the laptop to locate the camera afghween the Linux-based recorder and the Mica2 nodes.
the object. The GPS unit provides latitude, longitude, and
altitude, and it provides an accuracy of 5-15 meters [4] correlation. As GPS provides a globally synchronized
Indoors, SEVA employs an ultrasound locationing systegiock among GPS receivers, we use this clock to corre-
called Cricket [30]. Using a network of ultrasound senate the location information with specific frames. Since
sors built onto sensor boards, Cricket can provide 3-D Igricket system doesn't provide such a globally synchro-
cations with an accuracy of a few centimeters. Cricket calxed clock, SEVA simply correlates the location infor-
be used in two modes: active and passive. In the currémdtion with specific frames via subtracting the mean pro-
implementation, SEVA uses the active mode as it is magessing and MAC layer delay from the receiving time of
accurate. In the future SEVA will use the passive mode &snsor data and assigning the corrected time stamp to the
it scales to a larger number of objects. sensory information.
To provide an accurate position in active mode, at least
four fixed sensors must receive the object’s beacon. E&ttirapolation and Prediction. As discussed in Section

connected to a Vaio laptop. The location and identi



3.4, we use regression analysis to find the mathematicadunted on the ceiling that serve as the reference points
relationship between location and time. Because the cdor-object and camera locationing. The origin of the co-
era’s 3D orientation will affect the result of filtering andrdinate system is one of the corners of the room and the
elimination, we also apply regression analysis on camange of x, y and z if0cm, 400cm], [0cm, 1000¢m], and
era’s 3D orientation when their data are missed. In ordérm, 300cm], respectively. Our GPS experiments were
to reduce the computational complexity, we use the fraroenducted in a large parking lot with a clear view of the
index instead of the real clock time to represent the timgouthern horizon. As the altitude did not vary signifi-
cantly for object and camera positions, we did not use it
Filtering and Elimination. In this stage, objects’ coordi-in any of our experiments. The camera records all videos
nates are transformed into coordinates of space with caaha rate of 12.5 frames/s.
era as the origin and centimeter as the tick unit. THi® determine SEVA's accuracy in tagging frames, we sub-
transformation is quite straightforward for Cricket sygect the system to four experiments: a) the object and cam-
tem since we can easily subtract the camera’s coordinata are both static, b) the object is moving in a straight line
from objects’ coordinates. The transformation for GP&ahd the camera is static, ¢) the camera is moving in differ-
system requires computing the distance between camemapatterns and the objects are static, and d) the object is
and object, and we use the GPS Drive package for thi®ving with semi-random trajectories and the camera is
purpose [14]. static. In these experiments, we place the object in differ-
ent positions—some inside the view of camera and some
Indexing and Querying . The results of filtering and outside the view of camera—and evaluate the error rate of
elimination are put into a MySQL database. We hawgir system when determining the viewability of objects.
also implemented a simple GUI retrieval tool for contente selected the error rate or number of frames in error as
aware queries on this database. This tool supports quetigsevaluation criteria. An error occurs when SEVA tags a
on where the video was captured (e.g., CS Buildingrame as containing an object when it doesn't (false posi-
Room 101)whenit was captured (e.g., morning of Maytives), or it tags a frame as not containing an object when
23, 2005), andvhois present in the video (e.g., car, bookt does (false negatives).
building) and retrieves all annotated frames that matfthis important to note that the objects that we are using
this query. to evaluate the system are only a few square centimeters
in size. In a sense this represents a worst-case. Larger
. . objects such as people may have inaccuracies in the posi-
S EXpe”mental Evaluation tioning information that is made up by straddling the line
between viewable and non-viewable. We leave the issue

In evaluating SEVA, we set out to answer the followingf partially viewable objects as future work

guestions:

e How accurate is SEVA in tagging frames with a MOV 1 Static Object, Static Camera
ing camera, moving objects, and with different loca-" '

tioning systems? 5.1.1 Cricket Locationing System

« How well does SEVA scale to larger numbers of opl0 evaluate SEVA's performance with static objects and a
static camera, we place an object at a large number of po-
sitions along three different trajectories. The setup for this
e What is the overhead in using SEVA? experiment is shown in Figure 6. The camera is set up at
(223, 350, 57) with its lens pointing horizontally along the
To answer these questions we used three different lopasitiveY axis and havin@® pitch and roll. We place a
tioning systems: the Cricket ultrasound system, GPS, aidgle object (simply a Cricket node) at different positions
static locationing. We setup the Cricket locationing syaiong the three trajectorieg:= 550¢m, y = 650cm and
tem in a4m x 10m x 3m room with five Cricket receivers x = 200cm. As most of the errors are made very close to

jects?



Camera
Position
(x=0m,

Camera
Position
(x=223cm,
y=350cm,
2=57cm)

Trajectory 3
(x=200cm,

z=3cm) y=om,

2=0m)

Trajectory
1: y=10m
2:y=20m
3 y=80m

Figure 6: The layout of static experiments using Cricket.
Figure 8: The layout of experiments using GPS.

the viewability boundary, we took readings evérjicm 5.1.2 GPS Locationing System

near the boundary, and evelym when the object was awe conducted a similar experiment with a GPS location-
least30cm from the boundary. ing system. GPS provides latitudes and longitudes rela-

) N tive to the equator and prime meridian; however, for read-
For each object position we take0 frames and for each gpijity we translate this coordinate system into (x, y) co-

we record the 3D orientation of the camera and the Ggqinates with the camera at the origin and the camera
ordinates of the camera and object. These coordinates@ting along the Y axis.

then fed into the SEVA system and we manually revieweds <hown in Figure 8, we used different positions along
SEVA's results to evaluate the error rate (false positive fg{;ee trajectoriesy = 10m, y = 20m, andy = SO0m.

non-viewable objects and false negative for viewable QPhe positions are separated byra step size startingom

jects). The results of this experiment are shown in Fig,m the viewable boundary and ending at the the center
ure 7. of the field of the view. For each position, we tak@)

As shown in Figure 7(a) and 7(b), the error rate is Ieglctures, and for each picture we record the 3D orientation

than20% when the object is along the boundary, and tr?e the camera and the (x, y) coo_rdmates of the camera
error rate quickly drops to single digits when the object snd object. We then manually verify that SEVA produces
9 y drop 9 9 ) fﬁe correct results and record the error rate (false positive

only 2.5¢cm away from the boundary and to zero when J : . . .
. : . or non-viewable objects and false negative for viewable
is only 7.5¢m away. One exception occurs on Trajector

. ijects). The results are shown in Figure 9.
2, and we get close 0% error rate when the ObJectOur results show that SEVA has more ¥ error rate

's along thg viewable bogndary. We believe that this \INShen the object is within5 meters from the boundary,
caused by interference with the ultrasound system from a

. and when the distance to boundary is more th&me-
nearby structural pillar. .
ters the error rate drops to zero. The low performance is

Figure 7(c) shows that the error rate along the viewat|s€ to the low accuracy of GPS (5-15m); however, we
boundary for Trajectory 3 is arourid%, and it drops to expect _that S_EVA’S performance using GPS will increase
zero percent when the object is onl§ern away from the dramatically in a few years as GPS is expecte_d to reach
boundary. The reason for this larger error rate along the™ 977 &ccuracy by the year 2013 with further improve-
viewable boundary is that the measured location of tAeeNts after 2016 [13].

camera issem to 7cm lower than its real position, and

the measured Io_qatiqn of the objech'tsr_z to 3cm higher g o Dynamic Experiments

than its real position in most cases. This type of error may

come from the arrangement of Cricket reference poinf& evaluate SEVA's extrapolation and prediction mecha-
position and could possibly be corrected by a differenisms, we performed two sets of experiments: (i) mobile
arrangement of the Cricket reference points. object with a stationary camera and (ii) stationary object
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Figure 7: The error rate of static experiments using Cricket.
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Figure 9: The error rate of static experiments using GPS.

with a mobile camera. The video clips were reviewandake the experiments as repeatable as possible we de-
manually as before to determine which frames had ersigned a test apparatus. We hung a fishing line across the
neous annotations. camera’s field of view at an angle and attached the object
to a pulley (see Figure 10). When we release the object
it accelerates down the line and then stops at the bottom.
We can change the acceleration of the object by chang-
tW@ the gradient of fishing line. We accelerated the ob-

critical factor affecting SEVAs accuracy is the speed &ect across the camera’s field of view using three different

the object relative to how often SEVA updates the objet lf) pes&?{f ' 12'9? ' and19.4; anq ﬂ]re g?arlacterlstlcs of
location. If the object speed is very high in relation to th ese ditierent siopes are shown in fable L.

object location, it will mis-extrapolate the object positiorl "€ object updates its position using the Cricket ultra-
and make mistakes in tagging objects as in or out of tA@und system and it can reliably update its position at
field of view. most once ever250ms. In this experiment we used three
To explore this point we constructed two experiments:différent beacon interval250ms, 500ms, and1000ms.
repeatable experiment using a straight-line trajectory, an@r each slope and each beacon interval we encoded ten
a non-repeatable experiment using a semi-random patMideos and used SEVA to determine the object’s viewa-
Repeatable Experiment: To construct a repeatable exbility of each frame. We manually compared SEVA' re-
periment we use an object moving at different speeds gits with the original video on a frame-by-frame basis
updating its position at different intervals. In order t@nd evaluate which frame tags were in error.

As before, incorrect decisions are made only when the

5.2.1 Static Camera, Dynamic Objects

When the object is moving and the camera is static
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Gradient | Length | AVG. Speed | Time || Length in Viewable Area] AVG. Speed in Viewable Area Time in Viewable Area
Slope 1 7.6° 303cm | 86.57cm/s | 3.5s 150cm 112.06cm/s 1.34s
Slope 2| 10.93° | 350cm | 145.83cm/s | 2.4s 228cm 181.90cm/s 1.25s
Slope 3| 19.47° | 360cm | 205.71cm/s | 1.75s 240cm 271.77em/ s 0.88s
Table 1: Characteristics of different slopes.
field of view the extrapolation method to fail and SEVA misplaces the

object at intervening frame intervals. Given a faster bea-
con interval it is more likely that a beacon will occur after
~ the object leaves the viewable area, but before the object
stops. This means that two beacons straddle the exit from
the viewable area and SEVA extrapolates the position cor-
rectly.
Non-Repeatable Experiment:In the repeatable experi-
ment, the object moves in a straight line. Although this
stresses SEVA's extrapolation system, it does not require
higher-order regression analysis to determine the linear
path. To test a more complex path we recorded a hew ob-
ject: aremote control toy car with a Cricket node attached

L . h . Wi I h h
object is close to the viewable boundary. In these exp t?—t € top. We randomly moved the car around the room

) : . %r 5 minutes while recording the car with the SEVA sys-
ments that occurs either when the object enters or exits the . -
em. The car moved in and out of the camera’s field of

viewable area. The large number of frames in these eXpr%ra'ny times during the experiment and we evaluated the

iments would make the error rate appear very small, so |n- .
PP y rformance in the same manner as before. Our results

stead of presenting an error rate, we present the absqglﬁgw that the mean number of frames in error is 2. This is

number of frames that are in error. When later querying ol laraer than obiect moving in a straiaht line
the video for sequences including a particular object, this y slightly larg ) 9 9 '

metric determines how many extra or missing frames will ] ) .
be included or excluded from the sequence. The resulPig€-2 Dynamic Camera, Static Object

taken over the average of all ten experiments. We COffithe camera is moving, but the objects are static, SEVA
pare two systems: a full version of SEVA and a versiqf st interpolate the position as well as the orientation
of SEVA that does not perform any extrapolation. Thgr the camera. To test this function with a variety of
results are shown in Figure 11. movement patterns, we placéd- 5 objects separated by
The results demonstrate that without extrapolation the @¢ual distance, and moved the camera in three patterns as
erage number of frames in error increases filo&to 7.0 shown in Figure 12: (adtraight line, the camera moves
as the beacon interval increases freBdms to 1000ms. in a straight line without changing the orientation of the
The slower beacon interval forces SEVA to use old mef@ns; (b)rotation, the camera moves and the lens’ orien-
surements of the object’s position and cannot correct fation changes; (@)-line, the camera moves in a z-shaped
them using extrapolation. With extrapolation the averagge without changing its lens’ orientation. We evaluated
number of frames in error is less thamand is fairly con- SEVAs performance using the frame error metric as be-
stant across beacon intervals. fore. For each movement pattern we ran experiments un-
The worst case occurs when the object is exiting the vieder two different speeds labeled slow and fast. The char-
able area under the highest acceleration and the beaacteristics of these speeds are shown in Table 2. In all
interval is the slowest. In this scenario the object leaveases we used the full SEVA system with a location bea-
the viewable area &t75¢m/sec, reaches the end of the

wire, and suddenly stops. This rapid deceleration causes

12
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Figure 11: Mean frames in error for a mobile object and static camera.

Straight Line | Rotation z Line Straight Line | Rotation | z - Line
Slow | 50cm/sec | 25°/sec | 50cm/sec Slow 0.8 1.78 1.2
Fast | 80cm/sec | 60°/sec | 80cm/sec Fast 0.7 1.67 1.3

Table 2: Characteristics of different speeds. Table 3: Mean frames in error for a mobile camera.

5.3 Scalability
con interval250ms. Again we only report the number of

frames that are in error. The results are shown in Table/ss discussed in Section 3.2, the camera uses periodic
broadcast messages to query for nearby objects. If there

% x x x X X X X are a large number of objects within radio range, the ra-
dio's MAC layer may not scale to handle a large number

(@ Siraight Line W of simultaneous responses. To test the scalability of our
current prototype we video recorded a large number of

% X % (c) z-Line
X - objects programmed with static locations.
X m X Object
‘ - Camera Moving To create a larger number of objects we used low-bit
(b) Rotation Direction

rate wireless sensor nodes called Motes [18], specifically
Mica2 and Mica2dots. These nodes are representative of
future object tags due to their small size, low computa-
tional power and low energy consumption. The Mica2 ra-
dio only supports a raw transmission ratel6f2 Kbps,

The results show that for the straight line the average nu@ind the effective throughput i$2.364 Kbps or 42.93

ber of error frames, which is less thar, is comparable packets/sec. Coincidentally, the packet rate is similar to
to when the object is moving and the camera is statidhe rate at which RFID tags (another possible object tag)
ary. When the camera moves in a circle the average €1 be queried.

ror frames is less than 2. We have traced these errdle scalability of the system is determined by the fre-
to variances in the digital compass’s readings when theency at which the camera sends queries relative to the
heading changes and the latency of digital compass (umtonmber of objects and the rate of messages the radio can
100ms). When the camera moves in a z-line the averagandle. The maximum packet rate is fixed so we con-
error frames is arountl2. Although we don’t change thestructed an experiment with a variable number of objects
lens’ heading, SEVA'’s interpolation fails when the cameend query frequencies. We measure the response rate,
makes a sharp turn, slightly increasing the average nuwhich is the ratio of responses the camera got (we only
ber of error frames. considered responses that were at most one beacon be-

Figure 12: Path of a mobile camera.

13



hind) compared to the number of objects. The results aesults show that our system incurs small overhead and
shown in Figure 13. will run online on relatively inexpensive hardware.

Response Rate in Scalability Test
100%

6 Related Work

80%

. SEVA draws from several related research areas, which
| we survey here. Due to the overwhelming amount of re-
a0 | i lated work in image retrieval, annotation, sensor systems,
and locationing systems, we only highlight the most rele-
2 beeonses —r | vant work.
el Content-based media retrieval Searching and retriev-
Number of Motes ing media is greatly enhanced by textual annotations. The
annotations are either manually entered [11] or automati-
cally generated by a combination of learning- and vision-
based object/face recognition techniques [7, 8, 19, 22, 26,
35]. Manual annotation of each frame or image is cumber-
, some and faces the difficulty of imprecise human mem-
response r{;\te for up tbobjects under all beacon frequen(')ry, and thus it is not suitable for large collections of me-
cies. It achieves more than’ response rate for up @ iz archives. Automatic annotation by the learning and
responders under all beacon frequenme_s. However the\fion-pased techniques is error prone and has high com-
sponse rate fod beacons/sec drops quickly and almo tational requirements.
I|nearly with more thanl0 resp(_)nders, and it i82.3% Sensor Annotation of Multimedia: Several systems an-
with 15 responders and3.4% with 25 responders. The i 10 images, videos, and audio with sensor data such as
response rates fqbeacon/sec and beacons/§ec are al'GPS readings, light readings, temperature readings [1, 3,
most the same with up 120 responder_s, while the M6, 12, 25, 33, 34], and use these sensor data to help media
sponse rate o2 beacons/sec drops quicker than the Ifsyieval Many of these systems automatically tag images
sponse r.ate.oI beacons/sec after thfit' with time and GPS coordinates of where the image was
A combination of these results with those of the dyawen and then infer other information about the image
namic object experiments indicate that the current profQier. Al of these systems only record two parameters of
type should scale well to 10 fast moving objects. If thgqeq capture-whenandwhere unlike SEVA which also
environment includes a mix of fast moving objects andqrggvhatobjects are in each video frame, thereby pro-
slow moving objects, further scalability can be achmv%ing a richer set of annotations.

if slow moving objects respond less frequently to beacor§.,qor SystemsA great deal of recent work has focused

on developing new sensor technologies. Several hard-
5.4 Computational Requirements ware platforms have been developed recently, such as the

Mica Motes [18], Telos [28], and the XYZ [23]. These
We measured the computational requirements of SEVAsdes consume anywhere from 10-70mW of power in ac-
stages. The correlation and the extrapolation modules itive mode, and are designed for portability, extensibility,
pose a small computational overhead on the laptop (les&l research prototyping. RFID, both active and pas-
than100us for each object); the filtering module imposesive, has significant potential to provide low-cost, short-
a200us overhead for each object. Unlike GPS systentsinge, identification for many consumer goods and can
the Cricket sensor gives the distances to beacons instealp identify objects in SEVA [10].
of 3D coordinates, thus the laptop must solve a set of linecationing Systems A critical component in SEVA is
ear equations to compute the the 3D coordinates. Tthie locationing system. Its accuracy, deployability, and
computation costs arounidOus for each object. Thesecost are crucial factors in SEVAs success. The current

60% - o

Response Rate

20%

0%

Figure 13: Response rate of Motes.

The results show that the prototype can can achiévé;
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prototype uses GPS [2], and the Cricket ultrasound sy$6] D. P. W. Ellis and K. Lee. Minimal-impact audio-
tem [30], but there are many other locationing systems
available. Hightower and Borriello provide an excellent
overview of current systems [16]. Additional work has

also been done lately on the SpotON system [17] and
LANDMARC [27], as locationing systems for RFID tags,

providing another locationing system for future SEVAI7] J. Fan, Y. Gao, and H. Luo. Multi-level annotation
systems.

v

Conclusions

This paper presents the design and implementation of
an automatic, sensor-enhanced video annotation and 18]
trieval system named SEVA. It operates by querying
nearby objects for their identities and locations, extrap-
olating and filtering those results, and recording this in-
formation with the video stream. Through a large set of
experiments we have shown SEVA's overall effectiveness

in tracking static and moving objects using a moving cam
era and two different locationing systems.
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