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ABSTRACT

RESOURCE ALLOCATION FOR SELF-MANAGING SERVERS

FEBRUARY 2005

ABHISHEK CHANDRA

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY, KANPUR, INDIA

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Prashant J. Shenoy

The proliferation of diverse Internet applications has resulted in the advent of Internet data cen-
ters: shared server platforms that rent server resources to multiple client applications. The effective
allocation of server resources in these platforms is a challenging task due to wide variations com-
monly observed in Internet workloads. Traditional approaches to resource allocation in Internet
data centers, such as resource over-provisioning and manual allocation, are known to be inefficient
and error-prone. The limitations of these approaches can be overcome by employing self-managing
servers: servers that automate resource allocation and adapt to changing application workloads.
This dissertation examines the challenges involved in the design of self-managing servers.

In order to enforce application resource requirements in the server resources, a self-managing
server needs to employ operating system mechanisms such as proportional-share schedulers. In
this dissertation, we show that existing proportional-share schedulers have severe limitations in
multiprocessor environments. We propose surplus fair scheduling and deadline fair scheduling,
two novel scheduling algorithms that overcome these limitations. We demonstrate through a Linux
kernel implementation that these algorithms achieve proportional allocation in real environments.
We also present a hierarchical scheduling algorithm that achieves proportional-share allocation for
multi-threaded applications in multiprocessor environments.

To use proportional-share scheduling mechanisms effectively, a self-managing server needs to
employ dynamic resource allocation techniques. These techniques determine application resource
shares in the presence of changing workloads. In this dissertation, we present a measurement-
based approach for dynamic resource allocation that uses online workload measurements to allo-
cate resources to applications. This approach employs a transient queuing model coupled with a
utility-based optimization technique to allocate resources to multiple applications under resource
constraints. This technique has the advantage that its parameters do not need to be determined a
priori, and it automatically adapts to changing application workload demands. Finally, using Web

vi



workload trace analysis, we explore the impact of resource allocation parameters on the resource
utilization benefits of dynamic resource allocation. Our results indicate that short time-scales cou-
pled with fine-grained resource allocation provide the most efficient resource usage in a data center.
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CHAPTER 1

INTRODUCTION

The growth of the World Wide Web has led to a proliferation of diverse Internet services and
applications, such as online news sites, e-stores, auctioning services, and streaming media appli-
cations. The popularity of these Internet applications has resulted in an ever-increasing demand
for hardware and software resources. At the same time, the management of these applications has
also become more complex. In order to meet their high resource demands and management costs,
many Internet applications today are hosted on Internet data centers [12, 31, 32, 83]: shared server
platforms that host third-party Web applications and services.

Internet data centers employ large shared servers and clusters of servers to host multiple client
applications, and provide computing and storage resources to these client applications. In such
environments, customers pay for server resources such as processor and network bandwidth, and are
provided guarantees on resource availability and performance in return. We refer to these guarantees
as quality-of-service (QoS) guarantees. Examples of QoS guarantees include bounds on average
response time and throughput. To provide these guarantees, a data center must allocate sufficient
resources to each application in order to meet the application’s needs. Moreover, this resource
allocation must ensure efficient utilization of system resources in order to maximize the revenue of
the data center. Resources can be allocated to applications by reserving a certain share of server
resources such as CPU and network bandwidth for each application. These resource shares are
dependent on the expected workloads and QoS requirements of the applications.

Traditional approaches for resource allocation in data center environments have relied on man-
ual resource allocation. As part of manual resource allocation, system administrators allocate re-
sources to various client applications based on estimates of their resource requirements. Manual re-
source allocation has several drawbacks. First, manual resource allocation is done either statically at
the time of application startup, or tuned occasionally over long time intervals of the order of several
hours or days. However, since typical Internet workloads vary widely with time [2, 9, 26, 43, 57],
such coarse-grained reallocation leads to poor resource multiplexing among applications. Moreover,
due to the difficulty in estimating the resource requirements of applications in advance, system ad-
ministrators typically resort to over-provisioning of resources, where each application is allocated
resources based on its worst-case expected requirement. Such resource over-provisioning leads to
high resource wastage: data analysis studies based on real Web workloads have shown that existing
resource allocation mechanisms in data centers grossly under-utilize the resources [7]. Further, in
spite of over-provisioning, such systems are inherently brittle. They cannot react to unexpected
changes in workload characteristics, such as flash crowd scenarios [2, 43], leading to substantial
performance degradation. Finally, such resource management is complex and requires high exper-
tise, and contributes to the high management and administration costs that account for the bulk of
the operational cost of complex systems [60].
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To overcome these limitations of traditional resource allocation approaches, an alternative ap-
proach is to use self-managing servers [61] in a data center to achieve automated resource allocation.
We define a self-managing server1 to be one that

• automates the task of resource allocation,

• adapts to changes in application requirements, and

• satisfies application QoS guarantees.

Such self-managing servers are desirable in order to improve system resource utilization, to in-
crease system robustness by dynamically adjusting to changing application demands, and to reduce
operational costs.

The goal of this dissertation is to examine the challenges involved in the design of self-managing
servers that can be deployed in Internet data center environments. The rest of this chapter is orga-
nized as follows. In Section 1.1, we present the challenges that arise in designing a self-managing
server. Section 1.2 summarizes the research contributions of this dissertation, and Section 1.3
presents an outline of the dissertation.

1.1 Challenges in Designing a Self-Managing Server

As defined in the previous section, a self-managing server automatically allocates resources
such as CPU and network bandwidth among applications based on their requirements. The com-
mon hardware configurations of data centers and typical Internet application characteristics raise
important challenges in designing a self-managing server. We now examine some of these chal-
lenges.

• Operating System Support for Differentiated Resource Partitioning: The first requirement for
a self-managing server is the ability to enforce the desired resource allocation of different
applications in the underlying resources. This ability requires operating system support for
partitioning the resources in desired shares among applications. Such resource partitioning
can be achieved by employing resource schedulers and resource management mechanisms
that can provide differentiated service to different applications. Several commercial and re-
search operating systems [14, 21, 44, 74] employ such resource management mechanisms.
These operating systems employ resource schedulers to achieve application-specified parti-
tioning of resources for CPU service [30, 36, 41, 53, 56, 59, 73, 79], disk bandwidth [22, 64],
and network bandwidth [18, 28, 38, 65, 72].

Many of these schedulers are based on the notion of proportional-share scheduling [80], a
scheduling paradigm where each application is assigned an externally determined weight,
and receives a resource share in proportion to its weight. Most existing proportional-share
schedulers have been designed for single resources such as uniprocessors. However, many
servers being deployed today come equipped with multi-resource sets such as multiproces-
sors. While dual-processor servers are becoming faster and cheaper [40, 82], 4- and 8-way
processor servers are also being commonly used to host client applications [66]. To achieve
resource partitioning based on application requirements in such multiprocessor servers, it is
important to develop proportional-share schedulers suitable for multiprocessor environments.

1A recent research initiative called autonomic computing [42] envisages a self-adaptive and self-healing system. Our
definition of self-managing systems is focused on the issue of adaptive resource allocation for meeting application QoS
goals, and issues such as reliability and administration are beyond the scope of this dissertation.
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• Dynamic Resource Allocation: Deployment of resource management mechanisms such as
proportional-share schedulers in the operating system enables a self-managing server to en-
force application requirements in the underlying resources. With these mechanisms in place,
the next step is to design techniques for controlling and parameterizing these mechanisms.
In particular, we need techniques to specify application resource shares that the underlying
proportional-share resource schedulers can enforce.

The resource share allocated to an application depends on its workload and QoS require-
ments. However, Internet workloads are highly variable [9, 26, 57] and result in dynamically-
changing resource requirements for Internet applications. In order to handle this variability,
we need resource allocation techniques that are adaptive to changing application require-
ments. For automated resource allocation, these techniques should be able to infer appli-
cation resource requirements from their QoS goals and observed workload characteristics.
Further, these techniques must take into account the resource constraints of the system while
multiplexing the resources among multiple applications.

Next, we present the research contributions of this dissertation that address some of these chal-
lenges.

1.2 Summary of Research Contributions

Having examined the challenges that arise in designing a self-managing server, we now summa-
rize the main contributions of this dissertation. We classify these contributions into two categories
based on the challenges they address.

1.2.1 Design of Proportional-Share Multiprocessor Scheduling Algorithms

An important challenge in building a self-managing server is to design proportional-share sched-
ulers suitable for multiprocessor environments. As part of this effort, this dissertation makes the
following contributions:

• Weight Readjustment: We show that existing proportional-share uniprocessor algorithms can
result in starvation or unbounded unfairness when employed in multiprocessor environments.
This problem occurs because while any fraction of the CPU bandwidth can be allocated to
threads in a uniprocessor environment, only specific weight assignments are achievable in a
multiprocessor environment. To overcome this problem, we present a novel weight readjust-
ment algorithm that modifies infeasible weights and vastly reduces the unfairness of existing
algorithms in multiprocessor environments.

• Surplus Fair Scheduling: We show that even using our weight readjustment algorithm, many
existing algorithms show unfairness in their allocations, especially in the presence of frequent
arrival and departure of threads. To overcome this problem, we develop the surplus fair
scheduling algorithm for proportional-share allocation of CPU bandwidth in multiprocessor
environments. We have implemented the surplus fair scheduling algorithm in the Linux kernel
and have experimentally demonstrated its proportional allocation properties compared to an
existing uniprocessor scheduler using real applications and benchmarks.

• Deadline Fair Scheduling: Proportionate-fairness (P-fairness) [17] is a notion of proportional-
share allocation that provides absolute resource share guarantees. It imposes tight upper and
lower bounds on the amount of a resource allocated to an application. While several existing
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algorithms achieve P-fairness in an ideal multiprocessor system, many of these algorithms
are offline and are difficult to extend to real systems. We propose deadline fair scheduling,
an online multiprocessor scheduling algorithm that is provably P-fair in an ideal system, and
works in real systems to achieve proportional-share allocation. We have proved the P-fairness
properties of deadline fair scheduling under idealized system assumptions, and have experi-
mentally demonstrated the efficacy of this algorithm using a Linux implementation.

• Hierarchical Multiprocessor Scheduling: While an operating system scheduler deals with
individual threads, most server applications are multi-threaded and need additional schedul-
ing mechanisms for resource allocation. CPU bandwidth can be partitioned in a differenti-
ated manner among such applications by proportional-share scheduling within a hierarchical
scheduling framework—a scheduling framework that groups together threads and similar ap-
plications into application classes [36]. We propose generalized weight readjustment and
generalized surplus fair scheduling algorithms that achieve hierarchical proportional-share
allocation in a multiprocessor environment. We prove the properties of these algorithms and
demonstrate their efficacy using a simulation study.

1.2.2 Dynamic Resource Allocation

In addition to the deployment of resource management mechanisms such as proportional-share
CPU schedulers, a self-managing server also requires dynamic resource allocation techniques to
allocate resources to multiple applications.

• Measurement-based Dynamic Resource Allocation: We present a measurement-based dy-
namic resource allocation approach that uses online measurements of application workload
requirements to infer and allocate resources to an application. This approach employs a queu-
ing model that captures the transient state of a resource queue, unlike existing steady-state
queuing-theoretic approaches. This transient queuing model has the advantage that its pa-
rameters do not need to be determined a priori, and it also adapts to changing application
workload demands. This model allows the derivation of a relation between an application’s
QoS goal and its resource requirement. This relation can be coupled with a utility-based op-
timization technique to determine resource shares for multiple applications under resource
constraints. Using a Web workload-driven simulation study, we evaluate the performance
of this dynamic resource allocation approach under different system conditions, and show
that while our dynamic resource allocation approach provides limited benefits over static al-
location in the presence of a work-conserving scheduler, it provides substantial gains in the
presence of a non-work-conserving scheduler.

• Analysis of Resource Allocation Parameters: A dynamic resource allocation scheme employs
several parameters for its implementation that have an impact on its resource utilization. We
use real Web workload traces to explore the impact of some of these parameters such as
the allocation time-scale and the resource allocation granularity on the resource multiplexing
benefits of dynamic resource allocation. Our results indicate that short time-scales coupled
with fine resource allocation granularity provide the most efficient resource usage even in the
presence of inaccurate workload prediction and over-provisioning. We use the results of this
study to characterize the resource utilization of some common data center architectures that
we identify as point solutions in our allocation parameter space.
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1.3 Dissertation Outline

We now present a brief outline of the dissertation. In Chapter 2, we describe the problem of
proportional-share scheduling on symmetric multiprocessor systems, and present the weight read-
justment and surplus fair scheduling algorithms. In Chapter 3, we propose deadline fair schedul-
ing, a practical P-fair scheduling algorithm for multiprocessor environments. Chapter 4 presents a
hierarchical scheduling algorithm that achieves proportional-share allocation in multiprocessor en-
vironments. In Chapter 5, we present a measurement-based dynamic resource allocation scheme
that employs online measurements of workload characteristics for resource allocation. We study
the effect of allocation parameters on the effectiveness of dynamic resource allocation in Chapter 6.
We conclude with a brief summary of our research contributions and future research directions in
Chapter 7.
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CHAPTER 2

SURPLUS FAIR SCHEDULING: A PROPORTIONAL-SHARE
MULTIPROCESSOR SCHEDULING ALGORITHM

As described in Chapter 1, application QoS guarantees may be achieved by suitable partitioning
of the underlying server resources. In a multiprocessor system, CPU bandwidth is an important
resource that needs to be partitioned in order to achieve application QoS guarantees. In order to
provide these guarantees, the CPU scheduler must meet certain goals. First, the scheduler must be
able to partition the CPU bandwidth according to application-specified requirements. Second, it
must achieve performance isolation among applications, preventing an application’s performance
from deteriorating due to other misbehaving or overloaded applications.

Proportional-share scheduling is a scheduling paradigm that allows a CPU scheduler to meet
these goals [80]. In a proportional-share scheduling framework, each schedulable entity1 in the
system is assigned a weight, and it receives CPU bandwidth in proportion to its weight. For ter-
minological consistency, we refer to a schedulable entity as a thread2. In this chapter, we examine
the problem of proportional-share CPU scheduling for symmetric multiprocessors (SMPs). We be-
gin by reviewing existing proportional-share scheduling algorithms and identify their limitations in
multiprocessor environments.

2.1 Proportional-Share Scheduling: Background

The goal of proportional-share CPU scheduling is to allocate bandwidth to each thread in pro-
portion to its weight (which corresponds to its externally determined bandwidth requirement). For-
mally, proportional-share scheduling is defined as follows. Consider a system with n runnable
threads with externally assigned weights w1, w2, w3, . . . , wn. Let Ai(t1, t2) denote the CPU service
received by thread i in a time interval [t1, t2). Then, the notion of proportional-share scheduling re-
quires that the amount of CPU service received by two threads i and j over any time interval [t1, t2)
in which both threads are continuously runnable, satisfies the relation [38]

Ai(t1, t2)

Aj(t1, t2)
=

wi

wj
. (2.1)

We can quantify the accuracy of a proportional-share scheduling algorithm using its fairness
measure defined as follows:

Definition 1 The fairness measure H(i, j) of a proportional-share scheduling algorithm for two
continuously runnable threads i and j is defined as [34]

H(i, j) = max
[t1,t2)

∣

∣

∣

∣

Ai(t1, t2)

wi
−

Aj(t1, t2)

wj

∣

∣

∣

∣

1A schedulable entity is an entity that can be scheduled by the operating system CPU scheduler. A schedulable entity
could be a thread, a process, or a scheduler activation [6], depending on the abstractions provided by the operating system.

2Since each application could consist of multiple threads, in Chapter 4, we examine the problem of partitioning the
CPU bandwidth among multi-threaded applications.
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Then, the fairness measure H of a proportional-share scheduling algorithm is given by [65]

H = max
{i,j}

H(i, j).

The fairness measure of a proportional-share scheduling algorithm quantifies the deviation of the al-
gorithm’s bandwidth partitioning from the externally specified bandwidth requirements. The higher
this deviation, the weaker the guarantees that could be given by the algorithm for meeting an appli-
cation’s QoS requirements.

We can rewrite Equation 2.1 as

Ai(t1, t2)

wi
−

Aj(t1, t2)

wj
= 0. (2.2)

Equation 2.2 specifies that the fairness measure of an ideal proportional-share algorithm is 0.

2.1.1 Generalized Processor Sharing

Generalized Processor Sharing (GPS) [58] is an idealized proportional-share algorithm that
assigns a weight to each thread and allocates bandwidth fairly to threads in proportion to their
weights. GPS assumes that threads can be scheduled using infinitesimally small quanta to achieve
weighted fairness. The GPS algorithm has the following property: for any interval [t1, t2), the
amount of CPU service received by a thread i satisfies

Ai(t1, t2)

Aj(t1, t2)
≥

wi

wj
(2.3)

for any thread j, provided that thread i is continuously runnable in the entire interval. The inequality
is due to the fact that GPS is a work-conserving3 algorithm that assigns the unused bandwidth of
non-runnable threads to runnable threads. Further, in Relation 2.3, equality holds iff thread j is also
continuously runnable over the entire time interval [t1, t2), implying that GPS achieves a fairness
measure H = 0.

Intuitively, GPS is similar to a weighted round-robin algorithm in which threads are scheduled
in round-robin order; each thread is assigned infinitesimally small CPU quanta and the number of
quanta assigned to a thread is proportional to its weight.

2.1.2 Practical Proportional-Share Algorithms

While GPS theoretically achieves perfect proportional-share allocation, it assumes an idealized
system model consisting of infinitesimally small CPU quanta and no scheduling overhead. In prac-
tice, however, threads must be scheduled using finite duration quanta so as to amortize context
switch overheads. Consequently, several other CPU scheduling algorithms have been proposed that
employ finite duration quanta and are practical approximations of GPS.

Several scheduling algorithms have been developed for proportional allocation of processor
bandwidth [13, 30, 41, 44, 53, 56, 59, 73, 79]. Many of these CPU scheduling algorithms as well
as their counterparts in the network packet scheduling domain [18, 28, 65, 72] associate a weight
with each application and allocate resource bandwidth in proportion to this weight. Many of these
algorithms are based on the concept of GPS. Examples of GPS-based algorithms include weighted

3A scheduling algorithm is said to be work-conserving if it never lets a processor idle as long as there are runnable
threads in the system.
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fair queuing (WFQ) [28], self-clocked fair queuing (SCFQ) [34], stride scheduling [79], start-time
fair queuing (SFQ) [36], SMART [56], and borrowed virtual time (BVT) [30].

It has been shown that in a quantum-based scheduling system, the lower bound for the fairness
measure is given by [34]

H(i, j) ≥
1

2

(

qmax
i

wi
+

qmax
j

wj

)

,

where, qmax
i is the maximum quantum length for thread i. Many of the practical proportional-

share algorithms have been shown to have bounded values of the fairness measure in uniprocessor
environments. For example, SFQ and SCFQ have been shown to have a fairness measure H(i, j) =
(

qmax
i

wi
+

qmax
j

wj

)

, while deficit round robin (DRR) [65] has been shown to have a fairness measure

H(i, j) =
(

1 +
qmax
i

wi
+

qmax
j

wj

)

. However, when we employ such algorithms in multiprocessor

environments, these algorithms suffer from unbounded unfairness as we describe next.

2.2 Limitations of Existing Proportional-Share Algorithms in Multiprocessor Envi-
ronments

While GPS-based algorithms can provide strong fairness guarantees in uniprocessor environ-
ments, they can result in unbounded unfairness and starvation when employed in multiprocessor
environments as illustrated by the following example:

Example 1 Consider a server that employs the start-time fair queuing (SFQ) algorithm [36] to
schedule threads. SFQ is a GPS-based fair scheduling algorithm that assigns a weight wi to each
thread and allocates bandwidth in proportion to these weights. To do so, SFQ maintains a counter
Si for each application that is incremented by q

wi
every time the thread is scheduled (q is the quan-

tum duration). At each scheduling instance, SFQ schedules the thread with the minimum Si on a
processor. Assume that the server has two processors and runs two compute-bound threads that are
assigned weights w1 = 1 and w2 = 10, respectively. Let the quantum duration be q = 1ms. Since
both threads are compute-bound and SFQ is work-conserving, each thread gets to run continuously
on a processor. After 1000 quanta, we have S1 = 1000

1 = 1000 and S2 = 1000
10 = 100. Assume

that a third CPU-bound thread arrives at this instant with a weight w3 = 1. The counter for this
thread is initialized to S3 = 100 (newly arriving threads are assigned the minimum value of Si over
all runnable threads). From this point on, threads 2 and 3 get continuously scheduled until S2 and
S3 “catch up” with S1. Thus, although thread 1 has the same weight as thread 3 after time 1000,
it starves for 900 quanta leading to unfairness in the scheduling algorithm. Figure 2.1 depicts this
scenario.

The example demonstrates that SFQ achieves unfair allocation, with thread 3 receiving 900
quanta more than thread 2 over the time interval [1000,1900), even though both have equal weights
and both are continuously runnable over this time interval. Moreover, the amount of unfairness
cannot be bounded, as it depends on the arrival time of thread 3 in the example scenario. This
unbounded unfairness occurs only in multiprocessor environments, as SFQ has a provable fairness
bound in uniprocessor environments.

Many other GPS-based algorithms, such as stride scheduling [79], weighted fair queuing (WFQ) [59]
and borrowed virtual time (BVT) [30], also suffer from this drawback when employed on multipro-
cessors4. The primary reason for this inadequacy is that while any arbitrary weight assignment

4Like SFQ, stride scheduling and WFQ are instantiations of GPS, while BVT is a derivative of SFQ with an additional
latency parameter; BVT reduces to SFQ when the latency parameter is set to zero.
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Figure 2.1. The Infeasible Weights Problem: an infeasible weight assignment can lead to unfairness
in allocated shares in multiprocessor environments.

is feasible for uniprocessors, only certain weight assignments are feasible for multiprocessors. In
particular, those weight assignments for which the bandwidth assigned to a single thread exceeds
the capacity of a processor are infeasible. This is because an individual thread cannot consume
more CPU bandwidth than that of a single processor. In the above example, the second thread was
assigned 10

11

th
of the total bandwidth on a dual-processor server, whereas it can consume no more

than half the total bandwidth. Since GPS-based work-conserving algorithms do not distinguish be-
tween feasible and infeasible weight assignments, unfairness can result when a weight assignment
is infeasible5. In fact, even when the initial weights are carefully chosen to be feasible, blocking
events can cause the weights of the remaining threads to become infeasible. For instance, a feasible
weight assignment of 1:1:2 on a dual-processor server becomes infeasible when one of the threads
with weight 1 blocks.

Even when all weights are feasible, an orthogonal problem occurs when frequent arrivals and
departures prevent a GPS-based scheduler such as SFQ from achieving proportional allocation.
Consider the following example:

Example 2 Consider a dual-processor server that runs a thread with weight 10,000 and 10,000
threads with weight 1. Assume that short-lived threads with weight 100 arrive every 100 quanta
and run for 100 quanta each. Note that the weight assignment is always feasible. If SFQ is used to
schedule these threads, then it will assign the current minimum value of Si in the system to each
newly arriving thread. Hence, each short-lived thread is initialized with the lowest value of Si and
gets to run continuously on a processor until it departs. The thread with weight 10,000 runs on
the other processor; all threads with weight 1 run infrequently. Thus, each short-lived thread with
weight 100 gets as much processor bandwidth as the thread with weight 10,000 (instead of 1

100

th
of

the bandwidth). It can be shown that this problem does not occur in uniprocessor environments.

The inability to distinguish between feasible and infeasible weight assignments as well as to
achieve proportional allocation in the presence of frequent arrivals and departures is a fundamental
limitation of existing proportional-share schedulers such as SFQ.

5This is true only for work-conserving schedulers. Non-work-conserving schedulers, that let a processor idle even in
the presence of runnable threads, can achieve any weight assignment. For instance, a weight assignment of 1 : 10 can
be achieved by simply scheduling the first thread once every ten quanta and keeping one processor idle for the remaining
nine quanta, where the second thread runs continuously on the other processor.
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Another approach for achieving proportional-share scheduling is to employ a randomized algo-
rithm such as lottery scheduling [81]. Lottery scheduling is a randomized algorithm that provides
probabilistic proportional-share guarantees based on the Law of Large Numbers. While lottery
scheduling does not suffer from starvation problems due to infeasible weights, it is unable to achieve
even probabilistic proportional-share allocation in multiprocessor environments, as illustrated by the
following example:

Example 3 Consider a dual-processor server running three threads having weights of 1, 1, and 2
respectively. Assume that these threads are scheduled using the lottery scheduling algorithm [81]
that works as follows. It assigns a set of tickets to each thread, where the number of tickets assigned
to a thread is proportional to its weight. Then, at each scheduling instant, the algorithm draws a
lottery and schedules the thread with the winning ticket. The lottery scheduling algorithm has been
shown to ensure that, in a uniprocessor system, the expected amount of CPU service received by
each thread in the system is proportional to its weight6. Using lottery scheduling in our exam-
ple scenario, however, results in an expected processor allocation of 7

24 , 7
24 , and 5

12 for the three
threads respectively. Thus, using lottery scheduling in a multiprocessor environment leads to unfair
probabilistic allocation, even in the presence of feasible weight assignments.

Several approaches can be employed to address the problem of starvation and unfair allocation.
One approach is to employ a GPS-based scheduler for each processor and partition the set of threads
among processors such that each processor is load balanced [10, 35, 77]. Such an approach has two
advantages: (i) it can provide strong fairness guarantees on a per-processor basis, and (ii) binding a
thread to a processor allows the scheduler to exploit processor affinity. A limitation of this approach
is that periodic repartitioning of threads may be necessary since blocked/terminated threads can
cause imbalances across processors; such repartitioning can be expensive. Moreover, this approach
does not address the problem of infeasible weight assignments. A second approach to avoid the
starvation problem is to reset the accounting counters (such as the start tag in the case of SFQ)
on the arrival or departure of a thread. This approach would prevent any thread from accruing
credit or being penalized because of its infeasible weight at the time of arrival or departure of
a thread. However, since most GPS-based algorithms rely on accurate accounting of the service
received by threads for their scheduling decisions, this approach can result in unfair allocation
among continuously running threads, as illustrated by the following example:

Example 4 Consider a dual-processor server employing a modified form of the SFQ scheduler that
resets the start tags of all threads in the system to a value of 0 on the arrival of a new thread. Consider
two continuously runnable threads A and B with weights 1 and 10 respectively, and assume short-
living threads with weight 5 arrive into the system every 5 quanta. If the scheduler always breaks
ties in favor of thread A, then thread A gets to run on a CPU every 5 quanta, whenever a new
thread arrives into the system, while thread B runs on the other CPU. Thus, A and B receive CPU
bandwidth in the ratio of 1:5 instead of their actual weights of 1:10.

This example illustrates that it is important to remember the service history of threads to achieve
proportional allocation in a quantized system, where relative shares can be achieved only over finite
periods of time. This problem could be particularly severe in the presence of large quantum sizes or
frequent arrivals and departures of threads.

In summary, GPS-based scheduling algorithms or simple modifications thereof are unsuitable
for proportional allocation of resources in multiprocessor environments. To overcome this limita-

6This probabilistic guarantee assumes that each thread runs in the system for a sufficiently long time.
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tion, we propose a CPU scheduling algorithm for multiprocessors that explicitly distinguishes be-
tween feasible and infeasible weight assignments, and achieves proportional allocation of processor
bandwidth to applications.

2.3 Proportional-Share CPU Scheduling for Multiprocessor Environments

Consider a multiprocessor server with p processors that runs n threads. Let us assume that a
user can assign any arbitrary weight to a thread. In such a scenario, a thread with weight wi should
be allocated wi

∑n
j=1 wj

fraction of the total processor bandwidth. Since weights can be arbitrary,

it is possible that a thread may request more bandwidth than it can consume (this occurs when
the requested fraction wi

∑n
j=1 wj

> 1
p
). The CPU scheduler must somehow reconcile the presence

of such infeasible weights. To do so, we present a weight readjustment algorithm that efficiently
converts a set of infeasible weights to the “closest” feasible weight assignment. By running this
algorithm every time the weight assignment becomes infeasible, the CPU scheduler ensures that
all scheduling decisions are based on a set of feasible weights. Given such a weight readjustment
algorithm, we then present generalized multiprocessor sharing (GMS), an idealized algorithm for
fair, proportional bandwidth allocation that is an analogue of GPS in the multiprocessor domain.
We use the insights provided by GMS to design the surplus fair scheduling (SFS) algorithm. SFS is
a practical instantiation of GMS with lower implementation overhead.

We first present our weight readjustment algorithm in Section 2.3.1. We present generalized
multiprocessor sharing in Section 2.3.2 and then present the surplus fair scheduling algorithm in
Section 2.4.

2.3.1 Weight Readjustment

As illustrated in Section 2.1, weight assignments in which a thread requests a bandwidth share
that exceeds the capacity of a processor are infeasible. Moreover, a feasible weight assignment may
become infeasible or vice versa whenever a thread blocks or becomes runnable. To address these
problems, we have developed a weight readjustment algorithm that is invoked every time a thread
blocks or becomes runnable. The algorithm examines the set of runnable threads to determine if the
weight assignment is feasible. A weight assigned to a thread is feasible if

wi
∑n

j=1 wj
≤

1

p
(2.4)

We refer to Relation 2.4 as the weight feasibility constraint. If a thread violates the weight feasibility
constraint (i.e., requests a fraction that exceeds 1

p
), then it is assigned a new weight so that its

requested share reduces to 1
p

(which is the maximum share an individual thread can consume).
Doing so for each thread with infeasible weight ensures that the new weight assignment is feasible.

Conceptually, the weight readjustment algorithm proceeds by examining each thread in descend-
ing order of weights. At each step, the algorithm checks if a thread violates the weight feasibility
constraint. Each thread that does so is assigned the bandwidth of an entire processor, which is the
maximum bandwidth a thread can consume. The problem then reduces to checking the feasibil-
ity of scheduling the remaining threads on the remaining processors. In practice, the readjustment
algorithm is implemented using recursion: the algorithm recursively examines each thread to see
if it violates the constraint; the recursion terminates when the algorithm encounters a thread that
satisfies the constraint. The algorithm then assigns a new weight to each thread that violates the
constraint such that its requested fraction equals 1

p
. This is achieved by computing the average
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readjust(array w[1..n], int i, int p)
begin

if( w[i]
∑

n
j=i

w[j] > 1
p

)

begin
readjust(w[1..n],i + 1,p − 1)
sum =

∑n

j=i+1 w[j]

w[i] = sum
p−1

end
end.

Figure 2.2. The weight readjustment algorithm: The algorithm is invoked with an array of weights
sorted in decreasing order. Initially, i = 1; p denotes the number of processors, and n denotes the
number of runnable threads. If a thread violates the weight feasibility constraint, then the algorithm
is recursively invoked for the remaining threads and the remaining processors. Each infeasible
weight is then adjusted by setting its requested processor share to 1

p
.

weight of all feasible threads over the remaining processors and assigning it to the current thread

(i.e., wi =
∑n

j=i+1 wj

p−i
). Figure 2.2 illustrates the complete weight readjustment algorithm.

Our weight readjustment algorithm has the following properties7:

• The new weights assigned by the algorithm are the “closest” weights to the original assign-
ment. This is because threads with infeasible weights are assigned the nearest feasible weight,
and the remaining threads retain their original weights (and hence, they continue to receive
bandwidth in their requested proportions).

• The algorithm has an efficient implementation. To see why, observe that in a p-processor sys-
tem, no more than (p−1) threads can have infeasible weights (since the sum of the requested
fractions is 1, no more than (p − 1) threads can request a fraction that exceeds 1

p
). Thus, the

number of threads with infeasible weights depends solely on the number of processors and
is independent of the total number of threads in the system. By maintaining a list of threads
sorted in descending order of their weights, the algorithm needs to examine no more than
the first (p − 1) threads with the largest weights. In fact, the algorithm can stop scanning
the sorted list at the first point where the weight feasibility constraint is satisfied (subsequent
threads have even smaller weights and hence, request smaller and feasible fractions). Since
the number of processors is typically much smaller than the number of threads (p << n), the
overhead imposed by the readjustment algorithm is small.

• Our weight readjustment algorithm can be employed with most existing GPS-based schedul-
ing algorithms to deal with the problem of infeasible weights. We experimentally demonstrate
in Section 2.6.2 that doing so enables these schedulers to significantly reduce (but not elimi-
nate) the unfairness in their allocations for multiprocessor environments.

Given our weight readjustment algorithm, we now present an idealized algorithm for proportional-
share scheduling in multiprocessor environments.

7We present more general forms of these properties in Chapter 4, which we prove in Appendix B.
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2.3.2 Generalized Multiprocessor Sharing

We extend the notion of generalized processor sharing to a multiprocessor environment as fol-
lows. Consider a server with p processors each with capacity C that runs n threads. Let the threads
be assigned weights w1, w2, w3, . . . , wn, and let φi denote the instantaneous weight of a thread
i as computed by the weight readjustment algorithm. At any instant, depending on whether the
thread satisfies or violates the weight feasibility constraint, φi is either the original weight wi or the
adjusted weight. From the definition of φi, it follows that φi

∑n
j=1 φj

≤ 1
p

at all times (our weight read-

justment algorithm ensures this property). Assume that threads can be scheduled for infinitesimally
small quanta and let Ai(t1, t2) denote the CPU service received by thread i in the interval [t1, t2).
Then the generalized multiprocessor sharing (GMS) algorithm has the following property: for any
interval [t1, t2), the amount of CPU service received by thread i satisfies

Ai(t1, t2)

Aj(t1, t2)
≥

φi

φj
(2.5)

provided that (i) thread i is continuously runnable in the entire interval, and (ii) both φi and φj

remain fixed in that interval. Note that the instantaneous weight φi remains fixed in an interval
if the thread either satisfies the weight feasibility constraint in the entire interval, or continuously
violates the constraint in the entire interval. It is easy to show that Relation 2.5 implies proportional
allocation of processor bandwidth8.

Intuitively, GMS is similar to a weighted round-robin algorithm in which threads are scheduled
in round-robin order (p at a time); each thread is assigned an infinitesimally small CPU quantum
and the number of quanta assigned to a thread is proportional to its weight. In practice, however,
threads must be scheduled using finite duration quanta so as to amortize context switch overheads.
Consequently, in what follows, we present a CPU scheduling algorithm that employs finite duration
quanta and is a practical approximation of GMS.

2.4 Surplus Fair Scheduling

Consider a GMS-based CPU scheduling algorithm that schedules threads in terms of finite du-
ration quanta. To clearly understand how such an algorithm works, we first present the intuition
behind the algorithm and then provide precise details. Let us assume that thread i is assigned a
weight wi and that the weight readjustment algorithm is employed to ensure that weights are fea-
sible at all times, with φi denoting the instantaneous weight of thread i. Let Ai(t1, t2) denote the
amount of CPU service received by thread i in the duration [t1, t2), and let AGMS

i (t1, t2) denote the
amount of service that the thread would have received if it were scheduled using GMS. Then, the
quantity

αi = Ai(t1, t2) − AGMS
i (t1, t2) (2.6)

represents the extra service (i.e., surplus) received by thread i when compared to its service un-
der GMS. To closely emulate GMS, a scheduling algorithm should schedule threads such that the
surplus αi for each thread is as close to zero as possible. Given a p-processor system, a simple
approach for doing so is to actually compute αi for each thread and schedule the p threads with

8This can be observed by summing Relation 2.5 over all runnable threads j, which yields Ai(t1, t2) ·
∑n

j=1 φj ≥

φi ·
∑n

j=1 Aj(t1, t2). Since
∑n

j=1 Aj(t1, t2) is the total processor bandwidth allocated to all threads in the interval, we

can substitute it by the quantity p · C · (t2 − t1). Hence, we get Ai(t1, t2) ≥
φi

∑

n
j=1

φj
· p · C · (t2 − t1). Thus each thread

receives processor bandwidth in proportion to its instantaneous weight φi.
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the least surplus values. If the net surplus is negative, doing so allows a thread to catch up with its
allocation in GMS. Even when the net surplus of a thread is positive, picking threads with the least
positive surplus values enables the algorithm to ensure that the overall deviation from GMS is as
small as possible (picking a thread with a larger αi would cause a larger deviation from GMS).

A scheduling algorithm that actually uses Equation 2.6 to compute surplus values is impractical
since it requires the scheduler to compute AGMS

i (which in turn requires a simulation of GMS).
Consequently, we derive an approximation of Equation 2.6 that enables efficient computation of the
surplus values for each thread. Let S1, S2, . . . , Sn denote the weighted CPU service received by
each thread so far. If thread i runs in a quantum, then Si is incremented as Si = Si + q

φi
, where q

denotes the duration for which the thread ran in that quantum. Since Si is the weighted CPU service
received by thread i, (φi · Si) represents the total service received by thread i so far. Let v denote
the minimum value of Si over all runnable threads. Intuitively, v represents the processor allocation
of the thread that has received the minimum service so far. Then the surplus service received by
thread i is defined to be

αi = φi · (Si − v). (2.7)

Expanding Equation 2.7, we have

αi = φi · Si − φi · v.

Here, the first term (φi · Si) approximates Ai(0, t), which is the service received by thread i so far.
The second term (φi · v) approximates the quantity AGMS

i in Equation 2.6. Thus, αi measures the
surplus service received by thread i when compared to the thread that has received the least service
so far (i.e., v). It follows from this definition of αi that αi ≥ 0 for all runnable threads. Scheduling
a thread with the smallest value of αi ensures that the scheduler approximates GMS and each thread
receives processor bandwidth in proportion to its weight. Since a thread is chosen based on its
surplus value, we refer to the algorithm as surplus fair scheduling (SFS).

Having provided the intuition for our algorithm, the precise SFS algorithm is as follows:

• Each thread in the system is associated with a weight wi, a start tag Si, and a finish tag Fi. Let
φi denote the instantaneous weight of a thread as computed by the readjustment algorithm.
When a new thread arrives, its start tag is initialized as Si = v, where v is the virtual time of
the system (defined below). When a thread runs on a processor, its finish tag at the end of the
quantum is updated as

Fi = Si +
q

φi
(2.8)

where q is the duration for which the thread ran in that quantum and φi is its instantaneous
weight at the end of the quantum. Observe that q can vary depending on whether the thread
utilizes its entire allocated quantum or relinquishes the processor before the quantum ends
due to a blocking event. The start tag of a runnable thread is computed as

Si =

{

max(Fi, v) if the thread just woke up
Fi if the thread is continuously runnable

(2.9)

• Initially, the virtual time of the system is zero. At any instant, the virtual time is defined to be
the minimum of the start tags over all runnable threads. The virtual time remains unchanged
if all processors are idle and is set to the finish tag of the thread that ran last.
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Syscall Description
int setweight(int which, Set the weight of a thread,

int who, int weight) thread group or user
int getweight(int which, Return processor weight of a thread,

int weight) thread group or user

Table 2.1. System calls used for controlling weights of Linux threads.

• At each scheduling instance, SFS computes the surplus values of all runnable threads as
αi = φi · (Si − v) and schedules the thread with the least αi; ties are broken arbitrarily.

Our surplus fair scheduling algorithm has the following salient features. First, like most GPS-based
algorithms, SFS is work-conserving in nature—the algorithm ensures that a processor will not idle
so long as there are runnable threads in the system. Second, since the surplus αi of a thread depends
only on its start tag and not the finish tag, SFS does not require the quantum length to be known
at the time of scheduling (the quantum duration q is required to compute the finish tag only after
the quantum ends). This is a desirable feature since the duration of a quantum can vary if a thread
blocks before it is preempted. Third, SFS ensures that blocked threads do not accumulate credit for
the processor shares they do not utilize while sleeping—this is ensured by setting the start tag of a
newly woken-up thread to at least the virtual time (this prevents a thread from accumulating credit
by sleeping for a long duration and then starving other threads upon waking up). Finally, from the
definition of αi and the virtual time, it follows that at any instant there is always at least one thread
with αi = 0 (this is the thread with the minimum start tag, i.e., Si = v and also has the least
surplus value). Since the thread with the minimum surplus value is also the one with the minimum
start tag, surplus fair scheduling reduces to start-time fair queuing (SFQ) [36] in a uniprocessor
system. Thus, SFS can be viewed as a generalization of SFQ for multiprocessor environments.
We experimentally demonstrate in Section 2.6.3 that SFS addresses the problem of proportional
allocation in the presence of frequent arrivals and departures described in Example 2 of Section 2.1.

2.5 Implementation Considerations

We have implemented surplus fair scheduling in the Linux kernel. In this section, we present
the details of our kernel implementation and explain some of our key design decisions.

2.5.1 SFS Data Structures and Implementation

We have implemented surplus fair scheduling in version 2.2.14 of the Linux kernel. Our im-
plementation replaces the standard time-sharing scheduler in Linux. The modified kernel schedules
all threads/processes using SFS. Each thread in the system is assigned a default weight of 1. The
weight assigned to a thread can be modified (or queried) using two new system calls—setweight
and getweight. The parameters expected by these system calls are similar to the setprior-
ity and getpriority system calls employed by the Linux time-sharing scheduler. SFS allows
the weight assigned to a thread to be modified at any time, just as the Linux time-sharing scheduler
allows the priority of a thread to be changed on-the-fly.

Our implementation of SFS maintains three queues. The first queue consists of all runnable
threads in descending order of their weights. The other two queues consist of all runnable threads

15



in increasing order of start tags and surplus values, respectively. The first queue is employed by
the readjustment algorithm to determine the feasibility of the assigned weights (recall from Sec-
tion 2.3.1 that maintaining a list of threads sorted by their weights enables the weight readjustment
algorithm to be implemented efficiently). The second queue is employed by the scheduler to com-
pute the virtual time; since the queue is sorted on start tags, the virtual time at any instant is simply
the start tag of the thread at the head of the queue. The third queue is used to determine which
thread to schedule next, as maintaining threads sorted by their surplus values enables the scheduler
to make scheduling decisions efficiently.

Given these data structures, the actual scheduling occurs as follows. Whenever a quantum ex-
pires or one of the currently running threads blocks, the Linux kernel invokes the SFS scheduler.
The SFS scheduler first updates the finish tag of the thread relinquishing the processor and then
computes its start tag if the thread is still runnable. The scheduler then computes the new virtual
time. If the virtual time changes from the previous scheduling instance, then the scheduler must up-
date the surplus values of all runnable threads (since αi is a function of v) and re-sort the queue. The
scheduler then picks the thread with the minimum surplus and schedules it for execution. Note that
since a running thread may not utilize its entire allocated quantum due to blocking events, quanta
on different processors are not synchronized; hence, each processor independently invokes the SFS
scheduler when its currently running thread blocks or is preempted. Finally, the readjustment algo-
rithm is invoked every time the set of runnable threads changes (i.e., after each arrival, departure,
blocking event or wakeup event), or if the user changes the weight of a thread.

2.5.2 Implementation Complexity and Optimizations

The implementation complexity of the SFS algorithm is as follows:

• New arrival or a wakeup event: The newly arrived/woken up thread must be inserted at the
appropriate position in the three run queues. Since the queues are in sorted order, using a
linear search for insertions takes O(n), where n is the number of runnable threads. The
readjustment algorithm is invoked after the insertion, which has a complexity of O(p). Hence,
the total complexity is O(n + p).

• Departure or a blocking event: The terminated/blocked thread must be deleted from the run
queue, which is O(1) since our queues are doubly linked lists. The readjustment algorithm is
then invoked for the new run queue, which takes O(p). Hence, the total complexity is O(p).

• Scheduling decisions: The scheduler first updates finish and start tags of the thread relin-
quishing the processor and computes the new virtual time, all of which are constant time
operations. If the virtual time is unchanged, the scheduler only needs to pick the thread with
the minimum surplus (which takes O(1) time). If the virtual time increases from the previous
scheduling instance, then the scheduler must first update the surplus values of all runnable
threads and re-sort the queue. Sorting is an O(n log n) operation, while updating surplus
values takes O(n). Hence, the total complexity is O(n log n). The run time performance, in
the average case, can be improved using the following observation. Since the queue was in
sorted order prior to the updates, in practice, the queue remains mostly in sorted order after
the new surplus values are computed. Hence, we employ insertion sort to re-sort the queue,
since it has good run time performance on mostly-sorted lists. Moreover, updates and sort-
ing are required only when the virtual time changes. The virtual time is defined to be the
minimum start tag in the system, and hence, in a p-processor system, typically only one of
the p currently running threads has this start tag. Consequently, on average, the virtual time
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Figure 2.3. Efficacy of the scheduling heuristic: the figure plots the percentage of the time the
heuristic successfully picks the thread with the least surplus for varying run queue lengths and
varying number of threads examined.

changes only once every p scheduling instances, which amortizes the scheduling overhead
over a larger number of scheduling instances.

• Synchronization issues: Synchronization overheads can become an issue in SMP servers if
the scheduling algorithm imposes a large overhead. Despite its O(n log n) overhead, SFS can
be implemented efficiently for the following reasons. First, we have developed a schedul-
ing heuristic (described next) that reduces the scheduling overhead to a constant. Second,
although the readjustment algorithm needs to lock the run queue while examining the feasi-
bility constraint for runnable threads, as explained earlier, these checks can be done efficiently
in O(p) time (independent of the number of threads in the system). Finally, the granularity of
locks required by SFS is identical to that in the Linux SMP scheduler. In fact, our implemen-
tation reuses that portion of the code, implying that SFS does not block any greater portion of
the kernel code or data structures than is done by the vanilla Linux scheduler.

Since the scheduling overhead of SFS grows with the number of runnable threads, we have de-
veloped a heuristic to limit the scheduling overhead when the number of runnable threads becomes
large. Our heuristic is based on the observation that because αi = φi · (Si − v) (Equation 2.7), the
thread with the minimum surplus typically has either a small weight, a small start tag, or a small
surplus in the previous scheduling instance. Consequently, examining a few threads with small start
tags, small weights, and small prior surplus values, computing their new surpluses, and choosing
the thread with minimum surplus is a good heuristic in practice. Since our implementation already
maintains three queues sorted by φi, Si, and αi, this can be trivially done by examining the first
few threads in each queue, computing their new surplus values, and picking the thread with the
least surplus. This obviates the need to update the surpluses and to re-sort every time the virtual
time changes; the scheduler needs to do so only every so often and can use the heuristic between
updates (infrequent updates and sorting are still required to maintain a high accuracy of the heuris-
tic). Hence, the scheduling overhead reduces to a constant and becomes independent of the number
of runnable threads in the system (updates to αi and sorting continue to be O(n log n), but this
overhead is amortized over a large number of scheduling instances).
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The efficiency of the heuristic could come at the expense of the fairness properties of the al-
gorithm. In particular, since the heuristic examines only a few threads in each queue, it might
pick a thread which does not have the minimum surplus in the system. We conducted simulation
experiments to determine the efficacy of this heuristic in terms of achieving fairness. In our exper-
iments, we simulated a multiprocessor system running a certain number of threads. We used SFS
employing the heuristic to schedule threads in this system, and compared the choice of the thread
at each scheduling instant to that of the exact SFS algorithm. The number of threads examined
in the queues by the heuristic was varied for different runs of the simulation. Figure 2.3 plots the
percentage of scheduling instances in which our heuristic successfully picked the thread with the
minimum surplus in a quad-processor system. The figure shows that, in this system, examining the
first 20 threads in each queue provides high accuracy (> 99%) even when the number of runnable
threads is as large as 5000 (the actual number of threads in the system is typically much larger).

2.6 Experimental Evaluation

In this section, we experimentally evaluate the surplus fair scheduling algorithm and demon-
strate its efficacy. We conduct several experiments to (i) examine the benefits of the weight read-
justment algorithm, (ii) demonstrate proportional allocation of processor bandwidth in SFS, and
(iii) measure the scheduling overheads imposed by SFS. We use SFQ and the Linux time-sharing
scheduler as the baseline for our comparisons. In what follows, we first describe the test-bed for our
experiments and then present the results of our experimental evaluation.

2.6.1 Experimental Setup

The test-bed for our experiments consisted of a 500 MHz Pentium III-based dual-processor PC
with 128 MB RAM, 13GB SCSI disk, and a 100 Mb/s 3-Com ethernet card (model 3c595). The PC
ran the default installation of Red Hat Linux 6.0. We used version 2.2.14 of the Linux kernel for
our experiments; depending on the experiment, the kernel employed either SFS, SFQ or the time-
sharing scheduler to schedule threads. In each case, we used a quantum duration of 200 ms, which
is the default quantum duration employed by the Linux kernel. All experiments were conducted in
a lightly-loaded system.

The workload for our experiments consisted of a combination of real-world applications, bench-
marks, and sample applications that we wrote to demonstrate specific features. These applications
include: (i) Inf, a compute-intensive application that performs computations in an infinite loop; (ii)
Interact, an I/O bound interactive application; (iii) thttpd, a single-threaded event-based Web server,
(iv) mpeg play, the Berkeley software MPEG-1 decoder, (v) gcc, the GNU C compiler, (vi) disksim,
a publicly-available disk simulator, (vii) dhrystone, a compute-intensive benchmark for measuring
integer performance, and (viii) lmbench, a benchmark that measures various aspects of operating
system performance. Next, we describe the experimental results obtained using these applications
and benchmarks.

2.6.2 Impact of the Weight Readjustment Algorithm

To show that the weight readjustment algorithm can be combined with existing GPS-based
scheduling algorithms to reduce the unfairness in their allocations, we conducted the following
experiment. At time t=0, we started two Inf applications (T1 and T2) with weights in the ratio 1:10.
At t=15s, we started a third Inf application (T3) with a weight of 1. Application T2 was then stopped
at t=30s. We measured the processor shares received by the three applications (in terms of number
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Figure 2.4. Impact of the weight readjustment algorithm: use of the readjustment algorithm enables
SFQ to prevent starvation and reduces the unfairness in its allocations.

of loops executed) when scheduled using SFQ. We then repeated the experiment with SFQ coupled
with the weight readjustment algorithm. Observe that this experimental scenario corresponds to the
infeasible weights problem described in Example 1 of Section 2.1. As in the example, SFQ is unable
to distinguish between feasible and infeasible weight assignments, causing application T1 to starve
upon the arrival of application T3 at t=15s (see Figure 2.4(a)). In contrast, when coupled with the
weight readjustment algorithm, SFQ ensures that all applications receive bandwidth in proportion
to their instantaneous weights (1:1 from t=0 through t=15s, and 1:2:1 from t=15s through t=30s,
and 1:1 from then on), as shown in Figure 2.4(b). This experiment demonstrates that the weight
readjustment algorithm enables a GPS-based scheduler such as SFQ to reduce the unfairness in its
allocations in multiprocessor environments.

2.6.3 Comparing SFQ and SFS

In this section, we demonstrate that even with the weight readjustment algorithm, SFQ can show
unfairness in multiprocessor environments, especially in the presence of frequent arrivals and de-
partures (as discussed in Example 2 of Section 2.1). We also show that SFS does not suffer from this
limitation. To demonstrate this behavior, we started an Inf application (T1) with a weight of 20, and
20 Inf applications (collectively referred to as T2−21), each with weight of 1. To simulate frequent
arrivals and departures, we then introduced a sequence of short Inf jobs (Tshort) into the system.
Each of these short jobs was assigned a weight of 5 and ran for 300ms each; each short job was
introduced only after the previous one finished. Observe that the weight assignment is feasible at all
times, and the weight readjustment algorithm never modifies any weights. We measured the proces-
sor share received by each application (in terms of the cumulative number of loops executed). Since
the weights of T1, T2−21 and Tshort are in the ratio 20:20:5, we expect T1 and T2−21 to receive an
equal share of the total bandwidth and this share to be four times the bandwidth received by Tshort.
However, as shown in Figure 2.5(a), SFQ is unable to allocate bandwidth in these proportions (in
fact, each set of applications receives approximately an equal share of the bandwidth). SFS, on the
other hand, is able to allocate bandwidth approximately in the requested proportion of 4:4:1 (see
Figure 2.5(b)).
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Figure 2.5. The Short Jobs Problem: frequent arrivals and departures in multiprocessor environ-
ments prevent SFQ from allocating bandwidth in the requested proportions. SFS does not have this
drawback.

The primary reason for this behavior is that SFQ schedules threads in “spurts”: threads with
larger weights (and hence, smaller start tags) run continuously for some number of quanta, then
threads with smaller weights run for a few quanta and the cycle repeats. In the presence of frequent
arrivals and departures, scheduling in such “spurts” allows threads with higher weights (T1 and
Tshort in our experiment) to run almost continuously on the two processors; T2−21 get to run infre-
quently. Thus, each Tshort job gets as much processor share as the higher weight job T1; since each
Tshort job is short lived, SFQ is unable to account for the bandwidth allocated to the previous job
when the next one arrives. SFS, on the other hand, schedules each application based on its surplus.
Consequently, no application can run continuously and accumulate a large surplus without allowing
other applications to run first. This finer interleaving of jobs enables SFS to achieve proportional
allocation even with frequent arrivals and departures.

2.6.4 Proportional Allocation and Application Isolation in SFS

Next, we demonstrate proportional allocation and application isolation of threads in SFS. To
demonstrate proportional allocation, we ran 20 background dhrystone processes, each with a weight
of 1. We then ran two thttpd Web servers and assigned them different weights (1:1, 1:2, 1:4 and
1:7). A large number of requests were then sent to each Web server. In each case, we measured
the average processor bandwidth allocated to each Web server (the background dhrystone processes
were necessary to ensure that all weights were feasible at all times; without these processes, no
weight assignment other than 1:1 would be feasible in a dual-processor system). As shown in
Figure 2.6(a), the processor bandwidth allocated by SFS to each Web server is in proportion to its
weight.

To show that SFS can isolate applications from one another, we ran the mpeg play software
decoder in the presence of a background compilation workload. The decoder was given a large
weight and used to decode a 5-minute long MPEG-1 clip that had an average bit rate of 1.49 Mb/s.
Simultaneously, we ran a varying number of gcc compilation jobs, each with a weight of 1. The
scenario represents video playback in the presence of background compilations; running multiple
compilations simultaneously corresponds to a parallel make job (i.e., make -j) that spawns multiple
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Figure 2.6. Proportional allocation, application isolation, and interactive performance with SFS.

independent compilations in parallel. Observe that assigning a large weight to the decoder ensures
that the weight readjustment algorithm will effectively assign it the bandwidth of one processor, and
the compilations jobs share the bandwidth of the other processor.

We varied the compilation workload and measured the frame rate achieved by the software
decoder. We then repeated the experiment with the Linux time-sharing scheduler. As shown in
Figure 2.6(b), SFS is able to isolate the video decoder from the compilation workload, whereas
the Linux time-sharing scheduler causes the processor share of the decoder to drop with increasing
load. We hypothesize that the slight decrease in the frame rate in SFS is caused due to the increasing
number of intermediate files created and written by the gcc compiler, which interferes with the
reading of the MPEG-1 file by the decoder.

Our final experiment consisted of an I/O-bound interactive application Interact that ran in the
presence of a background simulation workload (represented by some number of disksim processes).
Each application was assigned a weight of 1, and we measured the response time of Interact for
different background loads. As shown in Figure 2.6(c), even in the presence of a compute-intensive
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Test time-sharing SFS
syscall overhead 0.7 µs 0.7 µs

fork() 400 µs 400 µs
exec() 2 ms 2 ms

Context switch (2 proc/ 0KB) 1 µs 4 µs
Context switch (8 proc/ 16KB) 15 µs 19 µs
Context switch (16 proc/ 64KB) 178 µs 179 µs

Table 2.2. Scheduling overheads reported by lmbench.

workload, SFS provides response times that are comparable to the time-sharing scheduler (which is
designed to give higher priority to I/O-bound applications).

2.6.5 Benchmarking SFS: Scheduling Overheads
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Figure 2.7. Scheduling overheads reported by lmbench with varying number of processes.

We used lmbench, a publicly available operating system benchmark, to measure the overheads
imposed by the SFS scheduler. We ran lmbench on a lightly-loaded machine with SFS and repeated
the experiment with the Linux time-sharing scheduler. In each case, we averaged the statistics re-
ported by Lmbench over several runs to reduce experimental error. Table 2.2 summarizes our results
(we report only those lmbench statistics that are relevant to the CPU scheduler). As shown in Ta-
ble 2.2, the overhead of creating processes (measured using the fork and exec system calls) is
comparable in both schedulers. The context switch overhead, however, increases from 1 µs to 4 µs
for two 0KB processes (the size associated with a process is the size of the array manipulated by
each process and has implications on processor cache performance [52]). Although the overhead
imposed by SFS is higher, it is still considerably smaller than the 200 ms quantum duration em-
ployed by Linux. The context switch overheads increase in both schedulers with increasing number
of processes and increasing process sizes. SFS continues to have a slightly higher overhead, but the
percentage difference between the two schedulers decreases with increasing process sizes (since the
restoration of the cache state becomes the dominating factor in context switches).

Figure 2.7 plots the context switch overhead imposed by the two schedulers for varying number
of 0 KB processes (the array sizes manipulated by each process was set to zero to eliminate caching
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overheads from the context switch times). As shown in the figure, the context switch overhead in-
creases sharply as the number of processes increases from 0 to 5, and then grows with the number of
processes. The initial increase is due to the increased bookkeeping overheads incurred with a larger
number of runnable processes (scheduling decisions are trivial when there is only one runnable pro-
cess and require minimal updates to kernel data structures). The increase in scheduling overhead
thereafter is consistent with the complexity of SFS reported in Section 2.5.2 (the scheduling heuris-
tic presented in that section was not used in this experiment). Note that the Linux time-sharing
scheduler in version 2.2.14 (used in our experiments) also imposes an overhead that grows with the
number of processes.

2.7 Concluding Remarks

In this chapter, we considered the problem of proportional-share scheduling on symmetric mul-
tiprocessor systems. This problem is important in order to meet application requirements and pro-
vide application isolation on multiprocessor server systems. We first identified the problems with
existing uniprocessor proportional-share schedulers that can result in starvation and unbounded un-
fairness. To mitigate the limitations of these schedulers on multiprocessor systems, we proposed a
weight readjustment algorithm that converts any weight assignment into a feasible weight assign-
ment. To overcome the problems still faced by the uniprocessor algorithms under certain scenarios,
we then presented surplus fair scheduling, an algorithm that achieves proportional-share allocation
on multiprocessors. We implemented both the SFS and the weight readjustment algorithm in the
Linux kernel and demonstrated their efficacy with real workloads.

Next, we look at another notion of proportional-share scheduling called proportionate-fair allo-
cation. This notion of scheduling is typically used to provide absolute resource allocation guaran-
tees. We present an algorithm that employs this scheduling paradigm to achieve proportional-share
allocation in multiprocessor systems.
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CHAPTER 3

DEADLINE FAIR SCHEDULING: A PRACTICAL PROPORTIONATE-FAIR
SCHEDULING ALGORITHM

In this chapter, we present a stronger notion of proportional-share allocation, called proportionate-
fairness or P-fairness, which provides absolute resource allocation guarantees. Several existing al-
gorithms achieve P-fairness under idealized system assumptions, but many of these algorithms are
offline and are difficult to extend to real systems. We present an online algorithm that achieves
P-fairness in an ideal system model, and can be easily extended to work on real practical systems to
achieve proportional-share allocation.

3.1 Proportionate-Fairness: Background

As described in Chapter 2, proportional-share schedulers associate an intrinsic weight with each
thread and allocate bandwidth in proportion to the specified weights. In Chapter 2, we considered
one class of proportional-share schedulers based on generalized processor sharing (GPS) [58]. GPS
assumes that threads can be serviced in terms of infinitesimally small time quanta, and hence GPS-
fairness allocates CPU bandwidth to threads in the proportion of their weights at all times. Practical
instantiations of GPS such as weighted fair sharing [28, 59] and start-time fair queuing [36] provide
looser bounds on how far threads can be from their GPS shares at any time.

Proportionate-fair (P-fair) schedulers are another class of proportional-share schedulers based
on the notion of proportionate progress [17]. Under this notion, each thread requests xi quanta of
service every yi time quanta. The scheduler then allocates processor bandwidth to threads such
that, over any T time quanta, T > 0, a continuously running thread receives between b xi

yi
· T c and

dxi

yi
·T e quanta of service. Unlike GPS, P-fairness assumes that threads are allocated finite duration

quanta (and thus is a more practical notion of fairness). In addition, it ensures tighter bounds on the
possible unfairness than practical instantiations of GPS, as it ensures that, at any instant, no thread
is more than one quantum away from its due share.

Several algorithms have been proposed that achieve P-fairness in an ideal system model: a sys-
tem with synchronized, fixed quantum durations and a fixed thread set [3, 16, 54]. In practice,
however, these ideal conditions do not hold in real systems. Blocking or I/O events might cause
a thread to relinquish the processor before it has used up its entire allocated quantum, and hence,
quantum durations tend to vary from one quantum to another. These variable quantum lengths
also result in asynchronous scheduling of multiple processors in a multiprocessor system, i.e., each
processor calls the scheduler independently, and hence, the scheduling of threads on different pro-
cessors is not simultaneous. Moreover, P-fairness implicitly assumes that the set of threads in the
system is fixed. In practice, arrivals and departures of threads as well as blocking and unblocking
events can cause the thread set to vary over time.

Several recent research efforts have focused on relaxing some of the above assumptions of the
ideal system model. For instance, conditions for thread arrivals and departures have been derived
for a P-fair algorithm that avoid any deadline misses [69]. The goal of our work is to allow any
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arrival/departure pattern in the system, even if it results in occasional deadline violations. In ad-
dition, the notion of P-fairness has been generalized to other models of sporadic and non-periodic
tasks [68, 70] and for soft real-time tasks [67]. The notion of P-fairness has been extended to incor-
porate work-conserving behavior [4, 5] that relaxes the upper bound on the CPU service received
by a thread. We consider alternate ways of enhancing P-fair schedulers to achieve work-conserving
behavior. The focus of our work is orthogonal to these efforts, as our goal is to exploit the notion of
periodicity to provide proportional-share for threads that may fit any kind of computational model.
In addition, we also consider a system model with variable quantum lengths and asynchronous
scheduling of multiple processors, that has not been considered by these research efforts.

In this chapter, we propose an algorithm that achieves P-fairness in the presence of the above-
mentioned ideal system assumptions. In addition, this algorithm is clearly defined even when the
system has variable quantum durations and arrivals and departures of threads. To seamlessly account
for these non-ideal system conditions, in this chapter, we use an alternative definition of P-fairness:
Let φi denote the share of the processor bandwidth that is requested by thread i in a p-processor
system. Then, over any T time quanta, T > 0, a continuously running thread should receive between
b φi
∑

j φj
·pT c and d φi

∑

j φj
·pT e quanta of service. Observe that, under ideal system assumptions, this

definition reduces to the original definition of P-fairness in the case where φi = xi

yi
and

∑

j φj = p
(which corresponds to the threads using up all the quanta available on the processors).

In this chapter, we first present our scheduling algorithm for multiprocessor environments based
on the notion of P-fairness. We then consider two practical issues that require us to relax the notion
of strict P-fairness (i.e, we trade strict P-fairness for more practical considerations).

3.2 Deadline Fair Scheduling

3.2.1 System Model

Consider a p-processor system that services n runnable threads. We assume that each scheduled
thread is assigned a quantum duration of qmax; a thread may either utilize its entire allocation or
voluntarily relinquish the processor if it blocks before its allocated quantum ends. Consequently, as
is typical on most multiprocessor systems, we assume that quanta on different processors are neither
synchronized with each other, nor do they have a fixed duration. An important consequence of this
assumption is that each processor needs to individually invoke the CPU scheduler when its current
quantum ends, and hence, scheduling decisions on different processors are not synchronized with
one another.

Given such an environment, assume that each thread specifies a share φi that indicates the pro-
portion of the processor bandwidth required by that thread. Then the weight of each thread must
satisfy the weight feasibility constraint, as specified in Section 2.3.1:

φi
∑n

j=1 φj
≤

1

p
(3.1)

This constraint can be maintained by using the weight readjustment algorithm described in Sec-
tion 2.3.1. We now present Deadline Fair Scheduling (DFS)—a scheduling algorithm that achieves
allocations corresponding to these weights based on the notion of proportionate-fairness. To see
how this is done, we first present the intuition behind our algorithm and then provide the precise
details.
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Figure 3.1. Use of deadlines and periods to achieve proportionate allocation.

3.2.2 DFS: Key Concepts

Conceptually, DFS schedules each thread periodically; the period of each thread depends on its
share φi. DFS uses an eligibility criterion to ensure that each thread runs at most once in each period
and uses internally generated deadlines to ensure that each thread runs at least once in each period.
The eligibility criterion makes each thread eligible at the start of each period; once scheduled on a
processor, a thread becomes ineligible until its next period begins (thereby allowing other eligible
threads to run before the thread runs again). Each eligible thread is stamped with an internally
generated deadline. The deadline is typically set to the end of its period in order for the thread to
run by the end of its period. DFS schedules eligible threads in earliest deadline first order to ensure
each thread receives its due share before the end of its period. Together, the eligibility criterion and
the deadlines allow each thread to receive processor bandwidth based on the requested shares, while
ensuring that no thread gets more or less than its due share in each period. The following example
illustrates this process:

Example 5 Consider a dual-processor system that services three threads with shares φ1 = 2 and
φ2 = φ3 = 1. This could correspond to the threads asking for (x1, y1) = (1, 1) and (x2, y2) =
(x3, y3) = (1, 2). The requested allocation can be achieved by running the first thread continuously
on one processor and alternating between the other two threads on the other processor. We show
how this can be done using periods and deadlines. The period of the first thread is set to 1 and that
of the other two threads to 2. Thus, thread 1 becomes eligible every time unit, while threads 2 and
3 become eligible every alternate time unit. Once eligible, a thread is stamped with a deadline that
is the end of its period. Once scheduled, a thread remains ineligible until its next period begins. At
t=0, all threads become eligible and have deadlines d1 = 1, d2 = d3 = 2. Since threads are picked
in EDF order, threads 1 and 2 get to run on the two processors (assuming that the tie between threads
2 and 3 is resolved in favor of thread 2). Thread 2 then becomes ineligible until t = 2 (the start
of its next period). Thread 1 becomes eligible again since its period is 1, while thread 3 is already
eligible. Since there are only two eligible threads, threads 1 and 3 run next. The whole process
repeats from this point on. Figure 3.1 illustrates this scenario.

To intuitively understand how the eligibility criteria and deadlines are determined, let us assume
that the quantum length=1, that each thread always runs for an entire quantum, and that there are
no arrivals or departures of threads into the system. The actual scheduling algorithm does not make
any of these assumptions; we do so here for simplicity of exposition. Let mi(t) be the number of
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times that thread i has been run up to time t, where time 0 is the instant in time before the first
quantum, time 1 is the instant in time between the first and second quanta, and so on. With these
assumptions, to maintain P-fairness, we require that for all times t and threads i,

⌊(

φi
∑n

j=1 φj

)

· t · p

⌋

≤ mi(t) ≤

⌈(

φi
∑n

j=1 φj

)

· t · p

⌉

.

where (t · p) is the total processing capacity on the p processors in time [0, t). The eligibility
requirements ensure that mi(t) never exceeds this range, and the deadlines ensure that mi(t) never
falls short of this range. In particular, for thread i to be run during a quantum, it must be the case
that at the end of that quantum, mi(t) is not too large. Thus, we specify that thread i is eligible to
be run at time t only if

mi(t) + 1 ≤

⌈(

φi
∑n

j=1 φj

)

· (t + 1) · p

⌉

. (3.2)

The deadlines ensure that a job is always run early enough that mi(t) never becomes too small.
Thus, at time t we specify the deadline for the completion of the next run of thread i (which will be
the (mi(t) + 1)th run) to be the first time t′ such that

mi(t) + 1 ≤

⌊(

φi
∑n

j=1 φj

)

· t′ · p

⌋

.

Since mi(t) and t′ are always integers, this is equivalent to setting

t′ =

⌈

(mi(t) + 1) ·

(

∑n
j=1 φj

p · φi

)⌉

. (3.3)

With our assumptions (no arrivals or departures, and every thread always runs for a full quan-
tum), it can be shown that, if at every time step, we run the p eligible threads with smallest deadlines
(with suitable rules for breaking ties, described later in Section 3.2.3), then no thread will ever miss
its deadline. This, combined with the eligibility requirements, ensures that the resulting schedule of
threads is P-fair. This schedule can also be shown to be work-conserving.

Since a real system has both variable length quantum durations, as well as arrivals and depar-
tures, the DFS algorithm uses a slightly different method for accounting for the amount of CPU
service that each thread has achieved. This greatly simplifies the accounting under real system
assumptions. We also show in Section 3.3 that in a system with these relaxed assumptions, the
algorithm is non-work-conserving, and we remedy this by enhancing the DFS algorithm with an
auxiliary work-conserving algorithm. As we shall see, the method of accounting that we use for the
DFS algorithm also interfaces very easily with these enhancements.

We now describe the accounting method employed by DFS. Let Si denote the weighted CPU
service received by a thread so far. In GPS-based algorithms such as WFQ [28] and SFQ [38], the
quantity Si is referred to as the start tag of thread i; we use the same terminology here. All threads
that are initially in the system start with a value of Si set to 0. Whenever thread i is run, Si is
incremented as Si = Si + 1

φi
, so that after running mi(t) times, the start tag of thread i would be
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Si = mi(t)
φi

. Next, we define the virtual time v in the system as the weighted average of the progress
made by all the threads in the system at time t:

v =

∑

j φj · Sj
∑

j φj
.

Note that (
∑

j φj · Sj) is the total CPU service used by all the threads in the system, so that at

time t, this quantity would be equal to (t · p). Thus, substituting Si = mi(t)
φi

and v = t·p
∑

j φj
into

Relation 3.2, we see that the eligibility criterion becomes

Si · φi + 1 ≤

⌈

φi ·

(

v +
p

∑

j φj

)⌉

.

Finally, we define Fi, the finish tag of thread i, to be the weighted CPU service received by thread i

at the end of its next run. Then, Fi = Si + 1
φi

. Hence, substituting Fi = mi(t)+1
φi

into Equation 3.3,
we see that the deadline for thread i becomes

t′ =

⌈(

∑

j φj

p

)

· Fi

⌉

.

Together, the eligibility condition and the deadlines enable DFS to ensure P-fair allocation. Having
provided the intuition behind the DFS algorithm, we now present its details.

3.2.3 Details of the Scheduling Algorithm

The precise DFS algorithm works as follows:

• Each thread in the system is associated with a share φi, a start tag Si, and a finish tag Fi.
When a new thread arrives, its start tag is initialized as Si = v, where v is the current virtual
time of the system (defined below). When a thread runs on a processor, its start tag is updated
at the end of the quantum as Si = Si + q

φi
, where q is the duration for which the thread ran in

that quantum. If a blocked thread wakes up, its start tag is set to the maximum of its previous
start tag and the virtual time. Thus, we have

Si =

{

max(Si, v) if the thread just woke up
Si + q

φi
if the thread just ran on a processor

(3.4)

After computing the start tag, the new finish tag of the thread is computed as Fi = Si + q̄
φi

,
where q̄ is the maximum amount of time that thread i can run the next time it is scheduled.
Note that, if thread i blocked during the last quantum it was run, it will only be run for some
fraction of a quantum the next time it is scheduled, and so q̄ may be smaller than qmax.

• Initially the virtual time of the system is zero. At any instant, the virtual time is defined to be
the weighted average of the CPU service received by all currently runnable threads. Defined
as such, the virtual time may not monotonically increase if a runnable thread with a start
tag that is above average departs. To ensure monotonicity, we set v to the maximum of its
previous value and the current average CPU service. That is,

v = max

(

v,

∑n
j=1 φj · Sj
∑n

j=1 φj

)

(3.5)

If there are no runnable threads, the virtual time remains unchanged and is set to the start tag
(on departure) of the thread that ran last.
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• At each scheduling instance, DFS computes the set of eligible threads from the set of all
runnable threads and then computes their deadlines as follows, where qmax is the maximum
size of a quantum.

– Eligibility Criterion: A thread is eligible if it satisfies the following condition.

Siφi

qmax
+ 1 ≤

⌈

φi

(

v

qmax
+

p
∑n

j=1 φj

)⌉

. (3.6)

– Deadline: Each eligible thread is stamped with a deadline of
⌈

Fi

qmax
·

(

∑n
j=1 φj

p

)⌉

(3.7)

DFS then picks the eligible thread with the smallest deadline and schedules it for execution.
Ties are broken using the following two tie-breaking rules:

• Rule 1: If two (or more) eligible threads have the same deadline, pick the thread i (if one
exists) such that

⌊

Fi

qmax
·

(

∑n
j=1 φj

p

)⌋

<

⌈

Fi

qmax
·

(

∑n
j=1 φj

p

)⌉

.

Intuitively, such a thread becomes eligible for its next period before its current deadline ex-
pires, and hence, we can have more eligible threads in the system if this thread is given
preference to one that becomes eligible later than its deadline.

• Rule 2: If multiple threads satisfy rule 1, then pick the thread with the maximum value of
dGie, where, Gi is the group deadline [3] of the thread i, and is computed as follows.

Gi = 0 if

(

p · φi
∑n

j=1 φj

)

<
1

2
.

Otherwise, initially,

Gi =
p · φi

(
∑n

j=1 φj) − p · φi
.

From then on, whenever

dGie ≤

⌈

Fi

qmax
·

(

∑n
j=1 φj

p

)⌉

,

Gi is incremented by
∑n

j=1 φj

(
∑n

j=1 φj)−p·φi
.

Intuitively, this is the thread that has the most severe constraints on its subsequent deadlines.

Any further ties are broken arbitrarily. These tie-breaking rules are required to ensure P-fairness in
the ideal scenario where there are no arrivals or departures, and every thread always runs for a full
quantum.
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3.2.4 Properties of DFS

Consider an ideal system model that makes the following assumptions. We assume a p-CPU
symmetric multiprocessor system running a fixed set of n threads. Further, we assume that the
quanta of all the CPUs are synchronized. This means that (i) quantum lengths are fixed (without
loss of generality, assume quantum length to be 1), and (ii) each time the scheduler is called, it picks
a set of p threads to run on the p CPUs for the next quantum duration. Finally, we assume that there
is no processor affinity, i.e., any thread can be executed on any CPU. Further define a feasible set of
threads to be one in which each thread satisfies the weight feasibility constraint (Relation 3.1). In
such a system model, the following properties hold for DFS:

Theorem 1 Given a set of feasible threads, DFS always generates a P-fair schedule.

Theorem 2 Given a set of feasible threads, DFS is work-conserving.

Theorem 1 states that DFS achieves P-fairness in an ideal system model, while Theorem 2 states
that in such a system model, DFS prevents any CPU from idling if there are any runnable threads in
the system. The proofs of these properties can be found in Appendix A.

In the next two sections, we examine two practical issues, namely work-conserving behavior
and processor affinities, that arise when implementing DFS in a multiprocessor operating system.

3.3 Ensuring Work-Conserving Behavior in DFS

As described in Section 3.2.4, DFS is provably work-conserving under the ideal system model
assumptions of a fixed thread set and synchronized fixed length quanta. However, neither assump-
tion holds in a real multiprocessor system. In this section, we examine via a simulation study if
DFS is work-conserving in the absence of these assumptions. It is possible for DFS to become non-
work-conserving since the scheduler might mark certain runnable threads as ineligible, resulting in
fewer eligible threads than processors (causing one or more processors to idle even in the presence
of runnable threads in the system). In what follows, we first present the methodology employed for
our simulations and then present our results.

3.3.1 Behavior of DFS in a Conventional Operating System Environment

The methodology for our simulation study is as follows. We start with an ideal system model
that assumes a fixed thread set and synchronized and fixed length quanta. We then relax each as-
sumption in turn and study the impact of doing so on the work-conserving nature of the scheduler.
Specifically, we start with an ideal system where the set of threads is static, quanta are fixed and syn-
chronized, and threads are scheduled on the p processors simultaneously. Next we add asynchrony
to this system by allowing each processor to independently invoke the scheduler when its current
quantum ends (i.e., threads are scheduled one at a time instead of p at a time), while the quantum
duration and the thread set remain fixed. We then allow variable quantum lengths in this system by
letting the quantum duration vary on different processors. Finally, we allow arrivals and departures
of threads in the system so as to allow the thread set to vary over time. At each step, we measure the
percentage of CPU cycles wasted in the system due to idling of processors in the presence of useful
work. In addition, we measure the number of processors that are simultaneously idle even when
there is work in the system to utilize them. Such a step-by-step study helps us to determine if the
system exhibits non-work-conserving behavior, and if so, the primary cause for this behavior. If our
simulations indicate that the fraction of time for which the system is non-work-conserving is zero or

30



-1

-0.5

0

0.5

1

0 20 40 60 80 100

Id
le

 C
P

U
 c

yc
le

s 
(%

)

Avg. number of threads in the system

Synchronized quanta, no arrivals/departures

2 cpus
4 cpus
8 cpus

16 cpus
32 cpus

Figure 3.2. Behavior of DFS in the ideal system: the system is work-conserving at all times.

small, then a P-fair scheduler such as DFS can be instantiated in a conventional multiprocessor op-
erating system without any modifications. In contrast, if the system becomes non-work-conserving
for significant durations, then we need to consider remedies to correct this behavior.

To conduct our simulation study, we simulate multiprocessor systems with 2, 4, 8, 16, and 32
processors. We initialize the system with a certain number of threads. In the scenario where arrivals
and departures are allowed, we assume these events correspond to blocking and non-blocking events
in the system, and we generate these events using exponential distributions for inter-arrival and inter-
departure times. The mean rates of arrivals and departures are chosen to be identical to keep the
system stable. The processor share φi requested by each thread is chosen randomly from a uniform
distribution and we ensure that requested shares are feasible at all times. Similar to most operating
systems, our simulations measure time in units of clock ticks (for instance, Linux measures its
quanta in units of jiffies, each jiffy being equal to 10ms). The maximum quantum duration is set
to 10 ticks. In the scenario where the quantum duration can vary, we do so by using a uniform
distribution from 1 to 10 ticks. We simulate each of our four scenarios for 10,000 ticks and repeat
the simulation 1,000 times, each with a different seed (so as to simulate a wide range of thread
mixes). We obtain the following results from our study:

• Ideal system: Figure 3.2 plots the idle CPU cycles in the system in the presence of runnable
threads that are waiting for service. In other words, this figure shows the amount of CPU
cycles wasted in the system when there is useful work to be done. We vary the number of
threads in the system on the x-axis in the figure. As can be seen from the figure, no processor
is idle in the presence of useful work. This result verifies that DFS is work-conserving in an
ideal system where the set of threads is fixed and quanta are synchronized and of fixed length,
which conforms to its theoretical properties (Theorem 2) presented in Section 3.2.4.

• Asynchronous quanta: In a real multiprocessor system, each processor invokes the scheduler
independently whenever its running thread is pre-empted, or it has a timer interrupt. Such
events make the scheduling across processors asynchronous. In our simulation study, we add
asynchrony to the system by allowing each processor to independently invoke the scheduler
when its current quantum ends. To study the effect of asynchrony on the system behavior in
isolation, the length of each quantum and the number of threads in the system are kept fixed.
This means that instead of scheduling p threads on the p CPUs simultaneously, each CPU
schedules a thread individually as happens in a real multiprocessor system.
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Figure 3.3. Effect of asynchronous quanta on the work-conserving behavior.

Figure 3.3(a) shows that the system now has non-zero idle CPU cycles in the presence of use-
ful work in the system. This means that the system is now non-work-conserving. As shown
in Figure 3.3(a), the non-work-conserving behavior is most pronounced when the number of
threads in the system is close to the number of processors. For such cases, the fraction of
CPU cycles wasted due to one or more processors being idle is as large as 12%. The figure
also shows that increasing the number of runnable threads causes an increase in the num-
ber of eligible threads in the system, thereby reducing the chances of the system becoming
non-work-conserving. Figure 3.3(b) plots a histogram of the number of processors that simul-
taneously remain idle when there is work available in the system to utilize them. As shown in
the figure, multiple processors can simultaneously become idle in such scenarios, degrading
the overall system utilization.

The reason for this non-work-conserving behavior in the presence of asynchronous quanta is
the asynchronous updates made by the algorithm for each CPU. The scheduling algorithm
updates the various quantities such as the start tag and finish tag of the running thread and
the virtual time whenever a CPU is scheduled. These updates happen in an asynchronous
manner, so that the scheduler does not have a completely up-to-date state of the system at all
times. This discrepancy leads to some threads being considered ineligible even when they
would actually be eligible for running. This causes some CPUs to remain idle even in the
presence of runnable threads.

• Variable-length quanta: Every time a thread runs in a real system, its quantum length may
vary based on the amount of time used up in its previous runs, or due to pre-emption or block-
ing events. We next simulate the effect of variable-length quanta on the system behavior. To
study this effect in isolation, we let the quantum lengths vary but keep the number of threads
in the system fixed. The results are shown in Figure 3.4. The results obtained for this scenario
(asynchronous variable-length quanta) are similar to those obtained in the previous scenario
(asynchronous fixed-length quanta). These results indicate that asynchrony in scheduling is
the primary cause for non-work-conserving behavior and variable-length quanta do not sub-
stantially worsen this behavior.
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Figure 3.4. Effect of variable-length quanta on the work-conserving behavior.

• Arrivals and departures: Our final scenario adds arrivals and departures of threads to the
system. Here, we use a Poisson process to introduce thread arrivals into the system and
another Poisson process to introduce thread departures. These arrival and departure processes
emulate the thread blocking/non-blocking events (such as page faults and I/O events) that
take place in a real system. While an arrival event adds a thread to the system run queue, a
departure event removes a currently running thread from the run queue. We choose a running
thread to depart at a departure event, because most blocking (departure) events typically affect
only threads that are currently running in a real system. In our simulation, the departing thread
is chosen at random from among the currently running threads. This ensures that the expected
runtime of any thread is independent of its share, as a thread is equally likely to depart every
time it is run.

Our results again show that the system becomes non-work-conserving especially when the
number of threads is close to the number of processors (see Figure 3.5). Interestingly, we
find that the average fraction of CPU cycles that are wasted decreases slightly as compared
to the previous two scenarios (observe this by comparing Figures 3.5(a) and 3.3(a)). This
decrease is caused by new arrivals, each of which introduces an additional eligible thread into
the system, causing an idle processor (if one exists) to schedule this thread. Without such
arrivals, the processor would have idled until an existing ineligible thread became eligible.
Departures, which should have the opposite effect, have a smaller impact on the non-work-
conserving behavior. This diminished effect is because a thread departs while it is running
(as explained above). Thus, it does not add to the number of ineligible threads in the system
on finishing, that might have adversely affected the work-conserving behavior.

Finally, Figure 3.6 plots the effect of varying the arrival/departure rate on the system behavior.
The figure, plotted on a log scale, shows that increasing the inter-arrival times causes a slow
increase in the fraction of the time the system is non-work-conserving (since a larger inter-
arrival time implies fewer arrivals, which then reduces the probability that an idle processor
schedules a newly arriving thread).

We conclude from our simulation study that DFS can exhibit non-work-conserving behavior
when employed in a conventional multiprocessor operating system. Since the fraction of CPU
cycles wasted in such scenarios can be as large as 10-12%, the DFS scheduler needs to be enhanced
with an additional policy that allocates idle processor bandwidth to threads that are runnable but
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Figure 3.7. The fair airport scheduling algorithm.

ineligible (so as to improve system utilization). In the rest of this section we show how to combine
DFS with an auxiliary work-conserving scheduler to achieve this objective.

3.3.2 Combining DFS with Fair Airport Scheduling Algorithms

We employ the concept of fair airport scheduling to enhance DFS with an auxiliary policy to
allocate idle bandwidth to ineligible runnable threads. The notion of fair airport was proposed in
the context of scheduling packets at a network router [27, 37]. A fair airport scheduler combines a
potentially non-work-conserving scheduling algorithm with an auxiliary scheduler to ensure work-
conserving behavior at all times. Each packet (or thread) in a fair airport scheduler joins a rate reg-
ulator and an Auxiliary Service Queue (ASQ) (see Figure 3.7). The rate regulator is responsible for
determining when a packet is eligible to be scheduled. Once eligible, the packet passes through the
regulator and joins the Guaranteed Service Queue (GSQ) and is then serviced by the GSQ scheduler.
If the guaranteed service queue becomes empty, the ASQ scheduler is invoked to service packets
in the ASQ (note that these are packets that are currently ineligible). The combined scheduler al-
ways gives priority to the GSQ over the ASQ—the GSQ scheduler gets to schedule packets as long
as the GSQ is non-empty and the ASQ scheduler is invoked only when the GSQ becomes empty.
Different scheduling algorithms may be employed for servicing packets in the guaranteed service
and auxiliary service queues. Depending on the exact choice of the ASQ and GSQ schedulers, it is
possible to theoretically prove properties of the combined scheduling algorithm [27, 37].

The concept of fair airport scheduling can also be employed to schedule threads in a multipro-
cessor system. Our instantiation of fair airport, referred to as DFS-FA, employs DFS as the GSQ
scheduler. The rate regulator for each thread is simply its eligibility criterion (Relation 3.6); the rate
regulator then ensures that a thread joins the guaranteed service queue only once in each period. The
ASQ scheduler is used to service threads if the GSQ becomes empty. By servicing threads that are
runnable but ineligible, the ASQ scheduler ensures that the combined scheduler is work-conserving
at all times.

Any work-conserving scheduling algorithm can be used to instantiate the ASQ scheduler. We
choose a scheduler that services ineligible threads in the increasing order of their start tags (i.e.,
when the GSQ becomes empty, the thread with the smallest start tag in the ASQ is scheduled for
execution). There are several reasons for choosing this scheduling policy. The implementation of
the basic DFS algorithm requires two queues: a queue for eligible threads and one for ineligible
threads. The latter queue is sorted in order of start tags, since this is the order in which threads be-
come eligible and are then moved to the eligible queue (see section 3.5 for details). Consequently,
the ASQ scheduler can be simply implemented by having the ineligible queue double up as the
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auxiliary service queue, and by scheduling the threads at the head of this queue when the eligible
queue (GSQ) becomes empty. Thus, our fair airport enhancement to DFS can be implemented with-
out any additional data structures or overheads as compared to the basic DFS algorithm. Further,
scheduling threads in order of start tags is equivalent to using start-time fair queuing (SFQ) [38]—
a proportional-share scheduling algorithm. Thus, choosing this scheduling policy has the added
benefit of employing a proportional-share scheduler as the auxiliary scheduler.

3.4 Accounting for Processor Affinities in DFS

Another practical consideration that arises when implementing a CPU scheduler for a multipro-
cessor system is that of processor affinities. Each processor in a multiprocessor system employs one
or more levels of memory caches. These caches store recently accessed data and instructions for
each thread. Scheduling a thread on the same processor enables it to benefit from the data cached
from the previous scheduling instances (and also eliminates the need to flush the cache on a con-
text switch to maintain consistency). In contrast, scheduling a thread on a different processor can
increase the number of cache misses and degrade performance. Studies have shown that a sched-
uler that takes processor affinities into account while making scheduling decisions can improve the
effectiveness of the cache and the overall system performance [76].

Observe that the DFS algorithm uses internally generated deadlines (Equation 3.7) to make
scheduling decisions and ignores processor affinities. This limitation can be overcome by using one
of two different approaches. The first approach partitions the set of threads among the p processors
such that each processor is load balanced and employs a local run queue for each processor. Each
processor runs the DFS scheduler on its local run queue. Binding a thread to a processor in this man-
ner allows the processor to exploit cache locality. However, if all threads were permanently bound
to individual processors, then the load across processors would most likely be unbalanced over time
due to blocking/termination events. Consequently, periodic repartitioning of threads among proces-
sors is necessary to maintain a balanced load. Another limitation of the approach is that P-fairness
guarantees can be provided only on a per-processor basis (instead of a system-wide basis), since
individual processors neither coordinate with each other nor have a balanced load.

A second approach to account for processor affinities is to employ a single global run queue and
use a more sophisticated metric for making scheduling decisions. Recall that the DFS algorithm
stamps each eligible thread with a deadline (Equation 3.7). We modify this deadline value to incor-
porate processor affinities in the following manner. We define a modified pseudo-deadline D for
an eligible thread as a function of its DFS-deadline and its affinity for the processor currently being
scheduled:

D = d + α · A, (3.8)

where d denotes the DFS-deadline of the thread, α is a positive constant and A is a measure of its
affinity for the processor being scheduled. For instance, in the simplest case, A is defined as 0 for
the processor that a thread ran on last and 1 for all other processors. Thus, (α · A) represents the
penalty for scheduling a thread with poor processor affinity. The scheduler then picks the thread
with the minimum pseudo-deadline.

Assuming that the DFS algorithm maintains a list of eligible threads sorted by their deadlines,
the scheduling algorithm would then need to compute the pseudo-deadline D of each thread in this
list before picking the thread with the minimum value of D1. This approach makes scheduling
decisions linear in the number of eligible threads, which can be expensive in systems with a large

1Since D is a processor-dependent metric, it is not possible to compute its value for each thread a priori.
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number of threads. Scheduling decisions can be made more efficient (constant time) by defining a
window that limits the number of threads that must be examined for their pseudo-deadlines before
picking a thread. The window represents a tradeoff between fairness guarantees and processor
affinities. A small window favors fairness by picking the threads with short deadlines and better
approximating P-fairness, but can reduce the chances of finding a thread with good affinity. In the
extreme case, using a window size W = 1 reduces the scheduler to a pure DFS scheduler. In
contrast, a large window increases the chances of finding a thread with an affinity for the processor
but can increase unfairness. Thus, the window size W is a tunable parameter that allows us to
balance three conflicting tradeoffs—fairness, scheduling efficiency, and processor affinities.

The choice of W would depend on the requirements of the system. A system requiring strong
fairness guarantees or low scheduling overheads may choose small values of W . For example, a
real-time system running periodic tasks with strict deadlines may select a small value of W to ensure
stronger guarantees. On the other hand, a larger value of W might be more appropriate for systems
where improving the overall system throughput is an important consideration even at the expense of
achieving looser fairness bounds. Overall, the goal of achieving fairness or performance is to meet
application and system requirements, and these properties can be traded off based on the specific
high-level requirements.

We conducted simulation experiments to determine the effectiveness of using pseudo-deadlines
to account for processor affinities. We explored the parameter space by varying the number of
processors from 2 to 32, the number of threads from 1 to 100, and the window size from 1 to 32.
For each combination of these parameters, we computed the percentage of times the scheduler is
successfully able to pick a thread with an affinity for the processor being scheduled and also the
resulting unfairness in the allocation. Figure 3.8 shows our results for some combinations of these
parameters. Figure 3.8(a) plots the percentage of scheduling instances that a thread with affinity is
chosen by our heuristic for a 4-CPU system as the window size W is varied. The figure shows that
increasing W improves the effectiveness of the algorithm in picking a thread with processor affinity.
This is because examining a larger number of threads increases the chances of picking the “right”
thread. The figure also shows a diminishing return in the amount of improvement with increasing
values of W , implying that choosing a very large value of W does not provide much additional
benefit beyond a point. Figure 3.8(b) shows similar results for a 16-CPU system.

Table 3.1 shows the deviation of our heuristic from ideal P-fair behavior with varying values
of the window size. For each value of the window size, the table shows the percentage of total
time that the threads in the system are within one quantum of their ideal shares, as required by
the P-fairness property. In addition, the table shows how often threads deviate from the P-fairness
property by being within 1-2 quanta of their ideal share, and how often this deviation is even larger
(> 2 quanta). As shown in the table, increasing the value of W does not affect the amount of
unfairness: threads remain within one quantum of their due share for about 83% of the time and
within two quanta away from their P-fair share for about 99% of the time2.

The simulation results in Table 3.1 also suggest an alternative way to resolve the fairness-
performance tradeoff. Fairness could be traded off with performance by providing probabilistic
fairness guarantees, such as ensuring the deviation of threads from their ideal shares to be bounded
with a high probability (such as 99%). Alternatively, an algorithm could provide strict fairness
guarantees only for a certain fraction of the time (such as 99% of the time), allowing the system
to become unfair for the remaining time. For instance, the results in Table 3.1 provide empirical

2Since we simulate a system with asynchronous variable-length quanta, the DFS algorithm shows some deviation
from strict P-fairness even when W = 1 (which would have constrained all threads to remain within one quantum of
their ideal shares).
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Figure 3.8. Effect of Window size on Processor Affinity.

Window Deviation from ideal share
Size (% of scheduling instances)

0-1 1-2 >2
quanta quanta quanta

1 83.38 16.55 0.07
2 83.44 16.50 0.06
4 83.76 16.18 0.06
8 83.99 15.95 0.06
16 83.84 16.10 0.06
32 83.51 16.42 0.07

Table 3.1. Deviation from P-fairness for a 4-processor system.

evidence that the heuristic is fair for a large fraction of the time—threads achieve P-fair allocation
about 83% of the time, and a more relaxed fairness bound (deviation from ideal allocation being
within two quanta) about 99% of the time.

These results indicate that using pseudo-deadlines can be an effective technique to handle pro-
cessor affinities in a multiprocessor system, and the system can be tuned to achieve the desired
tradeoff between fairness and performance. Next, we discuss the implementation of DFS in the
Linux kernel.

3.5 Implementation Details

We have implemented the DFS-FA algorithm (the DFS algorithm combined with the fair airport
algorithm discussed in Sections 3.3) into the Linux kernel. Our DFS-FA scheduler replaces the
standard time-sharing scheduler in Linux. Our implementation allows each thread to specify a
weight φi. Threads can dynamically change or query their weights using two new system calls,
setweight and getweight (described in Section 2.5).
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Our implementation of DFS maintains two run queues—one for eligible threads and the other
for ineligible threads (see Figure 3.9). The former queue consists of threads sorted in deadline order;
DFS services these threads using EDF. The latter queue consists of threads sorted on their start tags,
since this is the order in which threads become eligible. Once eligible, a thread is removed from the
ineligible queue and inserted into the eligible queue.

The actual scheduler works as follows. Whenever a thread’s quantum expires or it blocks for
I/O or departs, the Linux kernel invokes the DFS scheduler. The scheduler first updates the start tag
and finish tag of the thread relinquishing the CPU. Next, it recomputes the virtual time based on
the start tags of all the runnable threads. Based on this virtual time, it determines if any ineligible
threads have become eligible, and if so, moves them from the ineligible queue to the eligible queue
in deadline order. If the thread relinquishing the CPU is still eligible, it is reinserted into the eligible
queue, else it is marked ineligible and inserted into the ineligible queue in order of start tags. The
scheduler then picks the thread at the head of the eligible queue and schedules it for execution.

The fair airport enhancement is implemented by simply using the eligible queue as the GSQ
and the ineligible queue as the ASQ. If the eligible queue becomes empty, the scheduler picks the
thread at the head of the ineligible queue and schedules it for execution. Thus, the enhancement can
be implemented with no additional overheads and results in work-conserving behavior.

3.6 Experimental Evaluation

In this section, we describe the results of our experimental evaluation. We conducted exper-
iments to (i) demonstrate proportional allocation property of DFS-FA, (ii) show the performance
isolation provided by it to applications, and (iii) measure the scheduling overheads imposed by it.
Where appropriate, we use the Linux time-sharing scheduler as a baseline for comparison. In what
follows, we first describe our experimental test-bed, and then present the experimental results.

3.6.1 Experimental Setup

For our experiments, we used a 500 MHz Pentium III-based dual-processor PC with 128 MB
RAM, 13GB SCSI disk and a 100 Mb/s 3-Com ethernet card (model 3c595). The PC ran the
default installation of RedHat Linux 6.2. We used Linux kernel version 2.2.14 for our experiments,
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Figure 3.10. Proportional allocation and application isolation with DFS-FA.

which employed either the time-sharing or the DFS-FA scheduler depending on the experiment.
The system was lightly loaded during our experiments.

The workload for our experiments consisted of a mix of sample applications and benchmarks.
These include : (i) mpeg play, the Berkeley software MPEG1 decoder, (ii) mpg123, an audio MPEG
and MP3 player, (iii) dhrystone, a compute-intensive benchmark for measuring integer performance,
(iv) gcc, the GNU C compiler, (v) RT task, a program that emulates a real-time task, and (vi)
lmbench, a benchmark that measures various aspects of operating system performance. Next, we
describe the results of our experimental evaluation.

3.6.2 Proportional Allocation and Application Isolation

We first demonstrate that DFS-FA allocates processor bandwidth to applications in proportion
to their shares, and in doing so, it also isolates each of them from other misbehaving or overloaded
applications. To show these properties, we conducted two experiments with a number of dhrystone
applications. In the first experiment, we ran two dhrystone applications with relative shares of 1:1,
1:2, 1:3, 1:4, 1:5, 1:6, 1:7 and 1:8 in the presence of 20 background dhrystone applications. As can
be seen from Figure 3.10(a), the two applications receive processor bandwidth in proportion to the
specified shares.

In the second experiment, we ran a dhrystone application in the presence of increasing number
of background dhrystone applications. The processor share assigned to the foreground application
was always equal to the sum of the shares of the background applications. Figure 3.10(b) plots the
processor bandwidth received by the foreground application with increasing background load. For
comparison, the same experiment was also performed with the default Linux time-sharing sched-
uler. As can be seen from the figure, with DFS-FA, the processor share received by the foreground
application remains stable irrespective of the background load, in effect isolating the application
from load in the system . Not surprisingly, the time-sharing scheduler is unable to provide such
isolation. These experiments demonstrate that while DFS-FA is no longer strictly P-fair, it never-
theless achieves proportional allocation. In addition, it also manages to isolate applications from
each other.
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Figure 3.11. Performance of DFS when scheduling a mix of real-time applications.

3.6.3 Impact on Real-Time and Multimedia Applications

In the previous subsection, we demonstrated the desirable properties of DFS-FA using a syn-
thetic, compute-intensive benchmark. Here, we demonstrate how DFS-FA can benefit real-time and
multimedia applications. To do so, we first ran an experiment with a mix of RT tasks, each of which
emulates a real-time task. Each task receives periodic requests and performs some computations that
need to finish before the next request arrives; thus, the deadline to service each request is set to the
end of the period. Each real-time task requests CPU bandwidth as (x, y) where x is the computation
time per request, and y is the inter-request arrival time. In the experiment, we ran one RT task with
fixed computation and inter-arrival time, and measured its response time with increasing number of
background real-time tasks. As can be seen from Figure 3.11, the response time is independent of
the other tasks running in the system. Thus, DFS-FA can support predictable allocation for real-time
tasks.

In the second experiment, we ran the streaming audio application (an MP3 player) in the pres-
ence of a large number of background compilation jobs. Figure 3.12(a) demonstrates that the per-
formance of the streaming audio application remains stable even in the presence of increasing back-
ground load. We repeated this experiment with streaming video; a software decoder was employed
to decode and display a 1.5 Mb/s MPEG-1 file in the presence of other best-effort compilation jobs.
Figure 3.12(b) shows that the frame rate of the mpeg decoder remains stable with increasing back-
ground load, but less so than the audio application. We hypothesize that the observed fluctuations
in the frame rate are due to increased interference in disk accesses. The data rate of a video file is
significantly larger than that of an audio file, and the increased I/O load due to the compilation jobs
interfere with the reading of the MPEG-1 file from disk. Overall, these experiments demonstrate
that DFS-FA can support real-time and multimedia applications.

3.6.4 Scheduling Overheads

In this section, we describe the scheduling overheads imposed by the DFS-FA scheduler on
the kernel. We used lmbench, a publicly available operating system benchmark, to measure these
overheads. Lmbench was run on a lightly loaded system running the time-sharing scheduler, and
again on a system running the DFS-FA algorithm. We ran the benchmark multiple times in each
case to reduce experimental error. Table 2.2 summarizes the results we obtained. We report only
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Figure 3.12. Performance of multimedia applications.

Test Linux DFS
syscall overhead 0.7 µs 0.7 µs

fork() 400 µs 400 µs
exec() 2 ms 2 ms

Context switch (2 proc/ 0KB) 1 µs 5 µs
Context switch (8 proc/ 16KB) 15 µs 20 µs
Context switch (16 proc/ 64KB) 178 µs 181 µs

Table 3.2. Lmbench results.
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those lmbench statistics that are relevant to the CPU scheduler. As can be seen from Table 2.2,
the overhead of creating tasks (measured using fork and exec system calls) is comparable in
both cases. However, the context switch overhead increases by about 3-5 µs. This overhead is
insignificant compared to the quantum duration used by the Linux kernel, which is several orders
of magnitude larger (typical quantum durations range from tens to hundreds of milliseconds; the
default quantum duration used by the Linux kernel is 200ms).

3.7 Concluding Remarks

In this chapter, we examined a stronger notion of proportional-share scheduling called P-fairness.
Since existing P-fair algorithms are offline and suitable only for ideal system models, we proposed
deadline fair scheduling, an online algorithm that is P-fair under ideal system assumptions, and
can be seamlessly extended to achieve proportional-share allocation in practical systems. However,
because DFS can become non-work-conserving in practical systems, we combined DFS with a fair
airport algorithm that makes it work-conserving while enabling it to achieve proportional allocation.

In the last two chapters, we considered the problem of proportional-share scheduling of threads
in a multiprocessor system. However, real server applications are typically multi-threaded. To
achieve proportional-share CPU allocation for such applications, in the next chapter, we examine
the problem of achieving proportional-share scheduling for groups of threads and applications in a
multiprocessor environment.
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CHAPTER 4

HIERARCHICAL PROPORTIONAL-SHARE SCHEDULING FOR SYMMETRIC
MULTIPROCESSORS

In Chapters 2 and 3, we examined the problem of proportional-share scheduling for multiproces-
sor systems. These chapters focused on algorithms that schedule only kernel-level schedulable enti-
ties such as threads and processes. In practice, however, most real applications are multi-threaded or
have multiple processes and thus have parallelism. Scheduling such applications requires resource
allocation for aggregation of application threads. Further, many applications with similar character-
istics can be grouped together into service classes that may be allocated resources collectively, or
may employ class-specific schedulers. Suitable scheduling frameworks and algorithms are needed
to incorporate the requirements of such aggregations of threads, processes, and applications.

In this chapter, we present the notion of hierarchical scheduling that allows such aggregation of
threads and applications into classes that can be scheduled as individual entities. We examine the
challenges in achieving proportional allocation in a hierarchical framework, and present algorithms
that extend the weight readjustment and surplus fair scheduling algorithms (presented in Chapter 2)
to achieve proportional-share allocation in hierarchical frameworks.

4.1 Hierarchical Scheduling

Hierarchical scheduling is a scheduling framework that enables the grouping together of threads,
processes, and applications into service classes [36]. CPU bandwidth is then allocated to these
classes based on the collective requirement of their constituent entities. A hierarchical scheduling
framework consists of a scheduling hierarchy (or scheduling tree). Each node in the scheduling tree
corresponds to a thread or an aggregation of threads such as an application or a service class. In
particular, the leaf nodes of the tree correspond to threads, while each internal (non-leaf) node in
the hierarchy corresponds to either a service class or a multi-threaded application. The root of the
tree represents the aggregation of all threads in the system.

The goal of hierarchical scheduling is to provide CPU allocation to each node in the tree ac-
cording to its requirement. Every node in the tree is assigned a weight and receives a fraction of the
CPU service allocated to its parent node. The fraction it receives is determined by its weight relative
to its siblings. Thus, if P is an internal node in the tree and CP is the set of its children nodes, then
the CPU service Ai received by a node i ∈ CP is given by

Ai =
wi

∑

j∈Cp
wj

· AP ,

where, AP is the CPU service available to the parent node P , and wj denotes the weight of a node
j.

Example 6 Figure 4.1 illustrates an example scheduling hierarchy that has two service classes –
best-effort (BE) and soft real-time (SRT). The BE class consists of two multi-threaded applications—
an FTP server and a Web server. The CRT class is subdivided into two classes—audio and video.
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Figure 4.1. A scheduling hierarchy: multiple threads and applications are grouped together in a
scheduling tree.

The video class consists of an MPEG and a Quicktime server application, while the audio class con-
sists of an MP3 server application. The weight of each of these nodes in the scheduling hierarchy
is illustrated in the figure. Based on these weights, the BE and SRT classes should receive 25% and
75% of the system CPU service respectively. The FTP and Web servers should then share the CPU
service allocated to the BE class in the ratio 1:4, thus receiving 5% and 20% of the system CPU
service respectively. The desired shares of other nodes can be similarly computed in a top-down
manner.

Such hierarchical scheduling frameworks have been employed for scheduling uniprocessors [36]
and network interfaces [18, 74]. In such scheduling frameworks, each internal node of the schedul-
ing tree must employ a scheduler that can partition its CPU service among its children nodes pro-
portionately, and be insensitive to fluctuating CPU bandwidth available to it. A proportional-share
scheduling algorithm such as SFQ has been shown to meet all these requirements in uniprocessor
environments [36]. In this chapter, we consider the problem of proportional-share scheduling for
such scheduling hierarchies in multiprocessor environments. We begin by examining the restric-
tions on the weight assignments of the tree nodes, and show how these restrictions can be enforced.
We then present a scheduling algorithm that can schedule the internal nodes of a scheduling tree to
achieve proportional allocation.

4.2 Hierarchical Weight Readjustment

From the description of the hierarchical scheduling model, we see that the partitioning of the
CPU bandwidth is crucially dependent on the weights assigned to the nodes in the scheduling tree.
These weights are typically assigned externally based on the requirements of applications and ap-
plication classes. However, as shown in Chapter 2 in the context of proportional-share scheduling,
an infeasible weight assignment leads to unbounded unfairness in multiprocessor environments. A
similar problem occurs for the nodes of the scheduling tree, if we have infeasible weight assign-
ments for the sibling nodes at any tree level, and therefore, the weights of nodes in the scheduling
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tree also have to be carefully chosen. Feasible weight assignment of the tree nodes thus requires a
definition of weight feasibility in the context of hierarchical scheduling.

4.2.1 Generalized Weight Feasibility Constraint

Recall from Section 2.3.1 that a weight assignment for a set of threads is considered infeasi-
ble if any thread is assigned more CPU bandwidth than it can utilize. This property is based on
the observation that each thread can run on at most one CPU at a time. However, in the case of
hierarchical scheduling, since a node in the scheduling tree divides its CPU bandwidth among the
threads in its subtree, it is possible for a node to have multiple threads running in parallel. Thus,
with multiple threads in its subtree, a node in the scheduling tree can utilize more than one CPU in
parallel. However, the number of CPUs that a node can utilize is still constrained by the number of
threads it can run in parallel. The following example illustrates the implications of such restricted
parallelism:

Example 7 Consider an 8-CPU system, running a scheduling hierarchy with two nodes N1 and
N2 having 3 and 6 threads respectively in their subtrees. Further assume that the nodes have equal
weights, so that each node is entitled to 50% of the CPU bandwidth, which is effectively 4 CPUs
each. Since N1 has only 3 threads, it is constrained to use at most 3 CPUs at a time. On the other
hand, although N2 has 6 threads, it is entitled to use only 4 CPUs because of its weight. If we
assume that the system is work-conserving and allocates unused bandwidth to runnable threads,
then N2 can utilize 5 CPUs. Thus, based on their usage, the effective weights of N1 and N2 are in
the ratio 3:5 instead of the original assignment of 1:1.

This example illustrates that weights assigned to nodes in the scheduling tree must be con-
strained by the number of threads they can run in parallel. To formalize this observation, we first
present some definitions.

Definition 2 Thread parallelism (θi): Thread parallelism of a node i in a scheduling tree is defined
to be the number of independent schedulable entities (threads) in node i’s subtree, i.e., threads that
node i could potentially schedule in parallel on different CPUs.

Thread parallelism of a node is given by the following relation:

θi =
∑

j∈Ci

θj , (4.1)

where Ci is the set of node i’s children nodes. This equation states that the number of threads
schedulable by a node is the sum of the threads schedulable by its children nodes. By this definition,
θi = 1 for a thread in the system.

Definition 3 Processor availability (πi): Processor availability for a node i in a scheduling tree is
defined as the CPU bandwidth, expressed in units of number of processors, available to node i for
running its threads in parallel.

Processor availability of a node depends on its weight and the processor availability of its parent
node:

πi =
wi

∑

j∈CP
wj

· πP , (4.2)

where P is the parent node of node i, and CP is the set of node P ’s children nodes. This equation
states that the CPU bandwidth available to a node for scheduling its threads is the weighted fraction

46



Root

 Best
Effort SRT

FTP Web Video Audio

MPEG QTime
Threads

MP3

�������
� �	�


���
� �	�

���	�
� ����� �

���	�
� �	�

���	 
! ��"

#�$	%
& $	'

(�)	*
+ )�,

-�.	/
0 .	/

1�2	3
4 2	5

6�7�8
9 7	:<; =

Figure 4.2. The values of thread parallelism and processor availability for a scheduling hierarchy.

of the CPU bandwidth available to its parent node. Since the root of the tree corresponds to an
aggregation of all threads in the system, πroot = min(p, n) for the root node in a p-CPU system
with n runnable threads.

We illustrate how the values of the thread parallelism and processor availability could be com-
puted for the nodes in a scheduling tree using the following example:

Example 8 Consider an 8-CPU system running the scheduling hierarchy described in Example 6
(shown in Figure 4.1). Then, we can compute the values of the thread parallelism and processor
availability for each node in the tree using the the above definitions. The values of thread parallelism
can be computed in a bottom-up manner, starting with each thread. For instance, since the FTP
and Web classes have 1 and 3 threads respectively, the thread parallelism of the Best-Effort class,
θBE = 4. The values of the processor availability can be computed in a top-down manner starting
with the root node and considering the weight of each node in the hierarchy. For instance, since
πroot = 8, and the Best-Effort class receives 25% of the CPU bandwidth of the root node, the
processor availability of the Best-Effort class, πBE = 2. The values of these parameters can be
computed in a similar manner for the other nodes in the tree. The computed values for this example
hierarchy are shown in Figure 4.2.

Having illustrated how to compute the values of θ and π for the nodes in a scheduling tree, we
now describe the relation between their values and the feasibility of node weights. As illustrated in
Example 7, the weight of a node in the scheduling tree is constrained by the number of threads it
can run in parallel. In particular, the number of processors assigned to a node should not exceed the
number of threads in its subtree. In other words,

πi ≤ θi, (4.3)
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gen readjust(array [w1...wn], float π)

// Input: Array of weights in sorted order of

(

wi

θi

)

, number of processors

// Output: Array of adjusted weights [φ1...φn]
begin

1 if(
w1

∑n

j=1 wj

>
θ1

π
)

2 begin
3 gen readjust([w2...wn], π − θ1)

4 φ1 = (
θ1

π − θ1
) ·
∑n

j=2 φj

5 end
6 else
7 φi = wi,∀i = 1, . . . , n
end

Figure 4.3. The generalized weight readjustment algorithm: the algorithm is invoked for adjusting
the weights of a set of sibling nodes in the scheduling tree.

for any node i in the tree. Using the definition of processor availability (Equation 4.2), Relation 4.3
can be written as

wi
∑

j∈CP
wj

≤
θi

πP

, (4.4)

where, P is the parent node of node i and CP is the set of P ’s children nodes.
We refer to Relation 4.4 as the generalized weight feasibility constraint. Intuitively, this con-

straint specifies that a node cannot be assigned more CPU capacity than it can utilize through its
parallelism. Note that Relation 4.4 is a generalization of the weight feasibility constraint (Rela-
tion 2.4) defined in Section 2.3.1, where θi = 1 for all threads, and πP = p, p being the number of
CPUs in the system.

The generalized weight feasibility constraint is a necessary condition for any work-conserving
algorithm to achieve proportional-share scheduling in a multiprocessor system, as it satisfies the
following property:

Theorem 3 No work-conserving scheduler can divide the CPU bandwidth among a set of nodes in
proportion to their weights if any node violates the generalized weight feasibility constraint.

We prove this property in Appendix B. Next, we present an algorithm that allows us to maintain
the generalized weight feasibility constraint in a scheduling hierarchy.

4.2.2 Generalized Weight Readjustment

As shown above, Relation 4.4 specifies a feasibility constraint on the weights assigned to nodes
in a scheduling hierarchy. However, given a scheduling hierarchy, it is possible that some nodes in
the hierarchy have infeasible weights. We now present an algorithm that transparently adjusts the
weights of the nodes in the tree so that they all satisfy the generalized weight feasibility constraint.

Figure 4.3 shows the generalized weight readjustment algorithm that modifies the weights of a
set of sibling nodes in a scheduling tree, so that their modified weights satisfy Relation 4.4. This
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hier readjust(tree node node)
// Input: Tree node on which hierarchical readjustment needs to be performed
begin
1 gen readjust(node.weight list, πnode)

// weight list is the list of weights of node’s children ordered by

(

wi

θi

)

,

// πnode is the processor availability of node
2 foreach child in Cnode

// Cnode is the set of node’s children
3 begin

4 πchild =

(

φchild
∑

j∈Cnode
φj

)

· πnode

5 hier readjust(child)
6 end
end

Figure 4.4. The hierarchical weight readjustment algorithm: the algorithm adjusts the weights of
all nodes in the subtree of a given node.

algorithm determines the adjusted weight of a node based on its original weight as well as the
number of threads it can schedule. Intuitively, if a node demands more CPUs than the number of
threads it can schedule, the algorithm assigns it as many CPUs as is allowed by its thread parallelism,
otherwise, the algorithm assigns CPUs to the node based on its weight. When used on a set of
threads, this algorithm reduces to the weight readjustment algorithm presented in Section 2.3.1,
where each node corresponds to a single thread.

As input, the algorithm takes a list of node weights, where the nodes are sorted in non-increasing

order of their weight-parallelism ratio

(

wi

θi

)

. The algorithm then recursively adjusts the weights

of the nodes until it finds a node that satisfies Relation 4.4. Ordering the nodes by their weight-
parallelism ratio ensures that constraint-violating (infeasible) nodes are always placed before nodes
satisfying the constraint (feasible nodes)1. This ordering makes the algorithm efficient as it enables
the algorithm to first examine the infeasible nodes, allowing it to terminate as soon as it encounters
a feasible node. Note that for the weight readjustment algorithm defined in Section 2.3.1, θi = 1 for
all threads, and hence, ordering the threads by weight-parallelism ratio reduces to ordering them by
weight.

The generalized weight readjustment algorithm can be used to adjust the weights of all the nodes
in the tree in a top-down manner using a hierarchical weight readjustment algorithm. This algo-
rithm is shown in Figure 4.4. Intuitively, this algorithm traverses the tree in a depth-first manner2,
and for each node P , the algorithm (i) applies the generalized weight readjustment algorithm to the
children of node P , and (ii) computes the processor availability for the children of P using Equa-
tion 4.2 based on their adjusted weights φi. The working of the hierarchical weight readjustment is
illustrated in the following example:

1We prove this property of the ordering in Appendix B. The intuitive reason is that nodes that have higher weights or
have fewer number of threads to schedule are more likely to violate the feasibility constraint (Relation 4.4).

2We can also use other top-down tree traversals such as breadth-first, where a parent node is always visited before its
children nodes.
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Figure 4.5. Application of the hierarchical weight readjustment algorithm on a scheduling hierar-
chy.

Example 9 Once again consider the scheduling hierarchy described in Example 6 (shown in Fig-
ure 4.1), now running on a 16-CPU system. Here, we see how the hierarchical weight readjustment
algorithm (Figure 4.4) is used to modify the weights of the nodes in the scheduling tree. Figure 4.5
shows the original and adjusted weights for the nodes in the scheduling tree along with their values
of thread parallelism and processor availability after applying the algorithm. To begin with, since
the value of θroot = 12, we have πroot = min(12, 16) = 12. In the next step, the weights of the
Best-Effort and SRT are modified nodes using the generalized weight readjustment algorithm (Fig-
ure 4.3). The weight of the SRT node is infeasible to begin with (as it has a θ value of 8, while
its CPU demand based on its original weight is 9 CPUs). This weight is adjusted so that the CPU
demand of the SRT node becomes 8 CPUs, that can be utilized by the threads in its subtree. The
weights of the other nodes in the tree are similarly adjusted in a top-down manner.

Next, we present the properties of the generalized weight readjustment algorithm.

4.2.3 Properties of Generalized Weight Readjustment

In this section, we first present the properties of the generalized weight readjustment algorithm.
We then present its running time complexity that allows us to determine the time complexity of the
hierarchical weight readjustment algorithm. Detailed proofs and derivations of the properties and
results presented in this section can be found in Appendix B.

First of all, the generalized weight readjustment algorithm ensures that no node demands more
CPU service than it can utilize. The following theorem states this correctness property of the algo-
rithm:

Theorem 4 The adjusted weights assigned by the generalized weight readjustment algorithm sat-
isfy the generalized weight feasibility constraint.
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Besides satisfying the generalized weight feasibility constraint, the adjusted weights assigned
by the generalized weight readjustment algorithm are also “closest” to the original weights in the
sense that the weights of nodes violating the generalized weight feasibility constraint are reduced
by the minimum amount to make them feasible, while the remaining nodes retain their original
weights. This property of the generalized weight readjustment algorithm is stated in the following
theorem:

Theorem 5 The adjusted weights assigned by the generalized weight readjustment algorithm sat-
isfy the following properties:

1. Nodes that are assigned fewer CPUs than their thread parallelism retain their original weights.

2. Nodes with an original CPU demand exceeding their thread parallelism receive the maximum
possible share they can utilize.

These properties intuitively specify that the algorithm does not change the weight of a node
unless required to satisfy the feasibility constraint, and then the change is the minimum required to
make the node feasible.

To examine the time complexity of the generalized weight readjustment algorithm, note that for
a given set of sibling nodes in the scheduling tree, the number of infeasible nodes can never exceed
the processor availability of their parent node3. Since the generalized weight readjustment algorithm
examines only the infeasible nodes, its time complexity is given by the following theorem:

Theorem 6 The worst-case time complexity T (n, π) of the generalized weight readjustment algo-
rithm for n nodes and π processors is O(π).

Since the hierarchical weight readjustment algorithm employs the generalized weight readjust-
ment algorithm to adjust the weights of sibling nodes at each level of the tree, we can extend the
analysis of the generalized weight readjustment algorithm to analyze the complexity of the hierar-
chical weight readjustment algorithm, which is given by the following theorem.

Theorem 7 The worst-case time complexity T (n, h, p) of the hierarchical weight readjustment al-
gorithm for a scheduling tree of height h with n nodes running on a p-CPU system is O(p · h).

Theorem 7 implies that the running time of the hierarchical weight readjustment algorithm de-
pends only on the height of the scheduling tree and the number of processors in the system, and is
independent of the number of runnable threads in the system.

4.3 Hierarchical Multiprocessor Proportional-Share Scheduling

In the previous section, we presented an algorithm for the readjustment of weights assigned to
the nodes in the scheduling tree, in order to make them feasible. Given a set of feasible weight
assignments for the tree nodes, the next step is to schedule the threads in a manner that enables
different nodes in the hierarchy to meet their CPU requirement.

We begin by describing how hierarchical scheduling is performed in uniprocessor environ-
ments, and show the limitations of such approaches and their naive extensions in multiprocessor

3This is because if a node demands more CPU service than its thread parallelism, then its demand exceeds at least one
processor (since its thread parallelism > 0), and the number of nodes demanding more than one processor cannot exceed
the number of processors available to them, namely the parent node’s processor availability π.
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hier sched()
begin

node = root
while (node is not leaf)
begin

node = gen sched(node)
//gen sched is an algorithm that selects a child of node for scheduling

end
end.

Figure 4.6. Hierarchical Scheduling: the algorithm works by traversing the scheduling tree in a
top-down manner from the root to a leaf node, selecting a node at each level for scheduling.

environments. We then present a hierarchical scheduling algorithm that incorporates a multipro-
cessor thread-scheduling algorithm4 such as surplus fair scheduling (SFS) to achieve hierarchical
proportional-share scheduling in a multiprocessor environment.

4.3.1 Hierarchical Scheduling

Figure 4.6 shows a generic hierarchical scheduling algorithm that has been used for hierarchical
scheduling on uniprocessors [36] and network interfaces [18, 74]. This algorithm works as follows.
Whenever a CPU needs to be scheduled, the hierarchical scheduler schedules a “path” from the root
of the tree to a leaf node (or thread)5. In other words, the algorithm iteratively “schedules” a node
at each level of the tree, until it reaches a thread. This thread is then scheduled directly on the CPU.
Scheduling an internal node of the tree corresponds to restricting the choice of the next scheduled
thread to the node’s subtree.

In order to achieve proportional-share scheduling for all nodes in the scheduling tree, the algo-
rithm for selecting a node at each level (gen sched) has to be appropriately chosen. In uniprocessor
environments, a thread-scheduling proportional-share algorithm can be employed to schedule inter-
nal nodes as well (as has been done with the hierarchical SFQ algorithm [36]). However, using a
similar approach (namely to use a thread-scheduling algorithm to schedule the internal nodes of the
scheduling tree) fails in a multiprocessor environment as illustrated by the following example:

Example 10 Consider a 4-CPU system running a scheduling tree with three sibling nodes N1, N2,
and N3 at a given tree level, with weights in the ratio 2:2:1. Let us assume that each node has
sufficient number of threads in its subtree, so that these weights are feasible. The resulting values
of processor availability for the nodes are then π1 = π2 = 1.6 and π3 = 0.8 respectively. Further
assume that all the CPUs are scheduled simultaneously at the end of each time unit (or quantum).
Thus, to achieve proportional-share scheduling, after 5 time units, nodes 1 and 2 should each have
received 8 units of CPU service, while node 3 should have received 4 units. However, if we were
to employ a thread-scheduling algorithm such as SFS to schedule these nodes, then, SFS would
simply assign a single CPU to each node at all times (as there are 3 schedulable entities and 4

4By a thread-scheduling algorithm, we mean a scheduling algorithm such as SFS that is designed to schedule indi-
vidual threads or schedulable entities that do not have parallelism (unlike internal nodes in a scheduling tree that could
schedule multiple threads in their subtree in parallel).

5In general, the leaf node of a tree could also correspond to a class-specific scheduler that schedules threads on the
processors. However, we consider leaf nodes to be threads here for ease of exposition.
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CPUs). Hence, each node would receive 5 units of service at the end of 5 time units, resulting in
disproportionate allocation as well as idling of 1 CPU even in the presence of runnable threads.

This example demonstrates that the approach of employing a thread-scheduling algorithm for
selecting the internal nodes of a scheduling tree fails in a multiprocessor environment. This is be-
cause of the following reason. On a uniprocessor, only a single thread can be scheduled at any given
time. Scheduling a thread to run on a CPU is equivalent to scheduling each node on the path from
the root to the node (as done by the hierarchical scheduling algorithm shown in Figure 4.6). These
intermediate nodes can then be scheduled using a thread-scheduling algorithm. However, in a mul-
tiprocessor environment, multiple threads are scheduled to run on multiple CPUs concurrently. It
is thus possible to have multiple threads belonging to the same internal node of the scheduling tree
running in parallel on different CPUs. This inherent parallelism can be achieved only by scheduling
an internal node multiple times concurrently, or, in other words, by assigning multiple CPUs to the
node. This form of scheduling cannot be performed by a thread-scheduling algorithm such as SFS,
because it is not designed to exploit the inherent parallelism of individual schedulable entities. The
key limitation of a thread-scheduling algorithm is that it has no mechanism to schedule the same
schedulable entity multiple times concurrently. This limitation prevents it from scheduling multiple
threads from the same subtree in parallel. Therefore, a thread-scheduling proportional-share algo-
rithm cannot be used to schedule the internal nodes in a scheduling hierarchy on a multiprocessor.

From the discussion above, we see that a multiprocessor hierarchical algorithm should have
the ability to schedule a node multiple times concurrently. One way to design such an algorithm
is to extend a thread-scheduling algorithm by allowing it to assign multiple CPUs to each node
simultaneously. However, such an extension raises questions about the criterion to select the next
node for scheduling and the number of CPUs to be assigned to it. If such an extension is not done
carefully, it could lead to unfair allocation, as illustrated by the following example:

Example 11 Consider a 5-processor system running a scheduling tree with three sibling nodes N1,
N2, and N3 at a given tree level, with weights in the ratio 12:12:1. Let us assume that each node has
sufficient number of threads in its subtree, so that these weights are feasible. The resulting values
of processor availability for the nodes are then π1 = π2 = 2.4 and π3 = 0.2 respectively. Further
assume that all the CPUs are scheduled simultaneously at the end of each time unit (or quantum).
Thus, to achieve proportional-share scheduling, after 5 time units, nodes 1 and 2 should each have
received 12 units of CPU service, while node 3 should have received 1 unit. Assume that we use a
simple extension of SFS to schedule these nodes that is defined as follows: the scheduler (that we
refer to as Simple-Gen-SFS) picks nodes in the increasing order of their surplus values and assigns
each node min(dπie, l) CPUs, where, l is the number of unscheduled CPUs in the system. Note that
this algorithm is a simple generalization of SFS; SFS assigns dπie = 1 CPUs to each thread (since
0 < πi ≤ 1 for a thread). Employing this algorithm to schedule the nodes, we can show that at
the end of 5 time units, node N2 receives 11 units of CPU service while node N3 receives 2 units
(We do not show the detailed execution of the algorithm here). Thus, this simple extension of SFS
results in disproportionate allocation.

This example illustrates that it is not sufficient to simply allow a thread-scheduling algorithm
to assign multiple CPUs to a node. A hierarchical scheduler also faces the challenges of deciding
which node to select for scheduling, and how many CPUs to assign to it simultaneously. Next, we
present an algorithm that overcomes these challenges by generalizing a thread-scheduling algorithm
such as SFS in a way that it can be employed for scheduling the internal nodes of a scheduling tree
in a multiprocessor environment.
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4.3.2 Generalized Surplus Fair Scheduling

In this section, we present generalized surplus fair scheduling (G-SFS), a scheduling algorithm
designed to achieve proportional-share allocation for the internal nodes of a scheduling tree in a
multiprocessor environment. G-SFS can be employed by a hierarchical scheduler to schedule a set
of sibling nodes at each tree level. G-SFS has the following salient features. First, it is designed to
assign multiple CPUs to a tree node concurrently, so that multiple threads from a node’s subtree can
be run in parallel. Second, it employs surplus fair scheduling (SFS) to perform this CPU assignment
in order to achieve desired CPU service for the tree nodes.

Before presenting the G-SFS algorithm, we first provide the intuition behind its design, and
show how it assigns processors to a node in the scheduling tree. If the processor availability of a
node is πi, then the node should ideally be assigned πi CPUs at all times. However, since a node
can be assigned only an integral number of CPUs at each scheduling instant, G-SFS ensures that
the number of CPUs assigned to the node is within one CPU of its requirement. G-SFS ensures this
property by first assigning bπic number of CPUs to the node at each scheduling instant. Thus, the
remaining processor requirement of the node becomes π ′

i = πi − bπic. Meeting this requirement
for the node is equivalent to meeting the processor requirement for a virtual node with processor
availability π′

i. Since 0 ≤ π′
i < 1, this additional processor requirement can be achieved by using

a proportional-share thread-scheduling algorithm (such as SFS) to assign an additional CPU to
the node at certain scheduling instants. Such a scheduling strategy also ensures that the node is
assigned either bπic or dπie number of CPUs at each scheduling instant, thus providing upper and
lower bounds on the CPU service received by the node.

To reduce the discrepancy between the ideal CPU service and the actual CPU service received
by the node, G-SFS employs SFS as an auxiliary algorithm. The choice of SFS for assigning
additional CPUs to nodes is based on the following intuition. As described above, a node with
processor availability πi can be represented as a virtual node with processor availability π ′

i under G-
SFS for the purpose of satisfying its net service requirement. Then, the relation between the surplus
values of the node and its corresponding virtual node can be derived in the following manner. As
defined in Section 2.4, the surplus of a node i at a time T is given by

αi = Ai(0, T ) − AGMS
i (0, T )

= (Ai(0, T ) − bπic · T ) + bπic · T − πi · T

= A′
i(0, T ) + bπic · T −

(

bπic + π′
i

)

· T

= A′
i(0, T ) − A′

i
GMS

(0, T )

= α′
i

where, the dashed variables (such as A′
i) correspond to the values for the virtual node with processor

availability π′. These equations imply that scheduling nodes in the order of their surplus values is
equivalent to scheduling the corresponding virtual nodes in the order of their surplus values6.

Formally, the G-SFS algorithm works as follows on a set of sibling nodes in the scheduling tree.
For each node in the scheduling tree, the algorithm keeps track of the number of CPUs currently
assigned to the node, a quantity denoted by ri. Note that assigning a CPU to a node corresponds to
scheduling a thread from its subtree on that CPU. Therefore, for any node i in the scheduling tree,

ri =
∑

j∈Ci

rj , (4.5)

6In practice, SFS approximates the ideal definition of surplus, and hence, the relative ordering of nodes is also an
approximation of the desired ordering.
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where, Ci is the set of node i’s children.
Then, G-SFS partitions each set of sibling nodes in the scheduling tree into the following subsets

based on their current CPU assignment:

• Deficit set: A node is defined to be in the deficit set if the number of CPUs currently assigned
to the node, ri < bπic. In other words, the current CPU assignment for a node in the deficit
set is below the lower threshold of its requirement. The scheduler gives priority to deficit
nodes, as scheduling a deficit node first allows it to reach its lower threshold of bπic CPUs.
Since the goal of G-SFS is to assign at least bπic CPUs to each node at all times, it is not
important to order these nodes in any order for scheduling, and they are scheduled in FIFO
order.

• Low-threshold set: The low-threshold set consists of those nodes for which bπic = ri < dπie.
These are the nodes that are currently assigned the lower threshold of their requirement, and
are scheduled if there are no deficit nodes to be scheduled. Scheduling these nodes emulates
the scheduling of corresponding virtual nodes with processor availability π ′

i. These nodes are
scheduled using SFS, and hence, are ordered in the increasing order of their surplus values.

• High-threshold set: This set consists of those nodes for which ri ≥ dπie, i.e., the ones that
are currently assigned at least the upper threshold of their requirement. These nodes are
considered ineligible for scheduling.

Note that G-SFS reduces to SFS in a single-level thread-scheduling scenario, as in that case,
the weight feasibility constraint requires that 0 < πi ≤ 1, ∀i, which means that all threads are
either low-threshold (if they are not currently running) or high-threshold (if they are currently run-
ning) at any scheduling instant. The low-threshold threads (i.e., the ones in the run-queue) are then
scheduled in the order of their surplus values.

4.3.3 Properties of Generalized Surplus Fair Scheduling

We now present the properties of generalized surplus fair scheduling. We consider a system
model consisting of a fixed scheduling hierarchy, with no arrivals and departures of threads and no
weight changes. Further, we assume that the scheduling on the processors is synchronized. In other
words, all p CPUs in the system are scheduled simultaneously at each scheduling quantum. We relax
this synchronization requirement in the next subsection and consider the effect on the properties of
G-SFS. For the non-trivial case, we would also assume that the number of threads n ≥ p. In such a
system model, G-SFS satisfies the following properties.

Theorem 8 After every scheduling instant, for any node i in the scheduling tree, G-SFS ensures
that

bπic ≤ ri ≤ dπie.

Corollary 1 For any time interval [t1, t2), G-SFS ensures that the CPU service received by any
node i in the scheduling tree is bounded by

bπic · (t2 − t1) ≤ Ai(t1, t2) ≤ dπie · (t2 − t1).
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From Theorem 8, we see that G-SFS ensures that the number of processors assigned to each
node in the scheduling tree at every scheduling quanta lies within 1 processor of its requirement.
This result leads to Corollary 1 which states that the CPU service received by each node in the tree
is bounded by an upper and a lower threshold that are dependent on its processor availability. The
proof of Theorem 8 can be found in Appendix C.

4.3.4 Handling Asynchronous Scheduling Events

In the previous subsection, we considered the properties of G-SFS applied to the nodes of a
scheduling tree when the CPUs in the system are scheduled in a synchronous manner. However, in
a real system, scheduling events are asynchronous across the CPUs. Typically, an individual CPU
calls the scheduler in response to an event such as a timer interrupt or a blocking event. In this
scenario, the scheduler has to select a thread to run on the CPU being scheduled. This scenario is
equivalent to using a hierarchical scheduler (Figure 4.6) with G-SFS as the gen sched algorithm.
This scenario can result in a violation of Theorem 8 as shown in the following example:

Example 12 Consider a 2-CPU system running a 3-level scheduling hierarchy having two internal
nodes N1 and N2 with π = 1.5 and π = 0.5 respectively. Further, assume N1 consists of two threads
T1 and T2 in its subtree with π = 1 and π = 0.5 respectively, while N2’s subtree consists of one
thread with π = 0.5. In this scenario, thread T1 should always be running on a CPU, while the other
two threads should share a CPU among them. Let us assume the two CPUs are initially assigned
to T1 and T2. This assignment satisfies the property in Theorem 8, as all nodes in the system are
currently assigned between bπic and dπie number of CPUs. After running for 1 quantum, suppose
the CPU on which T1 is running (say, CPU 1) is interrupted due to a timer interrupt. At this point,
node N1 has a surplus of 2 units, while N2 has a surplus of 0. The algorithm works in a top-down
manner, because of which it first selects node N2 and then, thread T3 to run on CPU 1. Thus, T3

pre-empts T1, while T2 is running on CPU 2. At this point, thread T1 violates Theorem 8, as it is
assigned 0 CPUs, which is less than its low-threshold requirement.

The reason this problem occurs is that in the absence of synchronous scheduling quanta, the
scheduler has the ability to schedule only a single thread at a time. Further, since the scheduling
occurs in a top-down manner, a node cannot be considered for scheduling if any node on its path
from the root is not selected for scheduling. In other words, selection of a node at a given level of
the tree determines the subtree from which the next thread would be chosen. Thus, it is possible
that a pre-empted node may move into the deficit set, but is not reconsidered for scheduling as one
of its ancestor nodes has not been chosen in the top-down scheduling.

To overcome this problem, we modify the hierarchical scheduling algorithm to first check if a
node being pre-empted would move into the deficit set if not rescheduled. If this is the case, then,
the pre-empted node is rescheduled immediately, otherwise, the scheduling is done from the root
node in a top-down manner as before using G-SFS at each level. Thus, for instance, in the scenario
described in Example 12, T1 would be rescheduled again on being pre-empted, and T3 would get
scheduled only when T2 is pre-empted. This modification thus ensures that after each scheduling
instant, there is no node in the deficit set.

4.4 Simulation Study

In this section, we present the results of a simulation study conducted to evaluate the perfor-
mance of hierarchical scheduling with G-SFS. To quantify the performance of an algorithm, we
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measure the deviation Di of each node i in the scheduling tree from its ideal share:

Di =

∣

∣

∣

∣

Ai − Aideal
i

Atotal

∣

∣

∣

∣

where, Ai and Atotal denote the CPU service received by node i and the total CPU service in the
system respectively, and Aideal

i is the ideal CPU service that the node should have received based on
its relative weight in the hierarchy. We then use the mean deviation of all the nodes in the scheduling
tree to characterize the unfairness of the algorithm.

In the study, we simulate multiprocessor systems with different number of processors. For each
simulation, we generate a scheduling tree hierarchy with a given number of internal nodes (N ) and
a given number of threads (n). These nodes and threads are arranged in the tree in the following
manner. The parent of an internal node is chosen uniformly at random from the set of other internal
nodes, while the parent of a thread is selected uniformly at random from the set of internal nodes
without children (to prevent a thread and an internal node from being siblings in the tree). By using
different seeds for our random number generators, we generate different tree structures for the same
values of N and n. These nodes and threads are then assigned weights chosen uniformly at random
from a fixed range of values. Further, each thread is assumed to be runnable for the whole duration
of the simulation.

Each simulation runs as follows. The system time is measured in ticks, and the maximum
scheduling quantum is defined to be a multiple of ticks. Each CPU is interrupted at a time chosen
uniformly at random within its quantum, at which point it calls the hierarchical scheduler to assign
the next thread to run on the CPU7. We assume a fixed set of threads and a fixed scheduling hierarchy
in each of our simulations.

We compare the G-SFS algorithm with the following algorithms for use in a scheduling hierar-
chy:

• SFS: This is the thread-scheduling surplus fair scheduling algorithm employed to schedule
nodes at each level of the scheduling hierarchy.

• Simple-Gen-SFS: This is a simple generalization of SFS (described in Example 11) that se-
lects a node with the minimum surplus among a set of sibling nodes, and assigns it dπie
number of CPUs. This is a generalization of SFS as SFS algorithm assigns dπie = 1 CPU to
each selected thread, where 0 < πi ≤ 1 for all threads in that case. Note that this algorithm
does not guarantee that bπic ≤ ri ≤ dπie for all nodes in the scheduling tree. We use this
algorithm to represent a simple generalization of a proportional-share algorithm.

• Gen-RR: This is an algorithm that generalizes the Round Robin algorithm in a manner similar
to the way that the G-SFS algorithm generalizes SFS. Like G-SFS, this algorithm also uses
the notions of deficit, low-threshold, and high-threshold sets to assign processors to nodes.
However, in this case, the nodes in the low-threshold set are scheduled using the Round Robin
scheduler instead of SFS. We use this algorithm for comparison to illustrate the benefits of
employing a proportional-share algorithm such as SFS as an auxiliary scheduler even when
the processor availability thresholds are met at all times.

• G-SFS: This is the generalized SFS algorithm presented in the previous section.
7Threads may not use full quantum lengths either because of having used up partial quantum lengths in their previous

runs, or due to pre-emption or blocking events. Here, we consider only the first two reasons for variable-length quanta.
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Figure 4.7. Mean deviation for scheduling trees with 10 internal nodes on different size multipro-
cessor systems.

In our experiments, we simulate multiprocessor systems with 2, 4, 8, 16, and 32 CPUs respec-
tively. We generate scheduling trees with 2, 4, 8, and 10 internal nodes, and a set of values for the
number of threads in the system varying from 3 to 100. For each of these parameter combinations,
we run 100 simulations with each scheduler using different random number generator seeds. Next,
we present the results of our simulation study.

4.4.1 Comparison of Schedulers

Figures 4.7(a), (b), and (c) show the comparison of the algorithms described above for 2-, 8-,
and 32-processor systems respectively. These figures plot the mean deviation from the ideal share
for all the nodes in the tree. These figures show results for scheduling trees with 10 internal nodes
in each case. As can be seen from the figures, the SFS algorithm has the highest deviation. This
is because SFS assigns at most 1 CPU to each node, resulting in large deviations for nodes which
have a requirement of multiple CPUs. The poor performance of SFS shows the inability of a thread-
scheduling algorithm to exploit thread parallelism within the tree. The Gen-RR algorithm also
performs relatively poorly. However, as seen from Figure 4.8 which plots the maximum deviation
for any node in the tree, we see that the maximum deviation of any node in the tree in the presence
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Figure 4.8. Maximum deviation for scheduling trees with 10 internal nodes on different size multi-
processor systems.
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Figure 4.9. Mean deviation for scheduling trees with different sizes on a 32-processor system.

60



of Gen-RR is bounded by about 17.1%, 5.89%, and 1.75% for a 2-CPU, 8-CPU, and a 32-CPU
system respectively, which translates to a maximum deviation of about 0.34, 0.47, and 0.54 CPUs
respectively. Since the maximum deviation < 1, this result shows that the number of CPUs available
to any node in the scheduling tree is bounded by the upper and lower thresholds of its processor re-
quirement. However, since Round Robin algorithm does not differentiate between the requirements
of different nodes, the residual bandwidth is not divided proportionately among the nodes. Finally,
we see that the Simple-Gen-SFS and G-SFS algorithms have small deviation values, indicating that
employing a generalization of a proportional-share algorithm is crucial in meeting the requirements.
Further, we see that G-SFS has the smallest deviation values, which indicates that a combination of
threshold bounds along with a proportional-share algorithm provides the best performance in terms
of achieving proportional-share allocation.

Similarly, Figures 4.9(a), (b) and (c) show the comparison of the algorithms for scheduling trees
with 2, 6, and 10 internal nodes running on a 32-processor system. As can be seen from the figures,
the G-SFS algorithm again has the least mean deviation values among the algorithms considered
here.

These results demonstrate that using a thread-scheduling algorithm is ineffective for exploiting
thread parallelism in a scheduling tree. Further, we see that generalizing a proportional-share al-
gorithm such as SFS is more effective in achieving proportional-share allocation in a scheduling
hierarchy than ensuring the bounds on the processor allocation. Moreover, the results show that a
combination of bounded processor allocation coupled with the employment of a proportional-share
algorithm as an auxiliary scheduler achieves the most accurate proportional allocation.

4.4.2 Impact of System Parameters

Now, we consider the effect of system parameters such as the number of processors, number of
threads, and tree size on the performance of G-SFS.

In Figure 4.10, we plot the mean deviation as the number of CPUs is varied. As can be seen
from the figures, the mean deviation decreases as we increase the number of processors in the
system. This is because as the number of processors increases, there are more processors available
to schedule the nodes, and hence, there is less contention and waiting delay for each node. Hence,
on an average, there is lower deviation from the desired share as we increase the number of CPUs.

In Figure 4.11, we plot the mean deviation as the tree size (in number of internal nodes) is
varied. As can be seen from the figures, the mean deviation increases as we increase the tree size.
This is because, with larger number of nodes in the tree, there is more contention among different
nodes in terms of receiving their shares, leading to greater unfairness.

However, from both Figures 4.10 and 4.11, we see that the deviation decreases as we increase
the number of threads. The main reason is that, for the same system configuration, as the number
of threads increases, the average share received by each thread also decreases, which in turn leads
to smaller deviation. Another way to understand this phenomenon is to observe that with larger
number of threads, there is a smaller probability of CPUs remaining idle in the presence of runnable
threads.

Overall, our results demonstrate that G-SFS is effective in reducing the deviation of tree nodes
from their desired shares. We also show that the performance of G-SFS improves in the presence of
large number of CPUs, smaller tree sizes, and large number of runnable threads.
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Figure 4.10. Effect of number of processors on the deviation of G-SFS.

62



 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  2  4  6  8  10

M
ea

n 
se

rv
ic

e 
de

vi
at

io
n 

(%
 to

ta
l s

er
vi

ce
)

Number of internal nodes

Threads=40
Threads=60
Threads=80

Threads=100

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  2  4  6  8  10
M

ea
n 

se
rv

ic
e 

de
vi

at
io

n 
(%

 to
ta

l s
er

vi
ce

)
Number of internal nodes

Threads=40
Threads=60
Threads=80

Threads=100

(a) 2 CPUs (b) 8 CPUs

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  2  4  6  8  10

M
ea

n 
se

rv
ic

e 
de

vi
at

io
n 

(%
 to

ta
l s

er
vi

ce
)

Number of internal nodes

Threads=40
Threads=60
Threads=80

Threads=100

(c) 32 CPUs

Figure 4.11. Effect of tree size on the deviation of G-SFS.
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4.5 Concluding Remarks

In this chapter, we considered the problem of hierarchical scheduling on multiprocessors to
achieve desirable scheduling of applications and service classes. In a hierarchical scheduling frame-
work, each node in the hierarchy is assigned a weight and receives CPU bandwidth from its parent
node in proportion to this weight.

We first showed how feasible weights can be assigned to different nodes in a scheduling hier-
archy by using a generalized weight readjustment algorithm. Such feasible weight assignments are
required in multiprocessor systems for achieving CPU service guarantees.

We then showed the limitations of uniprocessor hierarchical algorithms as well as thread-scheduling
multiprocessor algorithms when used in a multiprocessor system. To overcome these limitations,
we proposed generalized surplus fair scheduling, a scheduling algorithm that employs surplus fair
scheduling algorithm to schedule intermediate nodes of a scheduling tree. Using a simulation study,
we then demonstrated that this algorithm is able to achieve low values of deviation from the ideal
CPU requirement for tree nodes.

In this dissertation, so far we have considered scheduling mechanisms that support proportional-
share CPU allocation on server machines. Next, we examine the problem of dynamically allocating
resource shares such as CPU weights to applications that can be enforced by these mechanisms in
order to achieve self-managing resource allocation on shared servers.
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CHAPTER 5

MEASUREMENT-BASED DYNAMIC RESOURCE ALLOCATION

Implementation of resource management mechanisms, such as proportional-share CPU sched-
ulers, that provide differentiated service to applications, is the first step toward building a self-
managing system. Such mechanisms enable the system to partition resources among applications
based on externally specified shares (or weights). These mechanisms can be exploited to satisfy
application QoS requirements through the specification of appropriate application resource shares.
In a self-managing server, the system determines these shares automatically to meet application
QoS requirements for observed workload characteristics. Moreover, as the application QoS require-
ments or workload characteristics change, these shares have to be recomputed and reallocated to
the applications. We refer to this process of inferring and allocating changing application resource
shares over time as dynamic resource allocation. In this chapter, we examine the problem of dy-
namic resource allocation on a shared server, assuming the existence of proportional-share resource
schedulers in the operating system, such as those presented in the previous chapters.

5.1 Dynamic Resource Allocation: Background

The primary goal of dynamic resource allocation is to meet application requirements under
changing workload conditions1. Application requirements are typically specified as application
QoS metrics such as average response time or average throughput. The system has to determine the
relation between these metrics and the amount of resources each application needs to meet these
requirements. In other words, the system has to infer the resource requirements of an application to
meet its QoS goals for the observed workload. The resource requirements of different applications
can then be used to allocate resources among the applications subject to the total resource availabil-
ity. In this section, we examine some existing approaches that have been employed to perform this
kind of resource inference and dynamic resource allocation.

5.1.1 Queuing Theory

Some resource allocation approaches have used queuing-theoretic models to infer application
requirements [24, 47, 48]. These approaches model Internet applications as queuing systems, and
represent their workloads as request streams. These workloads are specified using request arrival
and service time distributions. The resource requirement of an application is then derived from the
queue statistics on the basis of the steady-state workload parameters.

These existing approaches have several limitations. First, they consider a steady-state system,
and model the long-term average behavior of the application. They ignore the transient behavior
of the system as well as the effect of dynamically-changing workloads. However, since Internet
applications exhibit large variations in workload parameters [2, 9, 43, 57], the transient changes
in the application behavior cannot be ignored for effective dynamic resource allocation. Further,

1We precisely define the problem of dynamic resource allocation considered here in Section 5.2.1.
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many of the existing approaches make simplifying assumptions about their workload parameters
(for instance, Poisson request arrival processes or exponentially distributed service times). These
assumptions are not valid for many real Internet workloads [9, 20, 26, 57], making it desirable to
handle more general workload distributions.

5.1.2 Control Theory

Another approach for dynamic resource allocation is to use control theory [33]. Such an ap-
proach has been applied to computer systems such as Web servers [1, 49], storage systems [50],
and Web caching [51]. The control-theoretic approach works as follows. First, an application QoS
metric (e.g., the average response time) is selected to be maintained at a fixed level. Then, the ap-
plication is modeled as a linear system relating the output variable (the QoS metric) and the control
variable (resource share). Based on the system model, a controller is designed to adjust the control
variable values based on the deviation of the output value from its desired level.

The existing control-theoretic approaches have the following limitations. In a control-theoretic
approach, the system has to be modeled before designing the controller. This modeling requires
prior knowledge of workload characteristics or application behavior. A large change in the applica-
tion behavior requires the system model and the controller design to be changed. This is difficult to
do online, particularly because system modeling requires probing the system with white noise in-
puts. Another drawback with the above approaches is that they are completely reactive, and do not
incorporate any prediction mechanism, that may be useful for pre-emptive allocation of resources.

5.1.3 Application Pre-profiling

Instead of using an explicit model of application resource usage, applications can be profiled to
determine their resource requirements corresponding to various QoS metric values. In this approach,
applications of interest are pre-profiled under expected workload conditions, and their resource
requirements are determined in an isolated environment [11, 75].

One of the main limitations of the pre-profiling approach is that it depends on the characteristics
of the test workload, and may not be adaptable to dynamically changing workloads. In particular,
it produces a static application model that remains fixed throughout the application life-time. Sec-
ond, a good estimation of actual workload characteristics is required at the time of pre-profiling to
emulate online system behavior.

In what follows, we present an online measurement-based dynamic resource allocation approach
that overcomes the limitations of the existing approaches. In this approach, we use a combination
of online measurements, prediction, and queuing theory to infer application resource requirements.
A novel aspect of our approach is that the inference model parameters are determined online, and
there is no need for system identification or pre-profiling.

5.2 Measurement-Based Dynamic Resource Allocation

In this section, we present a measurement-based dynamic resource allocation approach that
uses online measurements and prediction of application workloads to dynamically infer application
resource requirements. It couples this resource inference with an optimization-based technique to
determine the resource allocation for each application.

Figure 5.1 illustrates the main components employed by our measurement-based dynamic re-
source allocation approach. These components are briefly described below.
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Figure 5.1. Components of Measurement-based Dynamic Resource Allocation.

• Online Monitoring and Measurement: To determine the current state of the system and the ap-
plications, the system resource usage, and application QoS metrics must be monitored. These
metrics are useful in determining the current requirements and performance of applications.

• Workload Prediction: Based on the measured system metrics, expected application work-
loads can be predicted for the near future. This workload prediction is used to determine the
changing resource requirements of various applications.

• Application resource inference: The predicted workload is used to infer the expected resource
requirements of an application, by employing a model relating the application’s resource
consumption and QoS metrics. This model allows translation of application QoS goals and
workload characteristics to resource requirements.

• Resource Allocation: Since the total resource requirement of multiple applications may ex-
ceed the system resource capacity, the resource has to be partitioned among the applications
based on their inferred resource requirements, but subject to the total resource constraints.

Before we describe each of these components in detail, we formally define the system model
and the goals of dynamic resource allocation considered here.

5.2.1 System Model and Resource Allocation Goals

Consider a shared server that partitions its resources among multiple applications. The server
services incoming application requests, and each application specifies a QoS requirement for its
requests. A commonly used QoS metric is the request response time. The goal of the system is
to ensure that the mean response time for application requests is close to a target response time.
To formalize the problem, we assume that each application imposes a penalty proportional to the
degradation in its response time, and the goal of the system is to minimize the total penalty over all
applications.
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In general, each incoming request is serviced by multiple hardware and software resources on
the server, such as the CPU, the network interface, and the disk. The specified target response time
can be split into multiple resource-specific response times, one for each such resource [61], so that
the overall target response time for a request can be satisfied by satisfying its per-resource target
response times.

We model a server resource using a system of n queues, where each queue corresponds to a
particular application running on the server. Requests within each queue are assumed to be served
in FIFO order and the resource capacity C is partitioned among the queues using a proportional-
share scheduler. The resource partitioning is achieved by assigning a share φi to each queue, and
allocating it (φi ·C) units of the resource capacity. In the presence of a proportional-share scheduler,
assigning a share to a queue corresponds to specifying a weight for the queue, so that a queue with a
weight wi receives a share φi = wi

∑

j wj
. Thus, the weights wi assigned to the queues are proportional

to their desired shares φi. We note that a proportional-share scheduler is work-conserving: in the
event a queue does not utilize its allocated share, the unused capacity is allocated fairly among other
backlogged queues. Such a resource partitioning model is applicable to many hardware and software
resources found on a server; hardware resources include the processor and network bandwidth,
while software resources include socket accept queues and kernel processes [49, 61].

Reservation-based scheduling [41, 71] is another scheduling paradigm that can be employed
for resource partitioning. While reservation-based schedulers also partition the resource capacity
based on specified application shares, they differ from proportional-share schedulers in one crucial
aspect—while proportional-share schedulers divide the unused resource capacity of an application
among other backlogged applications, reservation-based schedulers do not reallocate unused ca-
pacity of an application to other applications. Thus, while proportional-share schedulers provide
a lower bound on the amount of resource allocated to a backlogged application, reservation-based
schedulers enforce an upper bound on the resource allocation. This scheduling paradigm is also
implicitly employed in scenarios where unused resources cannot be moved between applications.
Examples of such scenarios include allocation among virtual machines [15, 29, 78] or physical
partitioning of resources based on assigned resource shares.

For the above system model employing resource partitioning, dynamic resource allocation cor-
responds to changing the resource shares dynamically as the application workloads change. In par-
ticular, we assume that each application is allocated a certain minimum share φmin

i of the resource
capacity; the remaining capacity (1 −

∑

j φmin
j ) is dynamically allocated to various applications

depending on their current workloads (such that the overall penalty imposed by the applications for
missing their target response times is minimized).

We now state the problem of dynamic resource allocation formally. Let di denote the target
response time of an application i and let T̄i be its observed mean response time over a time interval
W . Define the penalty imposed by an application for missing its target response time by a penalty
function represented as follows:

Pi(T̄i) = (T̄i − di)
+, (5.1)

where x+ denotes max(0, x). The goal of dynamic resource allocation then is to assign a share φi

to each application over the time interval W , φi ≥ φmin
i , such that the total system-wide penalty,

i.e., the quantity P =
∑n

i=1 Pi(T̄i) is minimized. Further, the time interval W is reinitialized at
the end of the previous time interval, so that dynamic resource allocation repeats the same process
again.

Next we describe the various components of our measurement-based dynamic resource alloca-
tion scheme in more detail, presenting the techniques employed by them for prediction, resource
inference, and allocation.
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Figure 5.2. Time intervals used for monitoring, prediction, and allocation.

5.2.2 Online Monitoring and Measurement

Online monitoring is responsible for measuring system and application metrics that are used to
estimate the system model parameters and workload characteristics. Monitoring of system resource
usage and application QoS metrics to detect changes in application requirements requires kernel
hooks and application support. Many existing approaches such as resource containers [13], the
Linux Trace Toolkit [84] and other kernel hooks [61] can be used to obtain relevant metrics about
the applications of interest.

Metrics are collected periodically, forming time-series of measurements, and are used to deter-
mine the current state of the system. The time-granularity of monitoring, prediction, and adaptation
is driven by the following time intervals (see Figure 5.2):

• Measurement interval (I): A measurement interval is a time interval over which the measured
values of a metric of interest are aggregated to generated a single value. For instance, the
monitor tracks the number of request arrivals (ni) in each interval I and records this value.

The choice of the length of a particular measurement interval depends on the desired re-
sponsiveness from the system. If the system needs to react to workload changes on a fine
time-scale, then a small value of I (e.g., I = 1 second) can be chosen. On the other hand, if
the system needs to adapt to long term variations in the workload over time scales of hours or
days, then a coarse-grain measurement interval of minutes or tens of minutes may be desir-
able.

• History (H): The history of measurements represents a sequence of recorded values for each
parameter of interest. The monitor maintains a finite history consisting of the most recent H
values for each such parameter; these measurements form the basis for predicting the future
values of these parameters. The history is maintained as a sliding window of measurements:
as new measurements are made, old measurements are discarded and the window is moved
forward.

• Allocation Interval (W): An allocation interval is the time interval between two successive
invocations of the resource allocation algorithm. The goal of dynamic resource allocation is
to fix the resource allocation over each allocation interval allowing the system to adapt to the
current application requirements over this time interval. The allocation interval length deter-
mines the responsiveness of dynamic resource allocation to changes in application workloads.

Next, we present a technique to infer the dynamically changing resource requirements of an
application. This technique captures the transient behavior of application workloads, and is used to
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determine the resource requirements of an application based on its expected workload and response
time goal.

5.2.3 Transient Queuing Model

As discussed in Section 5.1, the existing approaches for resource inference to achieve dynamic
resource allocation have several limitations. Some existing approaches model the steady-state of
the system, and ignore the effects of dynamically changing workloads, while some others require
application pre-profiling or pre-computed inference model parameters. Another drawback of some
of the techniques is their inability to incorporate predicted values of workloads expected in the
near future. In this section, we present a technique that overcomes these limitations for Internet
applications such as Web servers.

This technique uses a queuing model to derive a relation between an application’s QoS metric
(mean response time) and its resource requirement (resource share). However, instead of consider-
ing the steady-state characteristics of an application’s request queue, it captures the transient state
of the queue periodically. This is done by examining the changing values of queue and workload
parameters such as the queue length, the expected request arrival rate, and service rate of the queue.
These parameters are random variables whose estimated values are updated periodically, and are
used to model the transient state of the queue over fixed intervals of time. We now show how this
model is used to derive the relation between mean response time and resource share of an application
over these time intervals.

As described in the previous section, the allocation algorithm is invoked once every allocation
interval (i.e., every W time units). Let q0

i denote the queue length of a queue i at the beginning of
an allocation interval. Let λ̂i denote the estimated request arrival rate and µ̂i denote the estimated
service rate in the next allocation interval (i.e., over the next W time units). We show later how
these values are estimated. Then, assuming the values of λ̂i and µ̂i are constant, the length of the
queue at any instant t within the next allocation interval is given by the queuing equation

qi(t) =
[

q0
i +

(

λ̂i − µ̂i

)

· t
]+

, (5.2)

where, x+ denotes max(x, 0). This equation states that the amount of work queued up at instant t is
the sum of the initial queue length and the amount of work arriving in this interval less the amount
of work serviced in this duration. Further, the queue length cannot be negative.

Since the resource capacity is partitioned among multiple applications, the service rate of an
application is effectively (φi · C), where φi is the resource share of the application and C is the
resource capacity. Hence, the request service rate is

µ̂i =
φi · C

ŝi
, (5.3)

where ŝi is the estimated mean service demand per request (such as number of bytes per packet, or
CPU cycles per CPU request, etc.).

Note that, with a proportional-share scheduler such as that based on GPS, if some applications
do not utilize their allocated shares, then their unused capacity is redistributed among other back-
logged applications. In this case, Equation 5.2 corresponds to a scenario where all applications are
backlogged (the queue would be smaller if the application received additional unutilized share from
other applications). On the other hand, if we employ a reservation-based scheduler to achieve re-
source partitioning, then each application receives no more than its allocated share, with the queue
dynamics represented by Equation 5.2.
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Given Equation 5.2, the average queue length over the allocation interval is given by:

q̄i =
1

W

∫ W

0
qi(t)dt (5.4)

Depending on the values of q0
i , the arrival rate λ̂i and the service rate µ̂i, the queue may become

empty one or more times during an allocation interval. To include only the non-empty periods of
the queue when computing q̄i, we consider the following scenarios, based on the assumption of
constant µ̂i and λ̂i:

1. Queue growth: If µ̂i < λ̂i, then the application queue will grow during the allocation interval
and the queue will remain non-empty throughout the allocation interval.

2. Queue depletion: If µ̂i > λ̂i, then the queue starts depleting during the allocation interval.

The instant t0 at which the queue becomes empty is given by t0 =
q0
i

µ̂i−λ̂i

.

If t0 < W , then the queue becomes empty within the allocation interval, otherwise the queue
continues to deplete but remains non-empty throughout the window (and is projected to be-
come empty in a subsequent window).

3. Constant queue length: If µ̂i = λ̂i, then the queue length remains fixed (= q0
i ) throughout

the allocation interval. Hence, the non-empty queue period is either 0 or W depending on the
value of q0

i .

Let us denote the duration within the allocation interval for which the queue is non-empty by Wi

(Wi equals either W or t0 depending on the specific scenario). Then, Equation 5.4 can be rewritten
as

q̄i =
1

W

∫ Wi

0
qi(t)dt (5.5)

=

(

Wi

W

)[

q0
i +

Wi

2

(

λ̂i − µ̂i

)

]

(5.6)

Having determined the average queue length over the next allocation interval, we derive the
average response time T̄i over the interval. T̄i is estimated as the sum of the mean queuing delay
and the request service time over the next allocation interval. We use Little’s law to derive the
queuing delay from the mean queue length2. Thus,

T̄i =
(q̄i + 1)

µ̂i
(5.7)

Substituting Equation 5.3 in this expression, we get

T̄i =

(

ŝi

φi · C

)

· (q̄i + 1), (5.8)

where q̄i is given by Equation 5.6. The values of q0
i , µ̂i, λ̂i and ŝi are obtained using workload

prediction techniques discussed in Section 5.2.4.
Note that, since the parameters of the transient queuing model depend on its current workload

characteristics (λ̂i, ŝi) and the current system state (q0
i ), this model can be used in an online manner

2Note that the application of Little’s Law in this scenario is an approximation, that is more applicable when the size
of the allocation interval is large compared to the average request service time.
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to handle dynamic changes in the workload. In other words, the model does not make any steady-
state assumptions, can handle system transients, and does not require pre-profiling or pre-estimation
of model parameters. Further, since the model uses the current measured queue state to re-evaluate
its parameters at each allocation instant, it is able to compensate for inaccuracies in the model esti-
mates from the previous allocation instant. For example, if the model underestimates the resource
requirement of a queue for an allocation interval, leading to a queue buildup, the resulting queue
length is taken into account for the estimation of the resource requirement at the next allocation
instant. In other words, corrective action is possible due to the incorporation of the current system
state in the model estimates.

Next we show how the model parameters such as the request arrival rate, the mean service
demand, and the queue length are predicted for the next allocation interval.

5.2.4 History-based Workload Prediction

The resource inference technique described in the previous section is dependent on an accurate
estimation of the expected workload for each application. In this section, we present prediction
techniques that use past observations to estimate the future workload for an application.

The workload of an application can be characterized by two complementary distributions: the
request arrival process and the service demand distribution. Together these distributions enable us
to capture the workload intensity and its variability. Our technique measures the various parameters
governing these distributions over a certain time period and uses these measurements to predict the
workload for the next adaptation window.

5.2.4.1 Estimating the Arrival Rate

The request arrival process corresponds to the workload intensity for an application. The crucial
parameter of interest that characterizes the arrival process is the request arrival rate λi. An accurate
estimate of λi allows the transient queuing model to estimate the average queue length for the next
adaptation window.

To estimate λi, the monitor measures the number of request arrivals ai in each measurement
interval I . The sequence of these values {am

i } forms a time series. Using this time series to represent
a stochastic process Ai, the number of arrivals n̂i are predicted for the next adaptation window. The

arrival rate for the window, λ̂i is then approximated as

(

n̂i

W

)

where W is the window length. We

represent Ai at any time by the sequence {a1
i , . . . , aH

i } of values from the measurement history.
To predict n̂i, we model the process using a time series. For instance, a simple time series anal-

ysis model is the AR(1) model [19] (autoregressive of order 1). AR(1) model is a linear regression
model in which a sample value is predicted based on the previous sample value3.

Using the AR(1) model, a sample value of Ai is estimated as

âj+1
i = āi + ρi(1) · (a

j
i − āi) + ej

i , (5.9)

where, ρi and āi are the autocorrelation function and mean of Ai respectively, and ej
i is a white

noise component. We assume ej
i to be 0, and aj

i to be estimated values âj
i for j ≥ H + 1. The

autocorrelation function ρi is defined as

ρi(l) =
E[(aj

i − āi) · (a
j+l
i − āi)]

σ2
ai

, 0 ≤ l ≤ H − 1,

3Instead of using an AR(1) model, we can also employ other prediction models such as an AR(2) model or models
based on exponential averaging.
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where, σai
is the standard deviation of Ai and l is the lag between sample values for which the

autocorrelation is computed.
Thus, if the adaptation window size is M intervals (i.e., M = W/I), then, we first estimate

or âH+1
i , . . . , âH+M

i using equation 5.9. Then, the estimated number of arrivals in the adaptation

window is given by n̂i =
∑H+M

j=H+1 âj
i and finally, the estimated arrival rate, λ̂i =

n̂i

W
.

5.2.4.2 Estimating the Service Demand

The service demand of each incoming request represents the load imposed by that request on the
resource. Two applications with similar arrival rates but different service demands (e.g., different
packet sizes, different per-request CPU demand, etc.) will need to be allocated different resource
shares.

To estimate the service demand for an application, the probability distribution of the per-request
service demands is computed. This distribution is represented by a histogram of the per-request
service demands. Upon the completion of each request, this histogram is updated with the service
demand of that request. The distribution is used to determine the expected request service demand ŝi

for requests in the next adaptation window. ŝi is computed as the mean of the distribution obtained
from the histogram. For our experiments, we use the mean of the distribution to represent the service
demand of application requests.

5.2.4.3 Measuring the Queue Length

A final parameter required by the allocation model is the queue length of each application at the
beginning of each adaptation window. Since we are only interested in the instantaneous queue length
q0
i and not mean values, measuring this parameter is straight-forward: the monitor simply records

the number of outstanding requests in each application queue at the beginning of each adaptation
window.

5.2.5 Optimization-based Resource Allocation

As discussed in the previous subsections, resource inference relates desired QoS metrics with
resource requirements for each application. Monitoring and prediction then dynamically determine
the expected workload parameters, that when combined with the inference technique determines the
desired resource requirements of applications. Requirements of multiple applications could be con-
flicting in the presence of limited system resources. Hence, the system needs a resource allocation
technique by which to determine the resource shares of applications based on their resource require-
ments and the available resource capacity. We now present an online optimization-based approach
to determine these resource shares dynamically.

Recall from Section 5.2.1 that the dynamic resource allocator needs to determine the resource
share φi for each application. Formally, if di denotes the target response time of application i
and T̄i is its observed mean response time, then the application should be allocated a share φi,
φi ≥ φmin

i , such that T̄i ≤ di, where, φmin
i is the minimum amount of resource share guaranteed to

an application.
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Since each resource has a finite capacity and the application workloads can exceed capacity
during periods of heavy transient overloads, the above goal cannot always be met. We use the
notion of utility functions to achieve a feasible allocation during overload scenarios4.

While different kinds of utility functions can be employed, we use a utility function called
“discontent” to measure the penalty imposed by an application for missing its target response time,
as defined in Section 5.2.1. This utility function is defined in the following manner. We assume
that an application remains satisfied so long as its allocation φi yields a mean response time T̄i no
greater than the target di (i.e., T̄i ≤ di). But the discontent of an application grows as its response
time deviates from the target di. This discontent function can be represented as follows:

Di(T̄i) = (T̄i − di)
+, (5.10)

where x+ denotes max(0, x). In this scenario, the discontent grows linearly when the observed
response time exceeds the specified target di. Then, to maximize the overall system revenue, each
application should be assigned a share φi, φi ≥ φmin

i , such that the total system-wide discontent,
i.e., the quantity D =

∑n
i=1 Di(T̄i) is minimized.

Note that in this framework, we could use other kinds of utility functions to represent the QoS
requirements of each application. For instance, we could use the function (T̄i−di)

2 to represent the
utility of an application remaining close to its target response time (and not just below the target, as
with the penalty function shown in Equation 5.10). Similarly, we could use other kinds of objective
functions to achieve different system goals such as fairness and isolation during overload conditions.
For instance, using D = maxn

i=1 Di(T̄i) would correspond to achieving fairness by minimizing the
maximum violation of an application’s QoS target.

The problem of resource allocation then gets transformed into the following constrained opti-
mization problem:

min
{φi}

n
∑

i=1

Di(T̄i)

subject to the constraints

n
∑

i=1

φi ≤ 1,

φmin
i ≤ φi ≤ 1, 1 ≤ i ≤ n.

where Di is a function that represents the discontent of a class based on its current response time
T̄i. The two constraints specify that (i) the total allocation across all applications should not exceed
the resource capacity, and (ii) the share of each application can be no smaller than its minimum
allocation φmin

i and no greater than the resource capacity.
In general, the nature of the discontent function Di has an impact on the allocations φi for each

application. As shown in Equation 5.10, a simple discontent function is one where the discontent
grows linearly as the response time T̄i exceeds the target di. Such a Di, shown in Figure 5.3, how-

4Some other approaches have also employed utility functions for resource allocation on shared servers [25, 48].
However, these approaches either use generic utility functions or apply the utility-based technique for static resource
allocation.
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Figure 5.3. Two different variants of the discontent function: a piecewise linear function and a
continuously differentiable convex functions are shown. The target response time is assumed to be
di = 5.

ever, is non-differentiable. To make our constrained optimization problem mathematically tractable,
we approximate this piece-wise linear Di by a continuously differentiable function:

Di(T̄i) =
1

2
[(T̄i − di) +

√

(T̄i − di)2 + k],

where k > 0 is a constant. Essentially, the above function is a hyperbola with the two piece-wise
linear portions as its asymptotes and the constant k governs how closely this hyperbola approximates
the piece-wise linear function. Figure 5.3 depicts the nature of the above function.

We note that the optimization is with respect to the resource shares {φi}, while the discontent
function is represented in terms of the response times {T̄i}. We use the relation between T̄i and φi

from Equation 5.8 to obtain the discontent function in terms of the resource shares {φi}.
Lagrange multiplier method [23] can be used to solve the resulting optimization problem. In this

technique, the constrained optimization problem is transformed into an unconstrained optimization
problem where the original discontent function is replaced by the objective function:

L({φi}, β) =
n
∑

i=1

Di(T̄i) − β · (
n
∑

i=1

φi − 1). (5.11)

The objective function L is then minimized subject to the bound constraints on φi. Here β is
called the Lagrange multiplier and it denotes the shadow price for the resource. Intuitively, each
application is charged a price of β per unit resource it uses. Thus, each application attempts to
minimize the price it pays for its resource share, while maximizing the utility it derives from that
share. This leads to the minimization of the original discontent function subject to the satisfaction
of the resource constraint.

Minimization of the objective function L in the Lagrange multiplier method leads to solving the
following system of algebraic equations.

∂Di

∂φi
= β, ∀i = 1, . . . , n (5.12)

75



 0

 500

 1000

 1500

 2000

 2500

 0  200  400  600  800  1000  1200  1400  1600

R
eq

ue
st

 a
rr

iv
al

 r
at

e 
(r

eq
/m

in
)

Time (min)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  200  400  600  800  1000  1200  1400  1600

A
ve

ra
ge

 r
eq

ue
st

 s
iz

e 
(K

B
)

Time (min)

(a) Request arrival rate (b) Average request size

Figure 5.4. Trace Ecommerce1.

and

∂L

∂β
= 0 (5.13)

Equation 5.12 determines the optimal solution, as it corresponds to the equilibrium point where
all applications have the same value of diminishing returns (or β). Equation 5.13 satisfies the re-
source constraint. The solution to this system of equations, derived either using analytical or numer-
ical methods, yields the shares φi that should be allocated to each application over each adaptation
window to minimize the system-wide discontent.

5.3 Experimental Evaluation

We now evaluate our dynamic resource allocation techniques using a simulation study. We first
describe our simulation setup and then present our experimental results.

5.3.1 Simulation Setup and Workload Characteristics

In our simulation study, we simulate a server resource serving multiple application queues. The
server partitions the resource capacity among different queues using a resource-partitioning sched-
uler5, and the requests within each queue are serviced in FCFS order. The resource is partitioned
among the queues according to the resource shares assigned to the queues by the dynamic resource
allocation scheme. Our simulator is based on the NetSim library [45] and DASSF simulation pack-
age [46]; together these components support network elements such as queues and traffic sources,
and provide us with the necessary abstractions for implementing our simulator. The adaptation
and the prediction algorithms are implemented using the Matlab package [39] that provides various
statistical routines and numerical non-linear optimization algorithms. The Matlab code is invoked
directly from the simulator to perform prediction and allocation.

We use trace-driven workloads for our simulation study, so that requests for an application are
generated using arrival times and request sizes from a trace. We assume the service requirement

5We use two different schedulers in our experiments, which we describe later.
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Figure 5.5. Trace Ecommerce2.
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Figure 5.6. Relative resource requirements of two Ecommerce applications running on systems
with different resource capacities.
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of each request to be proportional to its size. To generate the workloads in our simulations, we
use two 24-hour Ecommerce traces (that we refer to as traces Ecommerce1 and Ecommerce2). The
trace Ecommerce1 contains a total of 1,194,137 requests at a mean request arrival rate of 13.8
requests/sec, and a mean request size of 3.95 KB, while the trace Ecommerce2 contains 251,352
requests at a mean request arrival rate of 2.9 requests/sec and a mean request size of 7.24 KB. The
time series for the request arrival rates and the average request sizes of these traces are shown in
Figures 5.4 and 5.5 respectively.

In our experiments, we simulate two Web applications, using the two traces Ecommerce1 and
Ecommerce2 to generate requests for the simulated applications. Figure 5.6 plots the workload
arrival rate (as a percentage of the resource service rate) for the two applications along with the
total load on the system. We simulate the system with two different values of the resource capacity
to create two different workload conditions: (i) a system with no overloads, with the maximum
resource requirement of the two applications being 95% of the resource capacity (shown in Fig-
ure 5.6(a)); and (ii) a system facing a period of overload conditions, where the total resource re-
quirement exceeds the system capacity, with the maximum requirement being 112% of the system
capacity (shown in Figure 5.6(b)). We use these cases to examine the impact of resource constraints
on the system discontent values. We compare our dynamic allocation scheme against a static allo-
cation scheme, that maintains a fixed resource allocation among the applications for the duration of
the simulation.

As another dimension of interest, we investigate the effectiveness of dynamic resource allocation
in the presence of two different resource scheduling paradigms: (i) proportional-share scheduling,
where unused bandwidth of one application is shared among other applications, and (ii) reservation-
based scheduling, where each application is allocated a fixed amount of bandwidth and does not
receive more bandwidth than its assignment. As discussed in Section 5.2.1, proportional-share
schedulers are work-conserving and impose a lower bound on the amount of resource capacity
available to a backlogged application. On the other hand, reservation-based schedulers enforce an
upper bound on the resource allocation of an application. By employing these two different types
of schedulers, we investigate the impact of scheduler behavior on resource allocation. Next, we
present results from our simulation study.

5.3.2 Dynamic Resource Allocation with Proportional-Share Schedulers

In our first set of experiments, we simulate a resource that employs start-time fair queuing
(SFQ), a proportional-share scheduler, to partition the resource capacity between the application
queues. In the experiments with dynamic resource allocation, an allocation interval of 5 minutes
is used, which means that resources are reallocated for every 5 minutes of the trace data. In each
run, we start with a different initial resource share assignment to the applications. These initial
share settings range in value from 10:90 to 90:10 percent of the total resource capacity. We perform
another set of experiments by statically allocating a fixed share assignment (ranging in value from
10:90 to 90:10 percent respectively) to the applications throughout the run. Figure 5.7 plots the
mean system discontent value for the static and the dynamic allocation schemes as we vary the
resource share assignments for the applications.

Figure 5.7(a) shows the discontent values for the case of the underloaded system (corresponding
to the workloads shown in Figure 5.6(a)). As seen from this figure, for all values of share assign-
ments, the mean discontent value for static allocation is nearly equal to that for dynamic allocation.
The reason a static allocation scheme performs well in an underloaded system with different alloca-
tion values is because of the work-conserving nature of SFQ. SFQ reallocates the unused resource
capacity of an application to another more needy application. Thus, when the system is underloaded,
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Figure 5.7. Comparison of mean discontent for dynamic and static allocation in the presence of a
proportional-share scheduler.
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Figure 5.8. The received and required application shares in the presence of a proportional-share
scheduler: underloaded system.
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Figure 5.9. The received and required application shares in the presence of a proportional-share
scheduler: overloaded system.

80



both applications get their required shares irrespective of the values of the assigned shares. This fact
is illustrated in Figure 5.8 that compares the resource shares received by the two applications to their
workload requirements during a 3-hour period6. Figure 5.8(a) shows the shares allocated using dy-
namic allocation, while Figures 5.8(b) and (c) show the values using a static allocation scheme with
fixed assignments of 20:80 and 80:20 respectively. As can be seen from the figures, the actual shares
received by the applications are nearly identical to their requirements in each case. These figures
illustrate that SFQ is able to meet the application requirements automatically when the system is
underloaded.

Now let us examine the effect of proportional-share scheduling when the system is overloaded
(corresponding to the scenario shown in Figure 5.6(b)). Figure 5.7(b) plots the mean discontent
values for the case where the system becomes overloaded for part of the run. This figure shows
that while the value of the mean discontent remains the same for dynamic allocation irrespective of
the initial share assignment, the mean discontent value for static allocation depends on the assigned
resource share values: the discontent is much higher for allocations of 10:90 and 20:80 than for
other values.

To understand this result, note that when the system is overloaded, it is not possible for both
applications to simultaneously receive their required resource shares. In this case, the shares they
receive depend on their share assignments. We illustrate this fact using Figures 5.9(a), (b) and (c)
that plot the required and received shares for the applications when employing dynamic allocation,
static allocation with shares in the ratio 20:80, and static allocation with shares of 80:20 respectively.
Figure 5.9(b) shows that when the assigned shares are such that both applications are backlogged,
then the received shares are the same as the assigned shares (20:80 for the applications between
time 630-780 minutes). On the other hand, from Figure 5.9(c), we see that Application 1 receives
its required share exactly, and the remaining resource capacity is allocated to Application 2. This
shows that if an application is assigned a share higher than its requirement, it utilizes the amount
it needs and the unused share is allocated to the other application. This is the reason that the mean
discontent value remains the same for static allocation with share assignments ranging from 30:70
to 90:10, as in all these cases, Application 1 is not backlogged or has a small backlog (its peak
requirement is 36.58% when the system is overloaded). Dynamic allocation, on the other hand,
changes resource allocations as the resource requirements of the applications change, to maintain a
low discontent value (Figure 5.9(a)). Therefore, dynamic allocation is able to achieve a lower value
of mean discontent compared to static allocation when both applications are backlogged.

Overall, our results show that when we use a work-conserving resource scheduler, the values of
share assignments do not have an impact on the application performance as long as the system is
underloaded, and a static allocation scheme performs as well as a dynamic scheme. This is because
the scheduler is able to automatically meet the resource requirements of the applications. However,
under overload conditions, the actual assignment values become important, as the allocated shares
depend on the application requirements and their assigned values. Therefore, in this case, static
allocation has to be performed with appropriately chosen share assignments, where as dynamic
resource allocation is able to achieve good performance irrespective of the initial resource allocation.
In other words, these results demonstrate that while dynamic resource allocation can provide some
benefits in the presence of a proportional-share scheduler, these benefits are limited to periods of
transient system overloads.

6Note that the resource share received by an application can differ from its assigned resource share. This is because
the resource share received by an application is the amount of resource it utilizes based on its workload requirement, the
share assigned to it by the allocator, and the scheduler policy. For example, if the workload requirement of an application
is 30% of the total resources, then it would receive only 30% of the resource even if its assigned share is 80%.
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Figure 5.10. Comparison of mean discontent for dynamic and static allocation in the presence of a
reservation-based scheduler.

5.3.3 Dynamic Resource Allocation with Reservation-Based Schedulers

Next, we evaluate the performance of our dynamic resource allocation technique in the pres-
ence of a reservation-based scheduler. We simulate a resource that employs a non-work-conserving
variant of a P-fair algorithm to schedule the incoming requests. This algorithm is an instance of a
reservation-based scheduler—it uses request eligibility times to enforce upper bounds on applica-
tion shares, preventing an application from receiving more than its assigned share. Recall that the
reservation-based scheduling paradigm also represents scenarios where resources are partitioned
physically or in a rigid manner (as, for instance, between multiple virtual machines running on a
server).

In our simulations, we generate the application workloads using the two Ecommerce traces
used in the experiments above. We again use two different values of resource capacity to simulate
scenarios of system underload and transient overload.

Figure 5.10 shows the mean values of the discontent function for dynamic allocation as well
as for static allocation over a range of shares assignments. Figure 5.10(a) plots the discontent
values when the system is underloaded, while Figure 5.10(b) plots these values when the system
has periods of overload. These figures show that dynamic allocation is able to achieve a relatively
small value of the discontent function irrespective of the initial share assignment. On the other hand,
when allocating the resources statically, the value of the discontent function depends critically on the
share assignments. This happens because, unlike a proportional-share scheduler, a reservation-based
scheduler does not reallocate unused resource capacity of one application to another backlogged
application, with the result that an application’s received share is always bounded by its assigned
share.

Figure 5.11 illustrates this phenomenon of dependence between the assigned and received shares
of the applications, and shows the benefit of dynamic allocation even when the system is under-
loaded. Figure 5.11(a) plots the comparison between the received and required shares of the two
applications in the presence of dynamic allocation over a 3-hour period. This figure shows that the
received shares closely match the required shares of the two applications. Figures 5.11(b) and (c)
plot the received and required shares of the applications in the presence of static allocation with
relative assignments of 20:80 and 40:60 respectively. Figure 5.11(b) shows that while Application
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Figure 5.11. The received and required application shares in the presence of a reservation-based
scheduler: underloaded system.
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2 receives its required share (which is less than its assigned share of 80% over the shown time inter-
val), Application 1 receives exactly 20% of the share. Similarly, in Figure 5.11(c), we see that even
though Application 1 receives its desired share, the unused capacity is not allocated to Application
2 whose share remains at or below its assigned share of 60%. These figures illustrate that the correct
assignment of resource shares is crucial when using a reservation-based scheduler.

Overall, our results demonstrate that in the presence of a reservation-based scheduler, the as-
signment of shares to the applications is critical even in the case of an underloaded system. This
is because the scheduler does not reallocate unused resource capacity of an application to another
needy application, and the received shares are always bounded by the allocated shares. Therefore,
we find that there is a substantial difference between the performance of dynamic allocation and
static allocation over a large range of share assignments. Dynamic allocation is able to closely
match the resource allocation of the applications to their requirements, thus achieving relatively
small values of the discontent function. On the other hand, in the presence of static allocation, dis-
content values are highly dependent on the resource allocation, deteriorating significantly for poor
assignments.

5.4 Concluding Remarks

In this chapter, we examined the problem of dynamic resource allocation on a shared server.
The goal of dynamic resource allocation is to allocate resource shares to each application based on
its response time requirement in the presence of varying workload characteristics. We presented a
measurement-based dynamic resource allocation approach: an approach that uses online measure-
ments of the workload characteristics to infer the resource requirements of an application. This
resource inference employs a queuing model that uses the transient state of the application request
queue to model the relation between an application’s response time and its resource requirement.
This model has the advantage that it does not require any offline model-building. In addition, it can
also be coupled with an optimization-based utility model to partition the resource among multiple
applications in the presence of resource constraints.

We evaluated this dynamic resource allocation approach using a trace-based simulation study.
The results of this study showed that while dynamic allocation provides limited benefits over static
resource allocation in the presence of a proportional-share scheduler, it provides substantial gains
when using a reservation-based scheduler.

In the next chapter, we address questions related to the performance of a generic dynamic re-
source allocation scheme. In particular, we explore the impact of resource allocation parameters on
the resource utilization benefits of dynamic resource allocation, and apply our conclusions to some
common data center architectures.
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CHAPTER 6

EFFECT OF ALLOCATION PARAMETERS ON RESOURCE MULTIPLEXING
BENEFITS

In the previous chapter, we presented techniques for dynamic resource allocation on a shared
server. As described in the previous chapter, a dynamic resource allocation scheme employs several
parameters for its implementation, such as the allocation interval and the granularity of resource
allocation. In this chapter, we explore the impact of allocation parameters on the effectiveness
of a dynamic resource allocation scheme, focusing on the resource utilization benefits of dynamic
resource allocation. Further, we use these parameters to characterize some common data center
architectures, and apply the results of our study to derive the potential resource savings possible in
these data center architectures by employing dynamic resource allocation.

6.1 Choice of Allocation Parameters

In the previous chapter, we focused on employing dynamic resource allocation to meet ap-
plication QoS guarantees. Besides satisfying application QoS requirements, another advantage of
dynamic resource allocation is the resource multiplexing benefits it provides to the data center,
resulting in better resource utilization. A dynamic resource allocation scheme in a data center em-
ploys several allocation parameters, such as the allocation interval and the granularity of resource
allocation. The choice of these parameters raises several questions that need to be answered to un-
derstand how these parameters impact the multiplexing benefits and the total resource provisioning
requirements of a data center:

1. Should data center resources be allocated to applications at a granularity of entire machines
or is the ability to allocate fractional servers desirable?

2. Should resources be provisioned over time-scales of seconds, minutes, or hours so as to ex-
tract the highest multiplexing gains?

3. Do the achievable multiplexing gains increase with the number of hosted applications, and if
so, by how much?

4. How do over-provisioning and workload prediction accuracy affect the resource allocation?

5. How does the choice of allocation parameters affect the resource utilization of common data
center architectures?

To answer these questions, in this section, we conduct a study to understand the impact of
allocation parameters on the resource provisioning requirement of a data center employing dynamic
resource allocation. The provisioning requirement of a data center measures the total amount of
resources (e.g.: number of servers) that need to be allocated to meet the requirements of the hosted
applications, and corresponds to the efficiency of an allocation scheme. A higher value of the
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Figure 6.1. A metric for comparing optimal resource allocation to practical approaches. An optimal
allocation scheme can reallocate resources infinitely often and in infinitesimally small amounts;
a practical scheme uses a finite time and space granularity, ∆t and ∆s, respectively to allocate
resources.

provisioning requirement implies a more wasteful allocation, while a lower value corresponds to a
better resource utilization. Having a lower provisioning requirement enables a data center to either
host more applications with a given amount of total resources, or to employ fewer resources to host
a given set of applications. As we show in this chapter, the choice of allocation parameters has a
significant impact on the provisioning requirement of a dynamic allocation scheme. Hence, in this
study, we characterize a dynamic resource allocation scheme by its choice of allocation parameters,
and make no assumptions about the specific algorithm or techniques employed to realize these
parameters.

6.1.1 Optimal Allocation and Performance Metrics

We first define the notion of optimal allocation and define a metric that quantifies the efficiency
of an allocation scheme. Figure 6.1 depicts a hypothetical resource allocation scenario in a data
center. The lower curve in the figure shows the resource demand of an application in the data center.
We define an optimal allocation scheme as one that, at any instant, allocates the minimum amount
of resource to each application needed to meet its requirement at that instant. This implies that
an optimal allocation scheme allocates resources exactly as demanded using infinitesimally small
resource units and time quanta, and hence results in no resource wastage. Thus, the resource demand
curve (lower curve) in Figure 6.1 also represents the optimal resource allocation. In contrast, any
practical allocation scheme would allocate resources over a finite time period using finite resource
units (e.g., one server). This allocation should be such that the amount of resource allocated to each
application in any period is sufficient to handle its peak requirement in that period. Figure 6.1 shows
two such allocations, one coarse-grained and the other fine-grained. Observe that, depending on the
granularity, there is some amount of over-allocation, since the allocation can be changed only once
every ∆t time units and the allocation must always be a multiple of the allocation granularity ∆s.
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We refer to the allocation granularity ∆s and the allocation interval ∆t as the spatial and temporal
allocation granularity respectively1.

Note that while we assume fixed values of the time granularity ∆t here, it is possible to use vari-
able ∆t values for an allocation scheme. For instance, a dynamic resource allocation scheme might
reallocate resources more often during flash crowd scenarios as compared to periods of low activ-
ity. Such variability in ∆t values is particularly important when it is difficult to predict workloads
in advance. For such scenarios, an allocation scheme might combine a coarse-grained predictive
resource allocation technique with a fine-grained reactive technique: the predictive technique could
be used to allocate resources for relatively long periods of time for stable workloads, while the reac-
tive technique could be employed to allocate resources at shorter time-scales to handle unexpected
workload surges. While our characterization of allocation parameters above does not explicitly
capture such variability in allocation granularity, we observe that it subsumes this variability if we
use the lower bound on the variable time-scale as our fixed value of ∆t. In this case, the periods
of stable allocation could be assumed to correspond to fine-grained reallocation with no change in
the actual allocation values. This assumption allows us to obtain an upper bound on the potential
benefits achievable through an allocation scheme using variable allocation granularity.

Now we define a metric to quantify the efficiency of a resource allocation scheme in terms of
its resource provisioning requirement. Let Ri

opt(t) and Ri
pract(t) denote the amount of resources

allocated to application i at time t using the optimal and a practical allocation scheme respectively.
Then the total resource allocation (over all applications) in the system at time t for these schemes are
Ropt(t) =

∑

i R
i
opt(t) and Rpract(t) =

∑

i R
i
pract(t) respectively. Using these quantities, we define

the metric capacity overhead to quantify the resource usage efficiency of an allocation scheme.
The capacity overhead ρ is defined to be the percentage increase in the resource requirement of a
practical scheme when compared to the optimal:

ρ =

(

Rpract − Ropt

Ropt

)

· 100,

where, Rpract = maxt Rpract(t) is the peak resource requirement of the practical scheme (this
is essentially the total capacity required by the practical scheme to host this set of applications).
Similarly, Ropt = maxt Ropt(t) is the peak capacity requirement of the optimal scheme. For an
allocation curve in Figure 6.1, R corresponds to the peak value of the curve.

Intuitively, ρ measures the additional capacity required by a practical scheme to host the same
set of applications as the optimal scheme. Thus, the smaller the value of ρ, the more efficient is
a scheme in terms of its resource usage. Next, we present a performance study that allows us to
quantify the value of capacity overhead for a range of resource allocation schemes.

6.2 Performance Study

To quantify the capacity overhead for different dynamic resource allocation schemes, we con-
duct a study using Web traces from three e-commerce sites hosted in a commercial data center. The
characteristics of these traces are summarized in Table 6.1. In our study, we assume each of the
traces to correspond to the workload of an application, where the applications are assumed to be
sharing resources in a data center2. While these traces contain the arrival time and size of each re-
quest, the resource requirement (such as CPU processing time) of a request was not available. Since
for static Web requests, CPU usage is highly correlated to the request size, we use request size as

1The temporal allocation granularity ∆t is the same as the allocation interval parameter defined in Section 5.2.2.
2We also present results for scenarios where we use these traces to emulate workloads for other co-hosted applications.
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Workload Duration Number Avg Request Peak
Requests size bit-rate

Ecommerce1 24 hrs 1,194,137 3.95 KB 458.1 KB/s
Ecommerce2 24 hrs 251,352 7.24 KB 1346.9 KB/s
Ecommerce3 24 hrs 1,674,672 3.85 KB 1631.0 KB/s

Table 6.1. Workload characteristics.

a proxy metric for resource usage (such as CPU usage). Since we are interested in quantifying the
potential benefits achievable through dynamic resource allocation, we assume that a resource (such
as CPU bandwidth) could be shared among the applications at any granularity, and we ignore any
overheads of allocation and interactions between the applications.

In our study, we characterize an allocation scheme by its choice of parameters such as allocation
interval and resource allocation granularity. For each set of parameter values, the value of capacity
overhead is determined as follows. First of all, we determine the optimal allocation curve for the
applications by computing the instantaneous total resource requirement3 of the workloads consid-
ered together in time. Then, for a given set of allocation parameter values ∆t and ∆s, we compute
the total resource requirement of the workloads within each time interval of length ∆t, scaled up
to the nearest multiple of ∆s. Computing resource allocation in this manner emulates an allocation
scheme that attempts to meet the peak requirement of each application for the next allocation period
∆t while being constrained to allocate resources in multiples of the resource allocation unit ∆s.
Having determined the resource allocation curves for the optimal and a practical allocation scheme,
we determine Ropt and Rpract as their peak values respectively, allowing us to compute the value
of the capacity overhead ρ for the given practical scheme. Next, we present the results of this study
showing the impact of the choice of these parameters on the capacity overhead of an allocation
scheme.

6.2.1 Effect of Allocation Granularity

We first explore the effect of the allocation granularity and the allocation interval on the ef-
ficiency of a dynamic allocation scheme. We systematically vary the spatial (∆s) and temporal
(∆t) allocation granularity for our workload mix and compute the value of ρ for each combination.
We express the spatial granularity ∆s as a fraction of the peak requirement of the optimal scheme
Ropt. Thus, if the optimal peak capacity requirement is 100 servers, then a spatial granularity of
0.01 indicates that resources are allocated 1 server at a time. Initially, we assume each resource
allocation scheme to be clairvoyant, i.e., it allocates resources based on exact knowledge of future
workload requirements. This assumption eliminates the impact of inaccuracies introduced by work-
load predictors. The impact of inaccuracies introduced by real-world workload predictors is studied
in Section 6.2.3. Also note that initially, we study the multiplexing benefits of dynamic resource
allocation in the presence of only three applications (corresponding to the three Ecommerce traces).
In the next subsection, we explore the impact on the sharing of resources between larger number of
applications.

Figure 6.2 shows the values of capacity overhead ρ for different ∆t and ∆s values. Figure 6.2(a)
shows that the coarser the spatial and temporal allocation granularities, the greater the capacity

3We use a granularity of 1 second and 1 byte/sec to approximate the optimal allocation scheme, as the values for
request arrival times and request sizes in our traces were limited by these granularities.
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Figure 6.2. Effect of allocation granularity on the capacity overhead for a 3-application system.

overhead ρ (indicating larger over-allocations at coarser allocation granularities). Next, we examine
the effect of varying ∆t and ∆s in isolation on the capacity overhead (see Figures 6.2(b) and 6.2(c)).

Figure 6.2(b) shows that there is a nearly monotonic increase in the value of ρ with ∆t. ρ
is relatively small for fine time allocations and increases with increasing ∆t. For instance, with
∆s = 0.02, reallocating resources once every 10 seconds, 10 minutes, 1 hour, and 10 hours yields
ρ values of 28%, 52%, 68%, and 98% respectively. In addition, we find that there are ranges of
∆t values (10 sec-1 min, 2-5 mins, 10-15 mins and 30-120 mins respectively), within which the ρ
values are nearly constant, indicating that the total provisioning requirement does not change for
∆t values within these ranges. Overall, the small ρ values observed for small values of ∆t argue in
favor of having a small ∆t value in the range of a few seconds to a few minutes.

An interesting observation from Figure 6.2(b) is the presence of seemingly anomalous behavior
where the capacity overhead decreases with an increase in time granularity of allocation. This
behavior is seen, for instance, for the ∆s = 0.05 curve in the figure, where, increasing the ∆t value
from 2700 sec to 3600 sec results in a decrease in the value of the capacity overhead from 75% to
70%. This behavior occurs because the allocation boundaries for these values of ∆t parameter do
not match. This can cause the peaks of two applications to fall within the same allocation period in
one case (for the smaller ∆t value) resulting in higher peak requirement compared to the other case
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Figure 6.3. Effect of allocation granularity on capacity overhead in the presence of 30 applications.
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Figure 6.4. Effect of number of applications on the provisioning requirement of a data center.

where these peaks occur in different allocation intervals. This observation implies that although
increasing the time granularity of allocation reduces multiplexing opportunities in general, it may
sometimes increase the multiplexing benefits4.

In contrast, when the ∆s value is varied (see Figure 6.2(c)), we find that ρ is nearly constant
until a certain granularity after which it increases steadily with increasing ∆s. For instance, with
∆t = 1 minute, ρ is nearly constant at 26% until ∆s = 0.005, and increases to 35%, 40%, 60%
and 100% with ∆s values of 0.05, 0.1, 0.2 and 0.5, respectively. Further, ∆s values close to the
total resource requirement yield very large capacity overheads regardless of the ∆t value. This
result implies that it is sufficient to reduce the spatial granularity to a value close to the knee of the
curves shown in Figure 6.2(c) (∆s ∼ 0.01 − 0.05), and reducing it further does not provide any

4Such anomalous behavior would usually happen only in scenarios with a few applications, and where the peaks of
multiple applications occur close to each other in time. It is thus highly dependent on specific workload characteristics
and choice of allocation of parameters.
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additional benefit. In other words, this result implies that while the spatial granularity need not be
very fine-grained, it should still be sufficiently small in order to extract high multiplexing gains.

6.2.2 Effect of Number of Applications

The results presented in Section 6.2.1 are for a data center hosting three applications. In practice,
a data center could host tens or hundreds of applications. To understand the impact of hosting a
large number of applications on the capacity overhead, we synthesize a larger number of traces
from the three original traces by replication and time-shifting. For instance, to generate 30 traces,
we replicate each of the original traces ten times and then time-shift each of the replicated traces
by a random duration between 10 minutes and 23 hours 50 minutes (since a shift of 0 or 24 hours
would result in an identical trace). Figures 6.3(a) and (b) plot the capacity overhead ρ obtained
for different spatial and temporal allocation granularities in a 30-customer system. Like before,
ρ increases with increasing ∆s and ∆t values. However, the magnitude of the overallocation is
substantially larger when multiplexing a larger number of applications, indicating that a practical
allocation scheme needs to allocate much more resources as compared to the optimal scheme in
this scenario. This is because of the aggregation of the per-application capacity overhead for large
number of applications. This result argues in favor of using finer allocation granularities to reduce
the capacity overhead.

Figure 6.4 shows the effect of the number of applications on the provisioning requirement. Fig-
ure 6.4(a) plots the capacity overhead as the number of applications in the system is varied. Using a
fixed ∆s value of 0.02 (which approximately corresponds to the knee of the curves in Figures 6.2(c)
and 6.3(b)), the figure plots the total capacity overhead ρ aggregated for all the applications in the
system using ∆t values of 1 minute, 10 minutes, 1 hour, and 10 hours respectively. These values
are shown for varying number of applications. The figure demonstrates that for a given allocation
granularity, the amount of capacity overhead grows with the number of applications, which means
that the total cost of hosting applications increases with the number of applications.

Figure 6.4(b) plots the amortized capacity overhead per application as we increase the number
of hosted applications in the data center. This figure shows that the amortized cost decreases as we
increase the number of applications. However, this decrease shows a behavior of diminishing re-
turns where each of the curves appears to be converging to a constant value in the limit. This result
can be intuitively understood by observing that when we have large number of applications in the
system, then adding another application does not increase the multiplexing gains as significantly as
compared to a scenario with a few applications. We hypothesize that these curves should converge
to constant values in the limit due to the Law of Large Numbers. By fitting negative exponential
functions to these curves, we find that the convergence values of the amortized overhead corre-
sponding to ∆t values of 1 minute, 10 minutes, 1 hour, and 10 hours are respectively 2.07, 2.82,
3.47, and 4.71 percent per application. The different convergence values for different ∆t values im-
ply that the amortized overhead per application is higher for coarser granularities of allocation even
for large number of applications5. This result means that the difference between the total overhead
values of fine-grain and coarse-grain allocations (say 1 minute and 1 hour) grows with the number
of applications.

5An intuitive way to understand this result is to note that if the convergence values for different granularities were
to be the same, then, each of them would converge to an optimal value of 0, since the granularity can be made as close
to optimal as desired. However, such convergence values are impossible to achieve in general since the provisioning
requirement of an optimal scheme is always less than that of a practical scheme unless all applications have exactly
overlapping peaks.
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Figure 6.5. Effect of prediction inaccuracies on resource multiplexing.
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Figure 6.6. Effect of over-provisioning on resource multiplexing.

These results demonstrate that while the total overhead of provisioning increases with large
number of applications, the benefits of fine-grain allocations are magnified in data centers hosting
a large number of applications.

6.2.3 Effect of Prediction Inaccuracy and Over-Provisioning

Thus far, our study has made two idealized assumptions: (i) resource allocators are assumed to
be clairvoyant, i.e, they can predict the exact resource requirement for the next allocation interval,
and (ii) the allocation is exact, allowing no “headroom”. These assumptions do not hold in real
systems. Real workload predictors are inaccurate, and since even good predictors are unable to
predict sudden, unanticipated workload variations, data centers over-provision resources to leave
some “headroom” for such events. Consequently, we study the effects of prediction inaccuracies
and over-provisioning.

In general, any dynamic allocation scheme estimates future workload requirements using a pre-
diction algorithm. The prediction algorithm can introduce inaccuracies in its estimates, which in
turn impacts the achievable resource utilization. Note that the need for prediction at very fine time-
scales (in the order of seconds) can be avoided by employing work-conserving schedulers in the
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Data Center Optimal Num Dedicated Fast Shared
Configuration reqmt apps Architecture Reallocation Architecture

(Num ∆s ∆t Num ∆s ∆t Num ∆s ∆t Num
servers) (Ropt) (sec) servers (Ropt) (sec) servers (Ropt) (sec) servers

Small 20 3 0.05 1800 34 0.05 300 31 0.005 10 25
Medium 100 15 0.01 1800 337 0.01 300 283 0.001 10 163

Large 1000 30 0.001 1800 4449 0.001 300 3383 0.0001 10 1646

Table 6.2. Resource requirements of data center architectures and reallocation techniques for dif-
ferent data center configurations.

underlying OS (which automatically allocate unused resources to needy applications, as seen in the
previous chapter).

Here, we examine the effect that prediction inaccuracies can have on resource allocation. Instead
of using specific prediction algorithms for our study, we characterize a generic prediction algorithm
by its prediction accuracy. We define a predictor to have a prediction accuracy δ if its 95-percentile
prediction error is bounded by (±δ · σx), where σx is the standard deviation of the workload being
predicted. By characterizing the prediction accuracy as a ratio of the standard deviation of the
workload, we intend to capture the effect of the workload variability on the prediction errors. The
intuition behind doing this is that a predictor is expected to be less accurate for a more variable and
bursty workload, so that its prediction accuracy would depend on the variability of the workload
itself.

For a predictor with an accuracy δ, the worst-case allocation in terms of resource usage would
happen if it always predicted the maximum resource requirement within its accuracy, so that it would
always allocate (δ · σx) more resources than the actual requirement. In Figure 6.5, we show the
effect of the prediction accuracy using such a worst-case allocation on the multiplexing benefits for
different time-scale granularities with three applications. The interesting observation from the figure
is that even using a very inaccurate predictor at fine time scales gives better resource multiplexing
benefits than using an accurate predictor at coarse time-scales.

Even under the assumption of a clairvoyant predictor, most data centers over-provision their
resources, i.e., they allocate resources in excess of the estimated requirement. This is done in order
to handle unforeseen loads and to absorb prediction errors. In addition, over-provisioning is also
done to prevent the system from running close to full capacity, and to provide some “head room”
for overload protection. In such a scenario, a dynamic resource allocation scheme would allocate
a certain amount of extra resource over the estimated requirement. Figure 6.6 plots the effect of
varying the amount of over-allocation on the capacity overhead ρ. This figure indicates that the
capacity overhead increases drastically as we increase the excess allocated capacity or “head room”.
But the key observation from the figure is that for the same multiplexing gains, allocation at fine
time-scales of about 10 sec allows nearly 35-70% more head room than that allowed by coarse-
grained allocation at the granularity of 1-10 hours.

These results show that it is possible to extract the multiplexing benefits at fine granularities
despite prediction inaccuracies and resource over-provisioning. Next, we apply the results of our
study to some common data center architectures.

6.3 Performance of Data Center Architectures

In the previous section, we presented the results from a study of real Web traces to understand
the impact of dynamic resource allocation parameters on resource utilization. In this section, we
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apply the results of this study to quantify the multiplexing benefits of some common data center
architectures. In what follows, we describe these architectures, identifying them as point solutions
in the parameter space considered in our study, thus getting quantitative results for their resource
utilization.

Dedicated Architecture: A dedicated architecture [8, 63] multiplexes a pool of servers among
multiple customers. This is achieved by partitioning the server pool among customers and increasing
or decreasing the number of servers assigned to a customer based on its predicted workload. This
architecture allocates resources at a granularity of entire machines. Thus, the spatial granularity
∆s for these architectures is inversely proportional to the total resource requirement of the hosted
customers. For instance, a dedicated architecture would have a ∆s value of 0.01 when the optimal
capacity requirement is 100 servers. Reallocation of a server in this architecture typically involves:
(1) deallocation of the server from another customer, (2) disk scrubbing to prevent data leaks, (3) a
fresh OS and application installation, and (4) application startup. Performing these operations can
take time on the order of several minutes. Hence, the temporal granularity ∆t of such an architecture
could be considered to be about 30 minutes.

Fast Reinstallations and Reserve Pools: Recent efforts have recognized the need to reduce
server allocation times in the dedicated architecture and have proposed several techniques to reduce
these reallocation overheads. For instance, the OS and application installation time can be reduced
by using remote boot images [62], fast application switching [32], and by maintaining a reserve pool
of idle servers in energy-saving mode [55]. While these techniques have the same spatial granularity
as above, they reduce the ∆t values to an order of about 5 minutes.

Shared Architecture: A shared architecture hosts multiple applications on each server and
multiplexes the server resources among these applications [25, 75]. A shared architecture, by its
very nature, allocates fractional server resources to applications. Thus, it uses small ∆s values
corresponding to about 10% of a server capacity6. Further, it employs resource management mech-
anisms such as proportional-share schedulers [58] or resource containers [13] to enforce these al-
locations at fine time-scales. The allocation of an application can be modified by reconfiguring
scheduler parameters such as weights or shares, and the work-conserving nature of the underlying
scheduler can also be exploited to achieve resource reallocation at time-scales of a few seconds [61].
The main limitation of a shared architecture is its low degree of security and isolation as compared
to the dedicated architecture.

Having described some of the data center architectures and reallocation mechanisms commonly
deployed, we now quantify the potential capacity requirements of these architectures on data centers
with different configurations. In Table 6.2, we present three data center configurations specified as
small, medium, and large. These configurations correspond to different number of customers and
total optimal resource requirements of these customers. For each of these configurations, the table
shows the allocation granularity for the various architectures and allocation techniques described
above. Finally, the table shows the number of servers that would be required by each architecture
corresponding to these configurations.

The results in Table 6.2 indicate that the excess capacity requirement is low for a small data
center configuration for all the architectures. For the medium and large configurations, even though
the requirement of a shared architecture is much greater than the optimal requirement, we see that
it is still much less compared to a dedicated architecture that requires about 107% and 170% more
resources than a shared architecture. Fast reallocation techniques reduce this overhead to about

6In reality, the resources of a server could be shared at an arbitrarily fine granularity. However, we use a value of
about 10% of server capacity as the ∆s value here to provide a convenient reference point for our characterization of
shared architectures, and also because the results of our study in Section 6.2.1 showed that very fine values of ∆s have
little impact on the efficiency of allocation.
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74% and 106% respectively. These results show that among the data center architectures considered,
shared architectures suffer from the least amount of resource wastage, and their resource savings are
comparatively more pronounced for data center configurations hosting large number of applications
on a large number of servers.

Note that shared architectures are able to achieve high multiplexing benefits even in configu-
rations with large number of servers, where their ∆s values are too fine-grained to provide any
additional benefits over dedicated architectures. For instance, for the large data center configura-
tion shown in Table 6.2, these values are 0.0001 and 0.001 respectively, which would correspond to
nearly identical values of ρ, as shown in Figure 6.3(b). This resource sharing efficiency is achieved
mainly through fine time-granularity. An interesting point to observe is that the resource alloca-
tion granularity and the time allocation granularity are correlated in most common architectures.
For instance, dedicated architectures typically require large allocation periods to move servers be-
tween applications, while shared architectures require small time-scales to adjust the resource shares
within a shared server. In other words, reallocating large amounts of resources at a time typically
results in large reallocation overheads. Overall, these results show that sharing fractional resources
between applications at the time-granularity of a few seconds to a few minutes is desirable.

6.4 Concluding Remarks

In this chapter, we quantified the multiplexing benefits achievable through dynamic resource
allocation in a data center. We used real Web workloads to study the effect of various resource
allocation parameters on these benefits. The parameters we explored included the granularity and
frequency of reallocation, the number of applications being hosted, the amount of resource over-
provisioning, and workload prediction accuracy. Our results demonstrated that fine-grained multi-
plexing at short time-scales of the order of seconds to a few minutes combined with fractional server
allocation leads to substantial multiplexing gains over coarse-grained reallocation. Our study also
showed the presence of anomalous scenarios where increasing the time granularity of allocation
actually results in more resource savings. Our results also demonstrated that the multiplexing gains
obtained with fine time-scale allocation increase with increasing number of hosted applications. In
addition, we demonstrated that such fine-grained multiplexing is more efficient even in the pres-
ence of inaccurate workload prediction, and allows over-provisioning slack of nearly 35-70% over
coarse-grained multiplexing for similar multiplexing gains.

We used these parameters to characterize some common data center architectures and applied
our results to data centers with different configurations. This characterization indicated that shared
data center architectures could provide multiplexing gains of about 107-170% over dedicated archi-
tectures, in medium-size and large data centers. We further found that fast reallocation techniques
could reduce the overhead of dedicated architectures to about 74-106% respectively in these scenar-
ios. Overall, our results demonstrate that using dynamic resource allocation with suitably chosen
allocation parameters can provide large multiplexing benefits in terms of resource utilization.
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CHAPTER 7

SUMMARY AND FUTURE WORK

Internet data centers host multiple applications on shared hardware resources. In such environ-
ments, customers pay for data center resources and, in turn, are provided guarantees on resource
availability and performance. To provide these guarantees, a data center must allocate sufficient
resources to each application while ensuring efficient utilization of system resources. However,
such resource allocation is difficult to achieve due to the highly variable nature of Internet work-
loads. Traditional approaches to resource allocation in Internet data centers, such as resource over-
provisioning and manual reallocation, are known to be both inefficient as well as error-prone. The
limitations of these approaches can be overcome by employing self-managing servers: servers that
automate the allocation of resources by adapting to dynamically changing workloads.

This dissertation examined the challenges involved in the design of a self-managing server that
can be deployed in Internet data center environments. The important challenges addressed in this
dissertation are as follows:

• An important requirement for a self-managing server is the ability to enforce the desired
resource allocation of different applications in the underlying resources. This ability can
be achieved by using proportional-share resource schedulers that can provide differentiated
service to different applications. However, these schedulers must be suitable for common
server environments such as multiprocessor machines. Development of proportional-share
schedulers for multiprocessor environments was a challenge addressed in this dissertation.

• In order to meet application QoS requirements, a self-managing server must employ tech-
niques to determine application resource shares that can be enforced by the underlying proportional-
share resource schedulers. However, since Internet workloads are highly variable, these tech-
niques must be adaptive to changing application requirements. Development and study of
such dynamic resource allocation techniques was another challenge addressed in this disser-
tation.

We now present a summary of the main research contributions of this dissertation based on the
challenges they address.

7.1 Summary of Research Contributions

In this dissertation, we made the following main contributions.

• Design of Proportional-Share Multiprocessor Scheduling Algorithms: An important chal-
lenge in building a self-managing server is to design proportional-share schedulers suitable
for multiprocessor environments. As part of this effort, this dissertation made the following
contributions:
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– Weight Readjustment: We showed that existing proportional-share uniprocessor algo-
rithms can result in starvation or unbounded unfairness when employed in multipro-
cessor environments. The reason for this problem is that while any weight assignment
is achievable in a uniprocessor environment, only specific fractions of the CPU band-
width can be allocated in a multiprocessor environment. To overcome this problem, we
presented a novel weight readjustment algorithm that modifies infeasible weights and
vastly reduces the unfairness of existing algorithms in multiprocessor environments.

– Surplus Fair Scheduling: We showed that even with the weight readjustment algorithm,
many existing algorithms show unfairness in their allocations, especially in the presence
of frequent arrival and departure of threads. To overcome this limitation, we developed
the surplus fair scheduling algorithm that achieves proportional-share allocation of CPU
bandwidth in multiprocessor environments. We implemented the surplus fair schedul-
ing algorithm in the Linux kernel and experimentally demonstrated its benefits over an
existing uniprocessor scheduler using real applications and benchmarks.

– Deadline Fair Scheduling: Proportionate-fairness (P-fairness) is a notion of proportional-
share allocation that is useful for providing absolute resource share guarantees, as it
imposes tight upper and lower bounds on the amount of resource allocated to an appli-
cation. While several existing algorithms achieve P-fairness in an ideal multiprocessor
system, many of these algorithms are offline and are difficult to extend to real sys-
tems. We proposed deadline fair scheduling, an online multiprocessor scheduling algo-
rithm that is provably P-fair in an ideal system, and can be easily extended to work in
real systems to achieve proportional-share allocation. We proved the P-fairness proper-
ties of deadline fair scheduling under idealized system assumptions, and experimentally
demonstrated the efficacy of this algorithm using a Linux implementation.

– Hierarchical Multiprocessor Scheduling: While an operating system scheduler deals
with individual threads, most server applications are multi-threaded. CPU bandwidth
can be partitioned in a differentiated manner among such applications by proportional-
share scheduling within a hierarchical scheduling framework—a scheduling framework
that allows grouping together of threads and similar applications into application classes.
We proposed generalized weight readjustment and generalized surplus fair scheduling
algorithms that can be used to achieve hierarchical proportional-share allocation in a
multiprocessor environment. We proved the properties of these algorithms and demon-
strated their efficacy using a simulation study.

• Dynamic Resource Allocation: In addition to the deployment of resource management mech-
anisms such as proportional-share CPU schedulers, a self-managing server also requires dy-
namic resource allocation techniques to allocate resources to multiple applications.

– Measurement-based Dynamic Resource Allocation: In this dissertation, we presented
a measurement-based dynamic resource allocation approach that uses online measure-
ments of application workload requirements to infer and allocate resources to an appli-
cation. This approach employs a queuing model that captures the transient state of a
resource queue, unlike existing steady-state queuing theoretic approaches. This tran-
sient queuing model has the advantage that its parameters do not need to be determined
a priori, and it also adapts to changing application workload demands. This model
allows the derivation of a relation between an application’s QoS goal and its resource
requirement. This relation can be coupled with a utility-based optimization technique to
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determine resource shares for multiple applications under resource constraints. Using a
Web workload-driven simulation study, we evaluated the performance of this dynamic
resource allocation approach under different system conditions, and showed that while
our dynamic resource allocation approach provides limited benefits over static alloca-
tion in the presence of a work-conserving scheduler, it provides substantial gains in the
presence of a non-work-conserving scheduler.

– Analysis of Resource Allocation Parameters: A dynamic resource allocation scheme
employs several parameters for its implementation, which have an impact on its re-
source utilization. We used real Web workload traces to explore the impact of some of
these parameters such as the allocation time-scale and the resource allocation granular-
ity on the resource multiplexing benefits of dynamic resource allocation. Our results
showed that short time-scales coupled with fine resource allocation granularity provide
the most efficient resource usage even in the presence of inaccurate prediction and over-
provisioning.

7.2 Future Research Directions

In this section, we discuss some future research directions that have evolved from the unan-
swered questions in this dissertation. Some of these research directions are outlined below.

• Provable Fairness Properties for Real Multiprocessor Systems: In this dissertation, we pre-
sented the surplus fair scheduling and the deadline fair scheduling algorithms, and empirically
demonstrated their ability to achieve proportional-share allocation. While we have provable
fairness guarantees for DFS under ideal system model assumptions, we do not have any the-
oretical bounds on the fairness properties of these algorithms under real system conditions,
such as asynchronous scheduling across processors and arrivals/departures of threads in the
system. We intend to investigate the fairness properties of these algorithms or develop other
algorithms with provable fairness guarantees in a real multiprocessor system.

• Practical Enhancements to Multiprocessor Scheduling: In this dissertation, we focused on the
fairness properties of multiprocessor schedulers, as these properties determine the resource
allocation guarantees for applications. There are some practical considerations that we in-
tend to explore in the future. These considerations include the effect of processor affinity
and processor contention. While we have designed some heuristics to incorporate processor
affinity for thread-scheduling algorithms such as DFS, we intend to design enhancements for
hierarchical scheduling as well. In particular, we plan to explore possibilities of exploiting
the hierarchical nature of a scheduling tree itself to partition the processor set and thus re-
duce processor contention and improve processor affinity. Another avenue we would like
to explore to resolve the fairness-performance tradeoff is to design probabilistic notions of
fairness that incorporate performance metrics in their definition.

• Multiple Resource Coordination: The dynamic resource allocation techniques presented in
this dissertation are applicable to individual resources. In general, each server has a single
bottleneck resource which can employ these techniques. However, applications use multi-
ple resources and the bottleneck resource can vary due to change in workload behavior, and
hence, there is a need to coordinate the allocation across multiple resources. Such coor-
dination would involve dynamic identification of the bottleneck resource, and also need to
incorporate interactions between multiple resources to meet application requirements.
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• Modeling and Experimental Study of Resource Allocation Benefits: We presented a perfor-
mance study of resource allocation parameters to quantify the potential resource allocation
benefits achievable through dynamic resource allocation in a data center. This study sug-
gested several possible directions for further investigation. First of all, several results of this
study demonstrate general trends that could be captured by building analytic models. Such
models could be employed to understand scenarios which do not lend themselves easily to
empirical studies. Another direction in which we can extend our performance study is to con-
duct experiments in a real system that allow us to relax the assumptions made in the study,
such as the absence of allocation overheads and interactions between multiple applications.
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APPENDIX A

PROOF OF PROPERTIES OF DEADLINE FAIR SCHEDULING

We show that the deadline fair scheduling (DFS) algorithm defined in Chapter 3 is P-fair as well
as work-conserving in an ideal system model that makes the following assumptions. We assume that
the ideal system model is a p-CPU symmetric multiprocessor system running a fixed set of n threads.
Further, we assume that the quanta of all the CPUs are synchronized. This means that (i) quantum
lengths are fixed (without loss of generality, assume quantum length to be 1), and (ii) each time the
scheduler is called, it picks a set of p threads to run on the p CPUs for the next quantum duration.
Finally, we assume that there is no processor affinity, i.e., any thread can be executed on any CPU.

We now prove the properties satisfied by DFS in such an ideal model. In the following, we
define a feasible set of threads to be one in which each thread i with share φi satisfies the weight
feasibility constraint (Relation 3.1).

Theorem 1 Given a set of feasible threads, DFS always generates a P-fair schedule.

Proof: To prove this theorem, we show that, in the ideal system model, DFS reduces to an existing
P-fair scheduling algorithm [3] (we would refer to this as the PF-priority algorithm). Thus, we
show that the schedule produced by DFS is exactly the same as that produced by the PF-priority
algorithm, which has been proved to be a P-fair schedule [3]. For our proof, we distinguish between
a time quantum (slot) which we define as the execution unit for a single CPU, and time unit which
we define as the elapsed time measured in quantum units. This implies that the system as a whole
executes p quanta every time unit.

To reduce DFS to PF-priority in the ideal system model, we show the equivalence of the concepts
used in the two algorithms. These concept equivalences are outlined below:

• Periodic Threads:

In PF-priority, each thread T is assumed to be periodic with a requirement (T.e, T.p), where
T.e is the thread’s execution cost and T.p is the thread’s period. This means that the thread T
has to execute for T.e time quanta (slots) every T.p time units.

We will refer to a generic thread as i, and refer to its execution cost and period as xi and yi

respectively. Thus, for the PF-priority algorithm,

xi

yi
=

T.e

T.p
. (A.1)

In the case of DFS, each thread i is assumed to have a weight φi, and the CPU share it receives

is
φi

∑n
j=1 φj

. Note that, if the thread is considered periodic with a requirement (xi, yi), then,
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it executes xi time quanta every (p · yi) time quanta (as the number of time quanta executed
every time unit in the system is p). Hence,

xi

p · yi
=

φi
∑n

j=1 φj

Thus, for DFS,

xi

yi
= p ·

φi
∑n

j=1 φj
. (A.2)

• Subthreads and runs:

In the case of PF-priority, each thread T is further subdivided into subthreads, each of which
needs to execute for one quantum. The kth subthread is referred to as Tk.

Equivalently, in case of DFS, each thread i consists of a series of runs of one quantum each.
The number of runs completed by the thread at time t is denoted by mi(t).

• Release times and eligibility criteria:

In the case of PF-priority, each subthread is released at a specific time into the system, called
its pseudo-release time. The kth subthread Tk is released at time r(Tk) such that

r(Tk) =

⌊

(k − 1) · T.p

T.e

⌋

Using Equation A.1, we have

r(Tk) =

⌊

(k − 1) ·
yi

xi

⌋

(A.3)

In the case of DFS, each thread i has to satisfy an eligibility criterion to be eligible to run.
This eligibility criterion is defined in Relation 3.6 as

Siφi

qmax
+ 1 ≤

⌈

φi

(

v

qmax
+

p
∑n

j=1 φj

)⌉

Since quantum size is assumed to be fixed (and equal to 1), using the definitions of Si and v

as defined in Section 3.2.2 (namely, Si =
mi(t)

φi
and v =

t · p
∑n

j=1 φj
) and Equation A.2, the

eligibility criterion for the thread at time t becomes

mi(t) + 1 ≤

⌈

(t + 1) ·
xi

yi

⌉

Thus, a thread becomes eligible (is released) for its kth run at the minimum time t = rk

which satisfies the above condition. Note that k = mi(t) + 1 in this case. This is equivalent
to saying that time rk satisfies

k =

⌈

(rk + 1) ·
xi

yi

⌉
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and

k =

⌈

rk ·
xi

yi

⌉

+ 1

Using the definition of the ceiling function, these equations can be rewritten as

(rk + 1) ·
xi

yi
≤ k < (rk + 1) ·

xi

yi
+ 1

and

rk ·
xi

yi
≤ k − 1 < rk ·

xi

yi
+ 1

Combining these two sets of inequalities, we get

(k − 1) ·
yi

xi
− 1 < rk ≤ (k − 1) ·

yi

xi

Using the definition of the floor function, this is equivalent to

rk =

⌊

(k − 1) ·
yi

xi

⌋

(A.4)

This is the same as Equation A.3 which implies that both DFS and PF-priority use the same
release times for their subthreads (runs).

• Deadlines:

In the case of PF-priority, each subthread is required to start execution by a specific time
called its pseudo-deadline. The pseudo-deadline of the kth subthread Tk is defined as the
time d(Tk) such that

d(Tk) =

⌈

k · T.p

T.e

⌉

− 1

Using Equation A.1, we have

d(Tk) =

⌈

k ·
yi

xi

⌉

− 1 (A.5)

In the case of DFS, each thread is required to finish execution by a specific time called its
deadline. Thus, at time t, the deadline for the thread’s next run is defined in (3.7) as

d(t) =

⌈

Fi

qmax
·

(

∑n
j=1 φj

p

)⌉

Again, since quantum size is assumed to be fixed (and equal to 1), using the definition of Fi

as defined in Section 3.2.2 (namely, Fi =
(mi(t) + 1)

φi
=

k

φi
, assuming the next run is the

thread’s kth run) and Equation A.2, we have the deadline for the kth run as

dk =

⌈

k ·
yi

xi

⌉

(A.6)

Comparing Equations A.5 and A.6, we can see that both DFS and PF-priority assign the same
deadlines to their subthreads (runs).1

1Note that the difference of 1 in the deadline values is due to the way they are defined in each algorithm, with DFS
defining the deadline as the end of the last possible quantum and PF-priority defining the deadline as the start of the last
possible quantum. Further, this difference does not affect the schedules of the two algorithms, as the threads are chosen
in order of their deadlines, which is not affected by this difference of 1 quantum.
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Both DFS and PF-priority schedule the eligible (or released) threads (subthreads) in the order
of their deadlines (pseudo-deadlines). If two threads have the same deadlines, then they apply
the following tie-breaking rules.

• Tie-breaking Rule 1:

If two released subthreads have the same deadline, then PF-priority gives precedence to the
subthread Tk (if one exists) for which

r(Tk+1) = d(Tk). (A.7)

DFS uses the following tie-breaking rule (Section 3.2.3) to decide between eligible threads
with the same deadline. It gives precedence to the thread i (if one exists) such that

⌊

Fi

qmax
·

(

∑n
j=1 φj

p

)⌋

<

⌈

Fi

qmax
·

(

∑n
j=1 φj

p

)⌉

.

Again, using the definition of Fi, etc., this rule can be written as
⌊

k ·
yi

xi

⌋

<

⌈

k ·
yi

xi

⌉

,

which is the same as

rk+1 = dk − 1, (A.8)

using the definitions of rk+1 and dk, and the properties of the floor and ceiling functions.

From Equations A.7 and A.8, we can see that both DFS and PF-priority have the same tie-
breaking rule 1 (Recall the difference in the definition of deadlines for the two algorithms).

• Tie-breaking Rule 2:

PF-priority defines the notion of a group deadline for a subthread of a thread T . If two sub-
threads are tied even after applying the tie-breaking rule 1, then PF-priority gives precedence
to the subthread with the higher value of its group deadline.

The group deadline G(Tk) for the kth subthread of a thread is defined as follows.

First of all, define a job J to consist of all the subthreads in a period T.p.

If
T.e

T.p
<

1

2
, then, G(Tk) = 0 (Such a thread is called a light thread).

Otherwise (for a heavy thread), the jth group deadline in a job J is computed as

tj =

⌈

T.e + (j − 1) · T.p

T.p − T.e

⌉

Thus, if k = l · T.e + k′, then, G(Tk) is defined to be smallest t = l · T.p + tj such that
t > d(Tk).

Thus, the group deadlines form the sequence

l · yi +

⌈

xi + (j − 1) · yi

yi − xi

⌉

, ∀l ≥ 0, 0 ≤ j ≤ yi − xi, (A.9)

using the definition of xi and yi from Equation A.1.

103



DFS borrows the definition of group deadlines from the PF-priorities algorithm. It defines the
notion of group deadline Gi of a thread i as follows.

Again, just like PF-priorities, if
p · φi
∑n

j=1 φj
<

1

2
, i.e., if

xi

yi
<

1

2
, then, Gi = 0.

Otherwise, Gi is computed as follows. Initially,

Gi =
p · φi

(
∑n

j=1 φj) − p · φi

=
xi

yi − xi

From then on, Gi is incremented by
∑n

j=1 φj

(
∑n

j=1 φj) − p · φi
=

yi

yi − xi

whenever

dGie ≤

⌈

Fi

qmax
·
(
∑n

j=1 φj

p

)

⌉

i.e., dGie ≤ dk,

where, dk is the pseudo-deadline for the kth run of thread i.

DFS gives precedence to a thread with higher value of dGie. It follows that the value of dGie
at any time t is the smallest value > dk from the sequence

l · yi +

⌈

xi + (j − 1) · yi

yi − xi

⌉

, ∀l ≥ 0, 0 ≤ j ≤ yi − xi (A.10)

From the sequences A.9 and A.10, it follows that both DFS and PF-priority use the same
tie-breaking rule 2 as well.

Any further ties are broken arbitrarily by both DFS and PF-priority.

From the equivalence relations shown between the concepts used by DFS and PF-priority above
and their rules for selecting threads, it follows that at each time instant, DFS and PF-priority make
identical choices for the next set of threads to run. Thus, they produce identical schedules. Since
it has been proven in [3] that PF-priority produces a P-fair schedule, we have shown that DFS
produces a P-fair schedule as well.

Theorem 2 Given a set of feasible threads, DFS is work-conserving.

Proof: Using the relation given in Equation A.2, the weight feasibility constraint (Relation 3.1) can
be rewritten as

xi

yi
≤ 1

This condition specifies that no thread needs to run more than once every time unit or on more
than one CPU simultaneously.
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Further, again using Equation A.2, we have,

n
∑

j=1

xi

yi
= p ·

n
∑

j=1

φi
∑n

j=1 φj
= p

This implies that if every thread i executes xi quanta every yi time units, then the total number
of time quanta used up by all the threads during every period of

∑n
j=1 yi time units is exactly

p ·
∑n

j=1 yi. In other words, the utilization of each CPU in every period is exactly 1.
By Theorem 1, DFS produces a P-fair schedule. By the definition of P-fairness [17], every P-

fair schedule is also a periodic schedule. Thus, DFS ensures that every thread i executes xi quanta
every yi time units. Hence, the CPU utilization for a DFS schedule is 1, i.e., no CPU is idle as long
as there are runnable threads in the system.

This proves that DFS is work-conserving for a feasible set of threads.
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APPENDIX B

PROOF OF PROPERTIES OF GENERALIZED WEIGHT READJUSTMENT

We now formally present and prove the properties of the generalized weight readjustment al-
gorithm (reproduced in Figure B.1) defined in Section 4.2.2. These properties were presented in
Section 4.2.3. We first prove the correctness of the algorithm and then present the properties of the
weights assigned by the algorithm. Finally, we analyze the time complexity of the algorithm.

In what follows, we consider a set of n sibling nodes in the scheduling hierarchy, numbered
from 1 to n. We assume that these nodes have been originally assigned weights w1, w2, . . . , wn,
and their thread parallelism values are θ1, θ2, . . . , θn respectively. Further assume that the indices 1

to n for the nodes are assigned in the non-increasing order of their weight-parallelism ratio

(

wi

θi

)

,

i.e.,
wi

θi
≥

wj

θj
, ∀i < j. The new adjusted weights of these nodes assigned by the generalized weight

readjustment algorithm are denoted by φ1, φ2, . . . , φn respectively. Finally, let π be the processor
availability of the parent of these nodes. We abstract the parent node’s processor availability as

a π-CPU system, which corresponds to the parent node receiving (
π

p
) fraction of the total CPU

service in a p-CPU system. We use these assumptions in the remainder of this appendix unless
stated otherwise.

gen readjust(array [w1...wn], float π)

// Input: Array of weights in sorted order of (
wi

θi

), number of processors

// Output: Array of adjusted weights [φ1...φn]
begin

1 if(
w1

∑n

j=1 wj

>
θ1

π
)

2 begin
3 gen readjust([w2...wn], π − θ1)

4 φ1 = (
θ1

π − θ1
) ·
∑n

j=2 φj

5 end
6 else
7 φi = wi,∀i = 1, . . . , n
end

Figure B.1. The generalized weight readjustment algorithm: The algorithm is invoked for adjusting
the weights of a set of sibling nodes in the scheduling tree.

We first show that the generalized weight feasibility constraint (Relation 4.4)

wi
∑

j∈CP
wj

≤
θi

πP
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is a necessary condition for any work-conserving scheduler to achieve proportional-share allocation
in a multiprocessor system.

Theorem 3 Consider a π-processor system running n nodes with weights w1, w2, . . . , wn respec-
tively. Let the nodes have thread parallelism values of θ1, θ2, . . . , θn respectively, such that

∑n
j=1 θj ≥

π. Then, no work-conserving scheduler can divide the CPU bandwidth among the nodes in propor-
tion to their weights if any node violates the generalized weight feasibility constraint, i.e., if for any
node i,

wi
∑n

j=1 wj
>

θi

π
.

Proof: Proof by contradiction.
Suppose there exists a work-conserving scheduler S that can divide the CPU bandwidth among

the nodes in proportion to their weights. This implies that the CPU share sj allocated to node j is
given by

sj =
wj

∑n
l=1 wl

, ∀j = 1, . . . , n. (B.1)

Further, let i be a node that violates the generalized weight feasibility constraint.
Now, since S is work-conserving, no CPU is allowed to be idle if there is an unassigned runnable

thread. As
∑n

j=1 θj ≥ π, and all threads are assumed to be continuously backlogged, all the CPUs
are going to be busy at all times. This means that in any time interval [t1, t2), the total CPU service
in the system is

A(t1, t2) = π · (t2 − t1).

Also, since θi is the maximum number of CPUs i can utilize at any time, its CPU service during
[t1, t2) is given by

Ai(t1, t2) ≤ θi · (t2 − t1).

Since [t1, t2) is any arbitrary time interval, the CPU share received by node i,

si ≤ max
t1<t2

Ai(t1, t2)

A(t1, t2)

≤
θi

π

<
wi

∑n
j=1 wj

This contradicts Equation B.1. Hence, proved by contradiction.

Next, we examine the properties of the generalized weight readjustment algorithm. We first

show that ordering the nodes in the non-increasing order of their weight-parallelism ratio

(

wi

θi

)

ensures that infeasible nodes are always placed before feasible nodes. This property has implications
on the efficiency of the algorithm, as we show later.

Lemma 1 Consider two nodes i and j with weights wi and wj , and node parallelism θi and θj

respectively. If
wi

θi
≤

wj

θj
, then, node i violates the generalized weight feasibility constraint only if

node j violates it.
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Proof: If node i violates the generalized weight feasibility constraint, then, we have,

wi

θi
>

∑n
l=1 wl

π
.

Thus,

wj

θj
≥

wi

θi

>

∑n
l=1 wl

π
,

and hence, node j also violates the constraint.

Now we give the correctness proof of the generalized readjustment algorithm.

Theorem 4 The adjusted weights assigned by the generalized weight readjustment algorithm sat-
isfy the generalized weight feasibility constraint, i.e.,

φi
∑n

j=1 φj
≤

θi

π
, ∀i ∈ {1, . . . , n}.

Proof: Proof by induction on the number of CPUs (π):
Base Case: For π ≤ 1,

φi
∑n

j=1 φj
≤ 1, ∀i ∈ {1, . . . , n},

while,

θi

π
≥ θi ≥ 1, ∀i ∈ {1, . . . , n}.

Hence, the hypothesis holds.
Inductive Step: Suppose the property holds for all π upto Π.
Now consider π processors s.t. Π < π ≤ Π + 1. Let π′ = π − θ1, where θ1 is the parallelism

of node 1.
Note that π′ ≤ Π.
Based on the weight w1 of node 1, we have the following cases:
Case (a):

w1
∑n

j=1 wj
≤

θ1

π
(B.2)

By step 7 of the algorithm,

φi = wi, ∀i ∈ {1, . . . , n}.

Hence,

φi
∑n

j=1 φj
=

wi
∑n

j=1 wj
, ∀i ∈ {1, . . . , n}.
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Thus, by Relation B.2 and Lemma 1,

φi
∑n

j=1 φj
≤

θi

π
, ∀i ∈ {1, . . . , n}.

Case (b):

w1
∑n

j=1 wj
>

θ1

π

By the inductive hypothesis, gen readjust([w2, w3, . . . , wn], π′) would return [φ2, φ3, . . . , φn]
s.t.

φi
∑n

j=2 φj
≤

θi

π′
, ∀i ∈ {2, . . . , n} (B.3)

By steps 3 and 4 of the algorithm,

φ1 =
θ1

π′
·

n
∑

j=2

φj .

Thus,

n
∑

j=1

φj =
θ1

π′
·

n
∑

j=2

φj +

n
∑

j=2

φj

=
θ1 + π′

π′
·

n
∑

j=2

φj

=
π

π′
·

n
∑

j=2

φj

Hence,

φ1
∑n

j=1 φj
=

θ1
π′ ·
∑n

j=2 φj

π
π′ ·
∑n

j=2 φj

=
θ1

π

Finally, ∀i ∈ {2, . . . , n},

φi
∑n

j=1 φj
=

φi
π
π′ ·
∑n

j=2 φj

≤
π′

π
·
θi

π′
(By Relation B.3)

≤
θi

π

Hence, proved by induction.

Having given the correctness proof of the generalized weight readjustment algorithm, we now
show that the adjusted weights assigned by the algorithm are “closest” to the original weights in the
following sense:
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1. Nodes that are assigned fewer CPUs than their thread parallelism are assigned their original
weights.

2. Nodes with an original CPU demand exceeding their thread parallelism are assigned the max-
imum number of CPUs they can utilize.

We first present a lemma that helps in proving the above properties.

Lemma 2 The set of adjusted weights φi assigned by the generalized weight readjustment algo-
rithm satisfy the following condition:

n
∑

i=1

φi ≤

n
∑

i=1

wi.

Proof: Proof by induction on the number of CPUs (π):
Base Case: For π ≤ 1, the property holds trivially, as,

[φ1, . . . , φn] = [w1, . . . , wn].

Inductive Step: Suppose the property holds for all π upto Π.
Now consider π processors s.t. Π < π ≤ Π + 1. Let π′ = π − θ1, where θ1 is the parallelism

of node 1.
Note that π′ ≤ Π.
Based on the weight w1 of node 1, we have the following cases:
Case (a):

w1
∑n

j=1 wj
≤

θ1

π
(B.4)

By step 7 of the algorithm,

φi = wi, ∀i ∈ {1, . . . , n}.

Hence,

n
∑

j=1

φj =

n
∑

j=1

wj .

Case (b):

w1
∑n

j=1 wj
>

θ1

π
(B.5)

By steps 3 and 4 of the algorithm,

φ1 =
θ1

π′
·
∑n

j=2 φj

⇒
∑n

j=1 φj =
π

π′
·
∑n

j=2 φj
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Also, by the inductive hypothesis,

n
∑

j=2

φj ≤
n
∑

j=2

wj

Hence,

n
∑

j=1

φj ≤
π

π′
·

n
∑

j=2

wj (B.6)

From Relation B.5,

w1
∑n

j=2 wj
>

θ1

π − θ1

⇒ w1 >
θ1

π − θ1
·
∑n

j=2 wj

Thus,

n
∑

j=1

wj >
π

π′
·

n
∑

j=2

wj (B.7)

From Relations B.6 and B.7, we have,

n
∑

j=1

φj <

n
∑

j=1

wj .

Hence, proved by induction.

Theorem 5 The adjusted weights assigned by the generalized weight readjustment algorithm sat-
isfy the following properties:

1. Nodes that are assigned fewer CPUs than their thread parallelism retain their original weights.

2. Nodes with an original CPU demand exceeding their thread parallelism receive the maximum
possible share they can utilize.

These properties can be restated formally as follows:

1. If S = {i|i ∈ {1, . . . , n},
φi

∑n
j=1 φj

<
θi

π
}, then,

φi = wi, ∀i ∈ S.

2. If
wi

∑n
j=1 wj

>
θi

π
for a node i, then,

φi
∑n

j=1 φj
=

θi

π
.
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Proof:

1. Proof by induction on the number of CPUs (π):

Base Case: For π ≤ 1, the property holds trivially, as,

[φ1, . . . , φn] = [w1, . . . , wn].

Inductive Step: Suppose the property holds for all π upto Π.

Now consider π processors s.t. Π < π ≤ Π + 1. Let π′ = π − θ1, where θ1 is the parallelism
of node 1.

Note that π′ ≤ Π.

Based on the weight w1 of node 1, we have the following cases:

Case (a):

w1
∑n

j=1 wj
≤

θ1

π
(B.8)

Again, the hypothesis holds trivially by step 7 of the algorithm.

Case (b):

w1
∑n

j=1 wj
>

θ1

π

As shown in the proof for Theorem 4,

φ1
∑n

j=1 φj
=

θ1

π
.

Hence, 1 /∈ S.

If i ∈ {2, . . . , n} s.t.
φi

∑n
j=2 φj

=
θi

π′
, then,

φi
∑n

j=1 φj
=

φi
π
π′

∑n
j=2 φj

=
π′

π
·
θi

π′

=
θi

π

Hence, i /∈ S.

Thus, S = {i|i ∈ {2, . . . , n},
φi

∑n
j=2 φj

<
θi

π′
}.

Therefore, φi = wi, ∀i ∈ S by inductive hypothesis.

Hence, proved by induction.
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2. Proof by contradiction.
Suppose for the node i,

φi
∑n

j=1 φj
6=

θi

π
.

Then, by Theorem 4,

φi
∑n

j=1 φj
<

θi

π
. (B.9)

Relation B.9 implies that the node i belongs to the set S defined above for Property 1. Hence,
by Property 1,

φi = wi. (B.10)

From Equation B.10 and Lemma 2, we have

φi
∑n

j=1 φj
≥

wi
∑n

j=1 wj

>
θi

π

This contradicts Relation B.9.
Hence, proved by contradiction.

Corollary 2 Any pair of nodes that get fewer CPUs than their parallelism, get shares in proportion
to their original weights.

Formally, if
φi

∑n
l=1 φl

<
θi

π
and

φj
∑n

l=1 φl

<
θj

π
, for any i, j ∈ {1, . . . , n}, then,

φi

φj
=

wi

wj
.

Now, we analyze the time complexity of the generalized weight readjustment algorithm, and
use it to analyze the time complexity of the hierarchical weight readjustment algorithm (reproduced
in Figure B.2).

Theorem 6 The worst-case time complexity T (n, π) of the generalized weight readjustment algo-
rithm for n nodes and π processors is O(π).

Proof:
If π ≤ 1, then, the algorithm terminates at step 7, as all nodes satisfy the weight feasibility

constraint in this case.
This means

T (n, π) = O(1), if 0 < π ≤ 1.

Otherwise, the algorithm makes a recursive call at step 3 and terminates at step 4.
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hier readjust(tree node node)
// Input: Tree node on which hierarchical readjustment needs to be performed
begin
1 gen readjust(node.weight list, πnode)

// weight list is the list of weights of node’s children ordered by (
wi

θi

),

// πnode is the processor availability of node
2 foreach child in Cnode

// Cnode is the set of node’s children
3 begin

4 πchild =

(

φchild
∑

j∈Cnode
φj

)

· πnode

5 hier readjust(child)
6 end
end

Figure B.2. The hierarchical weight readjustment algorithm: The algorithm adjusts the weights of
all nodes in the subtree of a given node.

The recursive call is made with π set to π − θ1. Since, θ1 ≥ 1, we have,

T (n, π) ≤ T (n, π − 1) + O(1).

Solving the recurrence relation, we get,

T (n, π) = O(π).

We now present a lemma that allows us to extend the time complexity analysis of the generalized
weight readjustment algorithm (that is used for a set of sibling nodes) to the time complexity analysis
of the hierarchical weight readjustment algorithm (that is applied to the whole scheduling tree).
This lemma states that the total number of processors assigned to the nodes at each level of the tree
remains constant.

Lemma 3 At any level l of the scheduling hierarchy,

∑

j∈Sl

πj = p,

where, Sl is the set of nodes at lth level of the tree, and p is the number of CPUs in the system.

Proof: Proof by induction on the tree level (l).
Base Case: At l = 0, i.e., at the root of the tree, the property holds by definition as πroot = p.
Inductive Step: Suppose the property holds for all levels l upto L.
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Now consider level L + 1. Then, by the definition of processor availability (Equation 4.2),

∑

j∈SL+1
πj =

∑

j∈SL+1

(

wj
∑

k∈CP (j)
wk

· πP (j)

)

where, P (j) is the parent of node j

=
∑

i∈SL

∑

j∈Ci

(

wj
∑

k∈Ci
wk

· πi

)

where, Ci is the set of node i’s children

=
∑

i∈SL
πi

= p by the inductive hypothesis

Hence, proved by induction.

Theorem 7 The worst-case time complexity T (n, h, p) of the hierarchical weight readjustment al-
gorithm for a scheduling tree of height h with n nodes running on a p-CPU system is O(p · h).

Proof: The time complexity of the hierarchical weight readjustment algorithm is determined by the
time complexity of applying the generalized weight readjustment algorithm to all the nodes in the
scheduling tree.

Thus, using Theorem 6, the time complexity of the hierarchical algorithm T (n, h, p) is given by

T (n, h, p) =
∑n

i=1 O(πi) where πi is the processor availability of node i

=
∑h−1

l=1 O(p) by Lemma 3
= O(p · h)

Thus, the time complexity of the hierarchical weight readjustment algorithm is dependent on
the height of the scheduling tree and the number of processors in the system, and is independent of
the number of runnable threads in the system.
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APPENDIX C

PROOF OF PROPERTIES OF GENERALIZED SURPLUS FAIR SCHEDULING

We now present the proof of the properties satisfied by the generalized surplus fair scheduling
algorithm defined in Section 4.3.2. These properties were presented in Section 4.3.3. We consider a
system model consisting of a fixed scheduling hierarchy, with no arrivals and departures of threads
and no weight changes. Further, we assume that the scheduling on the processors is synchronized.
In other words, all p CPUs in the system are scheduled simultaneously at each scheduling quantum.
For the non-trivial case, we would also assume that the number of threads n ≥ p. In such a system
model, G-SFS satisfies the following property.

Theorem 8 After every scheduling instant, for any node i in the scheduling tree, G-SFS ensures
that

bπic ≤ ri ≤ dπie.

Proof: Proof by induction on the scheduling tree level (l).
Base Case: For l = 0, the property holds trivially, as rroot = p = πroot.
Inductive Step: Suppose the property holds for all nodes upto level L of the scheduling tree.
Now, consider a node P at level L of the tree with processor availability and assignment equal

to πP and rP respectively. Further, consider the set of P ’s children nodes CP . These children nodes
lie at level L + 1 of the tree.

Claim 1: No member of CP is in the deficit set.
Proof of Claim 1: Let us assume that Claim 1 is false. Then, there exists a node i ∈ CP s.t. i is

in the deficit set, i.e.,

ri < bπic.

Now, for any set of sibling nodes, at any scheduling instant, G-SFS first schedules nodes that
are in the deficit set, i.e., those nodes i for which ri < bπic. And since the deficit set is non-empty
by our assumption, no nodes could have been scheduled from the low-threshold set for CP . Thus,
the number of CPUs assigned to a node j ∈ CP , j 6= i would be

rj ≤ bπjc.

Therefore, the total number of CPUs assigned to nodes in CP is given by
∑

j∈CP

rj <
∑

j∈CP

bπjc

< b
∑

j∈CP

πjc

< bπP c

< rP , (by the inductive hypothesis)
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This contradicts Equation 4.5:

ri =
∑

j∈Ci

rj .

Therefore, Claim 1 is true.
Claim 2: No node i ∈ CP has ri > dπie.
Proof of Claim 2: Let us assume that Claim 2 is false. Then, there exists a node i ∈ CP s.t.

ri > dπie. (C.1)

Now, for any set of sibling nodes, at any scheduling instant, G-SFS first schedules nodes that
are in the deficit set. By Claim 1, the deficit set for CP is empty. In that case, G-SFS schedules
nodes that are in the low-threshold set, i.e., those nodes j for which

bπjc = rj < dπje.

The existence of node i ∈ CP satisfying Relation C.1 implies that the low-threshold set is empty
(otherwise these nodes would still be available for scheduling). This means that the number of CPUs
assigned to a node j ∈ CP , j 6= i would be

rj ≥ dπje.

Therefore, the total number of CPUs assigned to nodes in CP is given by
∑

j∈CP

rj >
∑

j∈CP

dπje

> d
∑

j∈CP

πje

> dπP e

> rP (by the inductive hypothesis)

This contradicts Equation 4.5.
Thus, Claim 2 is true.
By Claim 1,

ri ≥ bπic, ∀i ∈ CP .

By Claim 2,

ri ≤ dπie, ∀i ∈ CP .

Therefore,

bπic ≤ ri ≤ dπie, ∀i ∈ CP .

Now, since P is an arbitrary node at level L, we can assert that

bπic ≤ ri ≤ dπie, ∀i ∈ SL+1,

where, SL+1 is the set of nodes at level L + 1 of the scheduling tree.
Hence, proved by induction.

Corollary 1 For any time interval [t1, t2), G-SFS ensures that the CPU service received by any
node i in the scheduling tree is bounded by

bπic · (t2 − t1) ≤ Ai(t1, t2) ≤ dπie · (t2 − t1).
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