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Abstract— On-line decision making often involves query pro-
cessing over time-varying data which arrives in the form of data
streams from distributed locations. Examples of time-varying
data include financial information such as stock prices and
currency exchange rates, real-time traffic, weather information
and data from process control applications. In such environments,
typically a decision is made whenever some function of the
current value of a set of data items satisfies a threshold criterion.
For example, when the traffic entering a highway exceeds a pre-
specified limit, some flow control measure is initiated; when the
value of a stock portfolio goes below a comfort level, an investor
might decide to rethink his portfolio management strategy. In
this paper we present data dissemination and query processing
techniques where such queries access data from multiple sources.
Key challenges in supporting such Continuous Aggregate Queries
with Thresholds lie in minimizing network and source overheads,
without the loss of fidelity in the responses provided to users.
Using real world data we demonstrate the superior performance
of our techniques when compared to alternatives based on
periodic independent polling of the sources.

I. INTRODUCTION

A. Motivation

An increasing fraction of data on the web is time-varying
(i.e., varies continuously with time) and is presented in the
form of data streams. Examples of time-varying data include
financial information such as stock prices and currency ex-
change rates, real-time traffic, weather information and data
from process control applications. They are frequently used
for online decision making, and in many scenarios, such
decision making involves multiple time-varying data items,
from multiple independent sources. Examples include a user
tracking a portfolio of stocks and making decisions based on
the net value of the portfolio. Observe that computing the
overall value of the portfolio at any instant requires up-to-
date values of each stock in the portfolio. In some scenarios,
users might be holding these stocks in different (brokerage)
accounts and might be using a third-party data aggregator,
such as yodlee.com [26], to provide them a unified view
of all their investments. In general, third-party aggregators
assemble a unified view of the information of interest to the

user by periodically gathering and refreshing information from
multiple independent sources. If the user is interested in certain
events (such as a notification every time the value of the
portfolio crosses $10000), then the aggregator needs to peri-
odically and intelligently refresh the value of each stock price
to determine when these user-specified thresholds are reached.
More formally, the aggregator runs a continuous query over
the aggregate of data items by intelligently refreshing the
individual data items from their distributed sources in order
to determine when user-specified thresholds are exceeded. We
refer to such queries as Continuous Aggregate Queries with
Thresholds (CAQTs) (pronounced as KAKTs).

Much of the prior work on continuous queries (see Section
VI) has assumed that queries are handled directly by the server
(data source). Such an approach has two important limitations.
First, since continuous threshold queries are compute-intensive
(due to the need to continuously evaluate the query condition),
the source could become a bottleneck, and thereby, limit the
scalability of the system. Second, a pure source-based ap-
proach makes CAQTs on data items from multiple independent
sources impossible (for example, the source-based approach
is unfeasible in the case where a user specifies a query on
data items held in multiple independent accounts). Executing
queries at intermediate data aggregators (e.g. proxies in case of
the web) eliminates both restrictions—the approach is scalable,
since computations are off loaded from the source to aggrega-
tors, and queries on data items from multiple sources become
feasible. In addition, a proxy which acts as a data aggregator
can improve user response times [6], [7] by being placed closer
to the eventual clients. However, such an approach raises new
research challenges. The key challenge is to ensure that the
results of the query are no different from the case where the
query is handled by an idealized aggregator which has the
current version of the data available all the time –i.e., without
delays– (or correctness of the results should be ensured). To
do so, the aggregator should ensure that the values of time-
varying data items are temporally coherent with the source.

In the rest of this section, we provide a precise definition



of CAQTs and then outline the research contributions of this
paper.

B. Continuous Aggregate Queries with Thresholds (CAQTs):
An Introduction

A CAQT ���������	��
�� operates on  data items ��� , . . . , ���� � with � � , ��� , ����� , � � � � as the weights attached to these
data items and informs the invoker whenever the threshold 

is crossed. The set ����� �!�#"%$ where & is the set of data
values at the source and the ' is the set of data values at the
proxy. Let, (*)#�,+-� and ./)-�0+-� be the values of the data item �1)#�0+-�
at time t at the source and proxy respectively. Then the CAQT
can be formally defined as

2�343 ��&5�6�7�98:
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Here
3

can be any function such as sum, min, max, etc.
In this paper, we focus on Sum Based Queries although our
techniques can be generalized for other aggregations V as well.
Sum based CAQTs are a type of CAQT in which the user should
have the correct knowledge of the position of the portfolio of
data items with respect to the specified threshold 
 . This can
be stated as2�3 )FE �G

)FE � ( ) �,+-�!H�� ) 8A
�+-<>=��
)FE �G
)FE � . ) �0+-�!H�� ) 8:
 (3)
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The aggregator needs to dynamically track changes in the
stock price to successfully execute the CAQT and notify the
portfolio value to the user when it crosses the specified
threshold.

C. Metrics used to characterize the algorithms for executing
CAQTs

1) Fidelity of CAQTs: We use Fidelity to measure the
accuracy of the CAQT executed by a aggregator with respect
to that of an idealized one, that is, a aggregator which has
current data available all the time which in turn implies that
the aggregator has the correct knowledge of the position of
the CAQT with respect to the value of the CAQT at the source.
To quantify these misperceptions, we define fidelity as the
percentage of total time duration for which the aggregator
knows the correct state of the CAQT.
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where the Total out of sync time is the time duration for which
the aggregator was oblivious of the right state of the CAQT.

Notice that if Equation 3 and 4 are satisfied at a particular
instant + , then the exact values of data items at the aggregator,
. ) �0+-� , need not correspond to ( ) �,+-� , the values at the source.
It is sufficient for the aggregator to know that the threshold is

not exceeded. In other words, the aggregator needs to be aware
of only those updates to the data items that cause the CAQT
value to cross the threshold. This key observation allows us
to reduce the number of updates to data items that need to be
propagated from the source to the aggregator.

2) Network Overhead: We have chosen the number of
network messages as the parameter to measure network over-
head. If we are able to minimize the number of messages
itself, irrespective of the network delays, we will have better
performance. Moreover network delays also vary over differ-
ent networks. Therefore, we define network overhead as the
number of network messages incurred for every 100 changes
at the source.

In a push-based approach, there are push messages from
the source involving update of the values at the aggrega-
tor and from the aggregator to the sources involving up-
date of windows. However, a pull-based approach requires
two messages—a request, followed by a response—per poll.
Clearly, given a certain number of updates received by a aggre-
gator, pull-based approaches incur larger message overheads.

3) Scalability: The data dissemination set up needs to be
scalable to a large number of CAQTs or to CAQTs which
involve a larger number of data items. Computational overhead
as well as space overhead can be a bottleneck and hamper the
scalability of the solution.

Computational overheads can occur at the aggregator,
source, or both. Computational overheads for a pull-based
approach result from the need to deal with individual pull
requests at the aggregator. After getting a pull request from
the aggregator, the source just needs to look up the latest data
value and respond. On the other hand, when the source has to
push changes in the data value to the aggregator, for each
change that occurs, the source has to check if the change
must be pushed. The latter might involve evaluating specific
conditions.

A pull-based source is stateless and does not have any
overhead at the source. In contrast, a push-based source must
maintain the coherency requirement of a client for each data
item, the latest pushed value, along with the state associ-
ated with an open connection. Since this state is maintained
throughout the duration of connectivity, the number of clients
the source can handle may be limited resulting in scalability
problems. If there are  data items and [ communication
channels then the state space needed is:

eaf�0g��0�>�-hX�#�jiA[kaf�0g��0[�(M�-� (5)

where � is the data item, h is the coherency requirement,
gl���J�#hX� is the number of bytes needed for a (d,w) pair and
B(cs) is the number of bytes needed for a connection state.

4) Resiliency: If a source fails and a aggregator expects
the source to push changes of interest, a aggregator might
incorrectly believe that it has temporally coherent data and
possibly take some action based on this. On the other hand, if
a aggregator explicitly pulls data from a source, it will soon
enough, say at the end of a time out period, know about the
failure of the source and take appropriate action. Once the



aggregator realizes that the source has crashed, it can either
refrain from taking any decisions or connect to a different
source if possible. Clearly, the latter could be done transparent
to the actual user.

The above discussion clearly shows that pull is preferable
when we consider the computational overheads, state space
overheads and resiliency problems associated with push. On
the other hand, fidelity and communication overheads of pull
depend on the nature of the data updates and how frequently
the aggregator refreshes the data. We make use of the com-
plementary properties of the canonical pull and push based
approaches to develop efficient techniques to deal with query
processing over streams originating from multiple sources.

D. Contributions of this paper

In this paper, we present:

1) A suite of data dissemination algorithms to efficiently
disseminate time-varying data items from sources to
aggregators (observe that a naive approach that dis-
seminates every update to a frequently changing data
item can have a prohibitive overhead). To overcome this
overhead, we face the following issues.

a) Since every CAQT is executed over a group of
data items, how should one derive the coherency
requirement of each of the data items used by the
CAQT?
The coherency requirement associated with a data
item depends on (a) the overall contribution of
the data item to the CAQT’s result and (b) the
threshold value associated with the CAQT. In this
paper we propose techniques to determine a data
items’ coherency requirements to ensure correct
execution of the CAQTs.

b) How should the (derived) coherency requirement
associated with each item be ensured?
To maintain coherency of the data, each data item
must be periodically refreshed with the copy at
the source. In this paper we demonstrate that,
in the case of CAQTs, using standard techniques,
such as pull and push, for individually retrieving
each of the data items is not efficient - additional
mechanisms must be employed which exploit the
fact that the data items that are needed to execute
a CAQT form a semantic unit.

2) How our model for data aggregation allows (a) query
processing to be moved from sources to aggregators,
(b) permits the presence of multiple aggregators and (c)
judiciously combines push and pull based approaches to
improve scalability and resiliency.

Note that a user is interested only in the fidelity of the
CAQT and not the exact values of the �1) ’s. Hence as long as
a aggregator is correctly informed about the state of a CAQT,
even if an individual data item is changing very rapidly there
is no need to follow these changes frequently. This is a key
observation that is exploited by our novel techniques.

The Pull-Based CAQTs Execution Approach ( " Z L0L������ )
outlined in Section II makes use of this fact to reduce the
network overhead without loss of fidelity . Here, a aggregator
tries to estimate the expected change in the value of a data
item and based on the position of the CAQT relative to the
threshold, it estimates the time to refresh for each data item
so that the fidelity of the CAQT is maintained.

Given sources that are capable of pushing changes, an
alternative is to use a Push-Based CAQTs Execution Ap-
proach ( " Z (M<������ ), outlined in Section III. Here a aggre-
gator calculates the coherency Requirement of data items and
communicates them to the data sources. Sources push only
those changes needed to meet user coherency requirements. In
contrast with pull-based techniques, this approach offers better
fidelity for individual data items and hence for the CAQTs.

Unfortunately, a push based approach requires that a source
should maintain the coherency requirements of the data items
that it serves. As mentioned earlier, this consumes state space
at the source and is also prone to scalability and resiliency
problems. Consequently, it is imperative to consider an intel-
ligent combination of " Z L0L������ and " Z (M<������ as is done
in Section IV. We develop a high performance Hybrid CAQTs
Execution Approach ( � N������ ) that dynamically categorizes
CAQT’s data items into those needing pull vs. those needing
push. These are aimed at reducing the state space requirements
and resiliency and scalability problems of a push based ap-
proach while retaining its fidelity maintenance properties. We
describe as well as experimentally evaluate the performance
of the three approaches using CAQTs defined over real-world
data streams of dynamically changing data (specifically, stock
prices) in Sections II through IV. The performance of the
algorithms was evaluated using real-world data streams. The
presented results are based on stock price streams (i.e., history
of data values) of around 150 companies (Table I lists a few
of them). Streams were constructed through repeated polling
of http://finance.yahoo.com and all the experiments were done
on the local intranet. These experiments were done for CAQTs
between 3 and 15 data items.

All algorithms were evaluated using a prototype
server/proxy that employed trace replay. Our evaluations
show that by dynamically tracking the changes to data
item values and by judicious combination of push and pull
approaches, one can achieve high fidelity and scalability
while maintaining low overheads.

The algorithms proposed for dealing with CAQTs are com-
pared to the related work in Section VI and a summary of this
paper is presented in Section VII.

II. THE PULL-BASED CAQTS EXECUTION APPROACH

( " Z L0L������ )

" Z L�L	����� is entirely pull-based and does not need any
special support at sources (and hence, is compatible with
any HTTP server). This algorithm dynamically computes
the coherency requirements of each data item based on its
“contribution” to the overall value of the CAQT—data items
that are likely to change the value of the CAQT by a larger



TABLE I

SOME OF THE TRACES USED FOR THE EXPERIMENT

Company Date Time Maximum Value Minimum Value Average Value
ABC Jun 2, 2000 22:14-01:42 IST 135.75 134.5 135.144
Dell Jun 1, 2000 21:56-22:53 IST 43.75 42.875 43.434932

UTSI Jun 1, 2000 22:41-23:15 IST 22.25 21.00 21.731243
CBUK Jun 2, 2000 18:31-21:57 IST 8.625 8.25 8.505309
Intel Jun 2, 2000 22:14-01:42 IST 134.500 132.500 133.462484
Cisco Jun 6, 2000 18:48-22:20 IST 65.000 63.0625 63.971584
Oracle Jun 7, 2000 00:01-01:59 IST 79.3750 76.6250 78.576186
Veritas Jun 8, 2000 21:20-23:48 IST 137.000 133.500 134.859644

Microsoft Jun 8, 2000 21:02-23:48 IST 69.6250 68.0781 69.046370

amount are given a tighter coherency requirement, which
enables the aggregator to track those data item with greater
accuracy. In addition, the coherency requirement depends
on the change in the data value vis-a-vis the changes in
the other data items constituting the CAQT. The algorithm
uses coherency requirements to determine how frequently to
refresh (pull) the new value from the source—data items
with tighter (smaller) coherency requirements are refreshed
more frequently. We now describe the various components of
" Z L�L	����� and thereafter evaluate its performance.

The aggregator makes use of two kinds of coherency re-
quirements: one is the static coherency requirement ( [ ) which
is the the potential amount by which each data item needs
to change in order to contribute to an overall change of �
(relative threshold given by equation 7) in the value of the
CAQT. The other type of coherency requirement is the dynamic
coherency requirement ( � ) which is the estimated change in
the value of the data item depending on the dynamics of the
data item. Using these two values the aggregator estimates the
TTR (Time to refresh of each data item) and polles the data
items based on the TTR values.

The [ represents the potential amount by which each data
item should change so that overall the portfolio crosses the
threshold. Thus, given the absolute threshold 
 , the " Z L�L	�����algorithm apportions a part, [ ) , to each data item such that

[*�Xa�� � iA[ � a � � i7�����MiC[`� a���� ��� (6)

where � ��� 
 S K � K + K Y1L ���X� U�� Y1L Z =�� (7)

The parameter [ ) is the [ of the
K��
	

data item. Intuitively,
if each data item changes by amount [ ) , the value of the
CAQT changes by � . The challenge then is to determine
an appropriate [ ) for each data item such that Equation 6
is satisfied. We then determine the [ ) based on the weight
attached with the data items to the value of the CAQT. If the
weight attached with the data item is more then even a small
change in the data value will have a large effect on the value of
the CAQT. Hence data items that have a larger weight are given
a smaller coherency requirement, implying that the aggregator
tracks those data items with greater accuracy. Assuming a
weight � ) for data item

K
,

[ ) �
��� E � � � S � )� �� E � � � a �

��)Iaf�0 S R*� (8)

The larger the contribution of data item
K

(i.e., � ) ), the

smaller the quantity

������� � ��� ���� ������ � � , and the smaller the resulting

tolerance [ ) . The second factor �� ����� � � ��� ensures that the
computed [ ) s satisfy Equation 6.

Whenever the aggregator is informed of a change in the
value of any data item constituting the CAQT, the aggregator
finds the relative threshold (equation 7) using the data values
cached at the aggregator. It calculates the [ (using equation 8)
and tries to estimate the expected changes in the value of all
data items constituting the CAQT during the next interval. To
do so, we have extended the core idea of Asset Pricing Model
for Stocks [24]. Though this model was developed specifically
for stocks and our experiments were also conducted on stock
values (solely due to the easy availability of stock data), it
is generic enough to represent the behavior of any data item
whose values exhibit brownian motion. It tries to model the
behavior of a dynamically changing data item by decomposing
the changes into drift components which are the expected
changes in its value (based on the history of its behavior) and a
diffusion component (changes caused by the external processes
outside the system). The diffusion component accounts for the
brownian behavior in the value of the data item.

In order to find the expected change, the aggregator starts
building up the history of the data items constituting the
CAQT. With the available history, we then use the following
equation (derived from [24]) based on the drift and diffusion
components of changes to estimate the future changes in the
prices of data items:

�P�! �� + i#" ��$ (9)

Here,%
� is the estimated change in the value of the data item
during � +%  is the expected change in the price of the stock%
� + is the time interval for which we are calculating the
estimated change% " is the volatility in the value of the data item%
�&$ is the measure of external factors



In this equation, the first term  ��d+ helps us estimate the drift
and the second term " ��$ helps us estimate the diffusion. We
fix � + as 1 so as to be able to calculate the estimated change
in data value over the next interval (further also referred to as
� ). To calculate  we use the following equation:

 ) � �  ) � �ka � ) � ����iC[�<>Y�� � = )
� ) (10)

Here,  ) � � is the previous  , � ) is the count of intervals
elapsed since the CAQT was registered with the aggregator,
� ) � � is the count when the value of this data item was last
updated at the aggregator and [�<JY�� � = ) is the change in the
data value since � ) � � . Thus, we are incrementally calculating
the value of  by storing minimal information at the aggregator
(the values of ��) � � and  ). " is the volatility in the value of
the data item and it is calculated using the standard formula
for volatility.

The value of �&$ is calculated as:

�&$ ) �
� a [�<JY�� � =*) � �

�6� ) S � ) � ���Ta � ) � � i ��RTS � �@a ��$ ) � � (11)

In this equation, �
	�� ���	� ��
 ��� ����� ��
 � � ��� ��
 � gives us an estimate of

the unexpected change over the last update as �
	�� ���	� ��
 �
� ����� ��
 � is

the change in the data value per interval over the last update
and when divided by �1) � � (which was the estimated change
per interval during the last update) we get an estimate of the
new external forces that have been active in determining its
value over the period of last update. We take an exponentially
smoothed value of dX so that the entire randomness is not
just attributed to the last change. The value of L ( c%B � BVR ),
which is the smoothing constant, is kept greater than 0.5 to
account for the recency effect (which states that changes in
the recent past are reflective of the changes in the near future).
This helps in capturing small and sudden trends in the values
of dynamically changing data items.

Using this value of � , we calculate the polling interval (TTR)
as follows. First we address two special cases:%

Case 1: If the [ is zero, it implies that the CAQT value
is equal to that of the threshold. In such a situation the
aggregator should track the data item very accurately and
hence its Time to refresh (TTR) is set to 1 time units.%
Case 2: If the dynamic cr of the data item is zero, it
implies that the data item is changing very slowly or
the expected change in the data value is zero. Hence the
aggregator can afford to relax the polling frequency of the
data item. The aggregator therefore increases the TTR of
the data item and sets it to TTR ) � � a GROWTH FACTOR
LIMIT.

In the unlikely event of both the cases being true, priority is
given to the first case. If the above two cases do not apply to
a data value (i.e., the CAQT value is not equal to the threshold
and the data item is changing with non-zero rate) then there
can be the following two cases:%

Case 3: If the data item moved away from the threshold
during the last two pollings, then the possibility of the

portfolio exceeding the threshold due to the stock is less.
Hence the aggregator increases the TTR of the data item
and sets it to TTR ) � �1a GROWTH FACTOR LIMIT%
Case 4: If case 3 does not apply, then it implies that
the data value is changing and it is taking the portfolio
towards the threshold. The [ is an estimate of total change
required in the data value, so that the threshold is reached.
Further, the � denotes the expected change in the data
value in the next time interval. Hence the " Z L�L	����� sets
the TTR to �� which is nothing but the time required for
the data item to change by [ .

Once the new value of TTR is calculated, it is ensured that
the value is within static bounds of (TTR �@) � ,TTR � ��� � , so that
the TTR is not set to very high or very low values.

The TTR calculated by the above method assigns a portion
of the threshold to each of the stocks and calculates the TTR
required by each stock to achieve its apportioned threshold.
However the rate of change of the data items in the portfolio
can be very diverse, i.e., some of the data items might be
changing very rapidly and at the same time some of the data
items might be idle. In such a case, the " Z L0L	��� � will keep on
polling the data items which are changing very rapidly with
small TTR values and the TTR of the slow data items will
gradually approach the TTR � ��� value. However, under these
circumstances, it was observed that the portfolio, does not
cross the threshold, and the algorithm results in unnecessary
pollings for the data items which are changing rapidly. In order
to avoid these extra messages, we do an optimization in the
" Z L0L	��� � algorithm and we distribute the static cr of those
stocks that are changing slowly to the rest of the stocks. With
this optimization, the TTR of the fast moving stocks increases,
thereby reducing their polling frequency. This will ideally lead
to a reduction in the network overhead without significantly
affecting the fidelity of the CAQT.

The " Z L�L	����� algorithm makes use of the direction of the
data value change while calculating the cr, and the TTR. If one
of the data items is taking the CAQT away from the threshold
and at the same time if there is another data item that is
changing very rapidly in a direction towards the threshold,
then the " Z L0L������ will poll this data value very frequently.
However, due to the first data item, the CAQT might not cross
the threshold and such a case leads to unnecessary pollings. In
order to avoid these extra pollings, we can distribute the static
cr of the data items that are moving away from the threshold
to the rest of the data items. Thus the polling frequency of
the rest of the data items can be reduced without a significant
loss in fidelity. This redistribution of the static cr is done only
for those data item who has shown a history (during the last
2 polls) of moving away from the threshold.

A. Performance of PullCEA

In this section we show the experimental results for the
" Z L0L	��� � algorithm. We simulated a CAQT of four data items
each of which can potentially be on an independent server.
The " Z L�L	����� algorithm was run at the proxy that tracked
the CAQT value by polling the data sources based on the



" Z L�L	����� algorithm. We found out the range in which the
CAQT value varied and then evaluated the algorithm by varying
the threshold for this entire range of values. In practice there
is no way to find out the fidelity of the CAQT at the proxy
as the proxy is not always aware of the exact value of the
CAQT at the data source. In our simulations we modified the
data sources so that they kept track of the CAQT value at the
proxy and kept track of the fidelity offered to the proxy. The
constants that we used in our experiments are given in table
II.

The results were also compared with an approach in which
the coherency requirements were calculated only initially and
were kept unchanged irrespective of the relative changes in
the values of the data items. Once the (static) coherency
requirement was calculated the, Adaptive TTL algorithm [19]
was used to compute the TTR of the data items constituting the
CAQT. The adaptive TTL algorithm computes the TTR based
on the cr allocated to the data item. Thus this is the normal
approach which does not take into consideration the relative
performance of the data item in a CAQT.

Figure 1 shows the variation of the fidelity and the network
overhead with varying values of average distance of the CAQT
value from threshold. The graphs show that as the average
distance from the threshold decreases, the network overhead
increases and the fidelity decreases. As the average distance
of the CAQT value from the threshold decreases, the number
of times that the CAQT crosses the threshold increases. Hence
there is an increase in the network overhead and a drop in
fidelity. The important point over here is that the method in
which the crs were statically computed performs very badly
as compared to the " Z L�L	����� algorithm. The Adaptive TTL
algorithm does not take cognizance of the distance of the
CAQT from the threshold. In this algorithm the cr value is
calculated initially and it is kept fixed. As a result this method
results in a larger network overhead without gaining in fidelity.
The graph shows that the " Z L�L	����� algorithm outperforms
the static cr algorithm both in terms of network overhead as
well as the fidelity.

Figure 2 shows the performance of the " Z L�L	����� algorithm
with the optimization when the static cr of slow moving data
item is distributed amongst the rest of the stocks. It is evident
from the figure that the network overhead of the optimized
algorithm is less than that without the optimization: there is a
saving of nearly 15% in the network overhead. An interesting
point to note over here is that this reduction in the network
overhead does not result in a significant decrease in the fidelity.
In the optimization, if a data item is moving slowly then its
static cr is distributed amongst the rest of the data items. This
increases the TTR of the rest of the fast moving data items.
This results in reduced polling frequency which might lead to
a violation if (1) there is a sudden change in a slow moving
data item or (2) there is a sudden large change in the fast
moving data item which is missed due to the increased TTR.
However the figure clearly shows that there is a very small
decrease in the fidelity which validates the efficiency of our
optimization.

We also found out the performance of the algorithm by
varying the value of L. We have not included the figures due
to space constraints but our results showed that there was a
drop in the fidelity for values of L close to 1 and to 0. For
values of L close to 0, the �&$ is based only on the past history
and it ignores the immediately preceding change. The latest
change is often reflective of the changes to the data value in the
near future, and hence a value of 0 might lead to an incorrect
value of ��$ resulting in reduced fidelity. With an L value of
1, the value of �&$ is only dependent on the last change in
the data value. This also did not lead to good results, which
signifies that the changes in the data value are dependent on
the last few changes in the data value.

In the next section we describe how a push based approach
can be used to execute a CAQT.

III. PUSH-BASED CAQTS EXECUTION APPROACH

( " Z (*<������ )

In PushCEA coherency requirements are represented in
terms of coherency windows. A coherency window ( h ) )
denotes the upper and lower limit within which the value of
data item may vary at the source without being updated to
the aggregator. In " Z (M< ��� � the aggregator computes the
coherency windows of each of the data items in the CAQT
and informs them to the corresponding data sources. The data
source stores the coherency window of each data item that it
servers and informs the aggregator whenever the value of the
data item goes outside the coherency window. The coherency
window of the

K��
	
data item ( hT) ) can be formally stated as

h ) = � L ) � Z )��
where L ) is the lower part of h ) and Z ) is the upper part of
hT) with the hT) centered around the value of the data item at
the aggregator.

The main issue in " Z (M< ��� � is to find the right window
size for each of the data items in the CAQT such that the value
of the CAQT should cross the threshold, if and only if atleast
one of the data item value moves outside its window. Ideally,
the window size should be dependent on the following issues:
(1) The contribution of the data item to the CAQT with respect
to the rest of the data items and (2) the rate of change of the
data item as compared to the rest of the data items. In order to
accomplish this goal, the � is calculated as given in equation
9. This � is the expected change in the data value in the next
time unit. This expected change in the data value is then biased
based on the contribution of the data item to the CAQT. This
biased expected change [ �) is calculated as follows:

[ �) � � ) a �#� � �� E � � � �IS � ) �� �� E � � � af�0 S R*� (12)

If the weight of a data item is large, then even a small
change in the data value will have a large effect on the overall
value of the CAQT. Hence such a data item should be tracked
much more accurately and should be monitored closely. This
is captured by the above equation and expected change is



Symbol Meaning Value
GROWTH FACTOR LIMIT The maximum factor by which the TTL can increase 2���������	�

The minimum value of
�����

1 sec�
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The maximum value of

�����
60 secs
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modified based on relative weight of the data item with respect
to the weights of the rest of the data items in the CAQT. Now
these biased cr ( [ �) ) is independent of the distance of the CAQT
from the threshold i.e., the relative threshold. We are interested
in window sizes such that the CAQT value should cross the
threshold if and only if atleast one of the data item value
moves outside its window. In order to ensure this, the weighted
cr ( h5[ � ) is calculated which apportions the relative threshold
value amongst the N data items.

hX[ �) � [ )�� a U �� �� E � [ �� a�� � (13)

where U � is the relative threshold (calculated as per equation
7.

The " Z (M< ����� makes use of the weighted cr value to find
the windows for each data item. For a coherency window, h ) ,
its L ) is initialized to . ) S h5[ �) and Z ) is initialized to . ) i hX[ �)
where . ) is the value of the data item cached at the proxy. Note
that the windows are centered around the data value cached at
the aggregator. Such a window size ensures that if the CAQT
crosses the threshold, then atleast one of the data values will
move outside its window. This can be proved as follows: The
maximum difference between the value of the

K �
	
data item

at the proxy and at the source is hX[ �) . Hence the maximum
difference between the value of the CAQT at the source and
that at the proxy is given by:

� �) E � �0h5[ �) a���)�� which is equal
to the relative threshold.



These coherency windows are then communicated to the
corresponding data sources. Whenever the value of a data item
moves outside its coherency window at the source, the source
pushes the new value to the aggregator. When a new data
value is pushed by a source, the aggregator recalculates the
h5[ � of all the data item based on the cached values of the
data items at the aggregator. However if all these windows are
informed to the data sources then this will lead to a lot of
extra messages. In order to avoid this the aggregator does the
following:

1) It informs the coherency window for the data item that
caused this recalculation of windows i.e., the data item
that was pushed, to the data source.

2) Out of the rest of the data items, the aggregator finds
that data item that has not been pushed for the longest
amount of time in the history. Such a data item is the
most passive data item in the CAQT. Any increase or
decrease in the window size of this data item is least
likely to affect the network overhead.

3) The aggregator determines the new window size of this
data item such that the following equation is satisfied

�G
) E � �,h ) a � ) � � U � (14)

h ) and � ) are the window size (weighted cr value at
data source) and weight of the

K �
	
data item and U � is

the relative threshold. The aggregator has information of
the window size that are present at the server. Using this
information, the aggregator calculates the new window
h�� of the slowest data item as:

h � � U � S � � �)FE � h9) a���) S h � a�� � �
��� (15)

where h � is the window size of the data item that was
pushed (that caused this recalculation of windows).

Thus two windows: one for the data item that was pushed
and the one for the data item that is the slowest; are informed
to the corresponding data sources. However, in this technique,
if the data value that was pushed, has changed by a very
large amount, then it can happen that the h � calculated using
equation 15 can be negative. This implies that with the given
window sizes, mearly changine two window sizes might not
ensure that equation 14 is satisfied. In such a case the windows
of all the data items (i.e., the weighted cr values) are sent to
the corresponding sources.

The windows in " Z (*<������ are double sided, with a lower
part and and upper part. An optimization that can be done
in case of " Z (M<������ is to have single sided windows. If
the CAQT is below the threshold, then the aggregator is only
interested in those changes that make the CAQT cross the
threshold i.e., changes that increase the value of the CAQT.
Hence instead of having double sided windows, the source
can store only single sided windows. A single sided window
can be assumed to be a window having one of the parts as �
or - � . Thus there can be the following two cases:

1) If the lower bound is closer to the threshold the bounds
are set as � . ) S h5[ �) , � � .

2) If the upper bound is closer to the threshold the bounds
are set as � S � , . ) iCh5[ �) � .

This will lead to savings in space at the source as well as
less computation overhead at the source. Another advantage
to this is that this approach will reduce the network overhead.
However the flip side to this is that this might lead to a drop in
the fidelity which will be explained in the performance section.

A. Performance of PushCEA

In this subsection we evaluate the performance of
" Z (*<������ . Fig 3 compares the fidelity and network overhead
of " Z (M< ��� � with that of " Z L0L������ . It can be observed that
the network overhead of " Z (M<������ is significantly less than
that of " Z L0L	��� � . This is due to the fact that " Z (M< ��� �pushes only those data values that cross the coherency win-
dows. " Z L0L������ on the other hand guesses the next time when
the data value will change by static cr. This estimate is not
always accurate and hence it leads to a lot of unnecessary
pollings as shown by the graphs. However, note that the
network overhead of " Z (M< ��� � is affected by the size of the
CAQT (explained later in section IV-C). In these experiements
the CAQT consisted of four data items. One interesting thing
shown in the graph is that the fidelity offered by " Z (M<������is not 100 %. Ideally as shown in the previous section, the
fidelity should have been 100 %. This loss of fidelity can
be explained with the following example: Consider a CAQT
with two data items. Let the window of the first data item be
� R�cJ� � c � and that of the second be �

� cJ���dc � . The value
cached at the proxy is 15 and 25 respectively. Let the relative
threshold be 100 and the weights of the two data itmes be 10.
Now if data item 2 changes to 34, then this will be pushed to
the proxy. The proxy calculates the new value of the CAQT
using the cached value of data item 1. Now with this cached
value, the new relative threshold is 10. But when this push
happened, if the value of data item 1 was 18 then the CAQT
had already crossed the threshold and the proxy was unaware
of this resulting in a violation. The proxy will become away
only after the new windows are sent to the server and there
will be push for data item 1. However such occurrences are
rare as is shown by our experimental results.

Figure 4 compares the performance of " Z (M<������ with
optimization (i.e., with single sided windows) and " Z (M< ��� �without optimization. The graphs show that the optimization
succeeds in reducing the network overhead by a significant
amount. However, this also leads to a drop in the fidelity. The
reason for this drop in fidelity can be attributed to the fact
that, in the absence of a push from the source, the aggregator
assumes that the cached data value is equal to the data value
at the source. In the case of a single sided window, if the data
value changes in the direction where the window limit is � ,
then there is a lot of difference between the data value cached
at the proxy and the value at the source. Lets consider a case
of a CAQT of two data items. If the value of the first data
item moves in the direction where the limit is � , then the
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aggregator is not informed about this change. Now, in such a
case if the value of data item 2 moves towards the threshold
by a very large value, then the aggregator will calculate the
new value of the CAQT based on the cached value of data item
1. Due to this the aggregator might conclude that the CAQT
has crossed the threshold, which might not be the case. Hence
there is a drop in the fidelity of the CAQT in case of one sided
windows.

IV. A HYBRID CAQTS EXECUTION APPROACH ( � N������ )

" Z (M< ����� has an edge over the " Z L0L������ because of the
following:%

It can offer very high fidelity very close to 100%.%
It can be deployed over a multiple layer network where
there are multiple aggregators, one aggregator serving
the other. If we try to do the same with a pull based
approach, the resulting fidelity is much lower than that
of push. If the expected fidelity over a push connection
is

3
then the expected fidelity over a series of � push

connections would be
3 �

. Now if we have fidelity for a
push connection as

3 � and fidelity for a pull connection
as

3 � then
3 � � 3 ��� 3 �� � �

3 �� . Thus, in case of pull
where fidelity for individual connection is

3 � , the fidelity

loss over a series of connections, (1 -
3 �� ), would be much

larger.
However, this approach is not scalable due to the load it

imposes on the source in terms of the number of the data
items that the source needs to keep track of as well as the
computation overhead. To overcome the scalability problem,
the aggregator can resort to the use of pull based service for
some of the data items and push for the rest. This helps
in reducing the amount of state space at the source and
shifting some of the computation overhead to the aggregator.
Considering Equation 5 if we are able to reduce the number
of data items requiring push we will save on the state space
required by these data items. Thus the state space required
then would be

Z af�0g��0�>�-hX�#�jiC[\af�0g��0[�(M�#� (16)

where Z (the number of data items having push connection)
is less than  (total number of data items in the CAQT). This
leads to the idea of combining pull and push based approaches
to produce a Hybrid CAQTs Execution Approach ( � N������ ).

A. Calculation of Coherency constraints for � N������
A straight forward way of using push and pull connections

for a single CAQT is to divide the threshold into two parts



based on the contribution of the push and pull data items to
the CAQT and to run the two algorithm independently of each
other. However such an approach does not perform well, as it
looses out the information about the data items being a part of
a semantic unit. In such a case it can happen that the data items
using " Z (*<������ might be below its apportioned threshold,
and at the same time the data items using " Z L0L	��� � might
be above the threshold. Therefore, " Z L�L	����� will reduce
the polling frequency of the pull data items and " Z (M< �����will assign very large coherency windows to the push stocks.
However the CAQT as a whole might be very close to the
threshold and there might be a loss in fideltiy. Hence the
push and pull data items should be combined in an intelligent
way such that there is no loss of information about the actual
position of the CAQT.

In our technique, we calculate the TTR and the weighted cr
of all the data items irrespective of the type of connection
given to the data item. In � N������ the TTR for the pull
stocks is calculated in the same manner as given in section
II and the coherency windows are calculated as given in
section III. In � N������ the aggregator keeps track of the
coherency windows of each of the data items irrespective of
the type of the connection of the data item. Every time that the
aggregator pulls a new value for a pull data item, it compares
the new value with its coherency windows. If the new value
lies outside the window given to the pull data item, then there
is a possibility that even if the data value of the push data
items are within their windows, a fidelity violation can occur.
The coherency windows for the push stocks were computed
using the relative threshold value at the computation time. If
the new value of the pull stock moves outside the window,
then it signifies that there is significant shift in the value of
the relative threshold and hence the aggregator recomputes the
new coherency windows and informs them to the respective
data sources. The important point to note over here is that the
aggregator does this recomputation only if the new value of
the data item lies outside its window.

B. Distribution of data items between " Z L0L������ and
" Z (M<������

In the simplest approach, the allocation of the data items
that use " Z (M<������ can be done statically depending on the
contribution of the data item to the entire CAQT; those data
items that have a higher initial value or whose weights are
larger have a greater influence on the CAQT. Such data items
should be maintained more accurately and hence are given
push connections. In addition to this, the connection type
( " Z (M< ����� or " Z L0L������ ) also needs to be varied according
to the dynamics of the data. The Push connections will have
a higher fidelity and hence it makes sense to give this service
to the data items with maximum fluctuation (hot data items).
This helps in reducing the network overhead as the hot data
items make a greater contribution to the network overhead. The
aggregator keeps track of the average change in the data value
for all the data items and the data items with the maximum
change in their data value are given a push connection. The

connection type is periodically reviewed and based on the
dynamics of the data, the connection type of each data item
is changed after fixed intervals of time. Thus this approach
adapts to the dynamics of the data, but it requires additional
history of the data items to be maintained at the aggregator.

C. Evaluation of � N������
Figure 5 compares the fidelity and network overhead of

the three algorithms namely " Z L0L������ , " Z (*<������ and the
� N������ . In " Z (M< ��� � , because of the state information
at the source none of the interesting changes are missed by
the aggregator. Hence the fidelity offered by " Z (*<������ is
maximum. " Z (M< ��� � pushes only those changes that are
required to maintain 100% fidelity. At the other extreme
" Z L0L	��� � incurs a large number of unnecessary polls, as
is evident from its high network overhead. � N������ is a
judicious combination of the two approaches and hence has
fidelity and network overhead between that of " Z (M< ����� and
" Z L0L	��� � . Note that these graphs are for small size CAQTs.
As the size of the CAQT increases, the network overhead for
" Z (*<������ increases.

An interesting phenomenon similar to ‘Thrashing’ was
observed in case of Push data items which were very volatile.
In this, if the data item is very volatile and if the CAQT value
is near to the threshold, then there is a very significant drop in
the fidelity accompanied with a large increase in the network
overhead. As explained in section III, contrary to expectations,
there can be some loss of fidelity in " Z (M<������ . If there is
a change in the data value that takes the value outside its
window, then it is pushed to the aggregator. At the same time
if the value of the other data items are not centered around the
window center, then this leads to a fidelity violation, which is
detected when the new windows are sent to the data source.
If such a case happens when the CAQT value is close to the
threshold, then the possibility of violation recurring is more
due to the reduced threshold. With the reduced window sizes,
even a small change will give rise to a push and might possibly
lead to a violation and further reduction in window size. Thus,
one fidelity violation triggers the other and this continues till
the CAQT is close to the threshold. The solution to this problem
is a bit counter intuitive: reduce the window sizes further than
what is required to maintain 100 % fidelity. This reduction is
done as a fixed percentage of the window sizes in the ideal case
(i.e., the one required to maintain 100 % fidelity). With this
reduced window sizes, changes that otherwise would not have
been pushed are now pushed to the aggregator. So consider a
CAQT with 2 data items. A fidelity violation can occur if there
is a push for data item 1 and if the data value 2 does not lie
around the center of its window. If the window sizes are less,
then if the data value of data item 2 is far away from its center
then it will be pushed to the aggregator. In the earlier case,
with large windows, this push would not have happened and
it results in the loss of fidelity. Now even if there is a push
for data item 1 the value of data item 2 wont be far off from
its center and hence the fidelity is maintained.

Figure 6 shows the effect of the size of the portfolio on
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the network overhead. The figure shows that the network
overhead of " Z (M<������ increases as the size of the portfolio
increases. As the size of the portfolio increases, every time that
a window size changes a minimum of two new windows have
to be communicated to the data sources. In this simulation
experiment, we assumed that all the data items are from
different data sources. Hence with increasing size of the CAQT
the number of messages to change to window sizes increases
which contributes to the increase in the network overhead.
An interesting result that is shown by the graph is that the
network overhead of " Z L0L������ decreases with the increase
in the size of the CAQT and later on it becomes more or less
stagnant. When the size of the CAQT is small, the chances
of a small change in the data value making an effect on the
overall value of CAQT is very high. Hence even a small change
in the data value might change the CAQT value by a large
amount thereby reducing the relative threshold and in effect
reducing the TTL of all the data items. Hence the network
overhead for small CAQT is high. However for larger size
CAQT, small data value changes do not have any effect on the
overall value of the CAQT and hence the network overhead is

less. The network overhead of the � N������ algorithm does
not deteriorate as rapidly as the " Z (M<������ algorithm. This is
due to the presence of the pull component in the CAQT. The
experiment was conducted with 50% push connections. Hence
there was no return message from the aggregator to the data
source for 50% of the data items (that had a pull connection)
which is responsible for the reduction in the network overhead.
Thus the figure clearly shows that push does not scale for large
CAQT size. � N������ scales well with large CAQT size and
it offers better fidelity than " Z L0L������ . The fidelity was not
affect much by the size of the CAQT.

V. EXTENSION TO OTHER AGGREGATE QUERIES

Till now, we have focused only on sum-based CAQT. In
this section, we will show how other queries like count, min,
max, avg can also be computed using the existing setup.
For computing a count based CAQTs, the data values can be
replaced by the counts of the individual items and the weights
of the data items depend on the preferences to these data items.
In a simple case, these weights would be 1 for every data item.
Similarly, average based CAQT involve computing the sum
based CAQT and dividing the consequent value by the count
of data items in the query. In other words, what this implies
is that we just need to blow up the precision of the average
based CAQT by the count of data items in the query and run
a sum based CAQT with the blown up constraint. Since each
of the queries use the same set up and are themselves based
on the sum based CAQT, the performance results are bound to
be same.

Min and Max queries can also be computed using the same
setup. For example, let us take a Min query. In this case, the
data items closer to the threshold or in other words having
minimum value or close to minimum value can be assigned
push connection to be tracked more precisely and the others
can be assigned pull connections. In this case, the weights in
the sum based CAQT will be just 1 and the sum function at
the aggregator would be replaced by the min function.



VI. RELATED WORK

The problem of consistency maintenance between a data
source and cached copies of the data was first studied in
[1]. The paper discusses techniques where a source pushes
updates to users based on expiration times associated with
the data. Since then numerous efforts have investigated push-
based dissemination techniques [2], [3], [5], [4], [12], [16],
[21], however, either they are not modeled for continuously
changing data or if so, they do not consider the semantics of
the query (like the direction in which the aggregate query is
moving). [21] is a recent work in this direction but like any
other push based approach, it is susceptible to scalability and
resiliency issues. There is no provision to offload the server
load to th aggregator.

The problem of consistency maintenance has also been
studied in the context of web caching and several techniques
such as client polling [10], adaptive time-to-live (TTL) values
[19], source invalidation [14] and leases [27], [25] have been
proposed. These efforts typically assume that cached data is
modified on slow time scales (e.g., tens of minutes or hours)
and are less effective at maintaining consistency of rapidly
changing data cached at proxies. Caching of dynamic content
has been studied in [13] wherein a scheme based on push-
based invalidation and dependence graphs is proposed, while
another effort has focused on availability and scalability by
adjusting coherency requirement of data items [28]. Neither
effort has explicitly addressed coherency maintenance for
efficiently executing queries at a aggregator.

Mechanisms for disseminating fast changing documents are
proposed in [18], [20], [17]. The difference between these
approaches and ours is that they disseminate all updates to the
document using Multicast, while we selectively disseminate
updates based on the coherency requirements of a data item.
The concept of approximate data at the users was studied in
the context of stock price dissemination in [23]; the approach
focuses on individual data items and does not address the
additional mechanisms necessary to track an aggregate of data
items. A push based approach for the execution of aggregation
queries over databases has been proposed in [22].

Finally, the CAQTs are a subset of the general class of
continuous queries over dynamically changing data [15], [8].
Continuous queries in the Conquer system [15] are tailored
for heterogeneous data, rather than for real time data, and use
a disk-based database as its back end. NiagaraCQ [8] focuses
on efficient evaluation of queries as opposed to temporally
coherent data dissemination to proxies (which in turn can
execute the continuous queries). A aggregator-based approach
leads to better scalability.

In summary, none of the research efforts have focused
on the infrastructure necessary for the temporally coherent
dissemination of time-varying data for efficient execution of
CAQTs at a aggregator. Specifically, our approach

1) is executable at the aggregator,
2) dynamically assigns coherency requirements to contin-

uously changing data items based on both direction as

well as the speed of changes and
3) uses adaptive dissemination mechanisms [9] like the

ability to to switch between pull and push for executing
the CAQT with high fidelity and a low cost.

VII. CONCLUSIONS AND FUTURE WORK

On-line decision making often involves processing signif-
icant amounts of time-varying data. In such environments,
decisions are typically made whenever a continuous query over
a set of data items satisfies a threshold criterion. In this paper,
we investigated adaptive data dissemination techniques where
such Continuous Aggregate Queries with Thresholds access
data from multiple sources. Key challenges in supporting
such queries lie in meeting users’ consistency requirements
while minimizing network and source overheads, without the
loss of fidelity in the responses provided to users. Meeting
these required us to solve two subproblems: (1) deriving the
coherency requirement of each of the data items used by
the aggregator, and (2) ensuring that the (derived) coherency
requirement associated with each data item is satisfied. We
showed that to address the former, the coherency requirement
associated with a data item should be derived from the overall
contribution of the data item to the CAQT’s result and the
threshold value associated with the CAQT. With regard to
the latter, we demonstrated that, in the case of CAQTs, using
standard techniques, such as pull and push, for individually
retrieving each data item are not efficient - additional mech-
anisms must be employed which exploit the fact that the data
items comprising a CAQT form a semantic unit. A hybrid
approach was developed that pulled some of these items from
their sources, and resorted to push for the rest. This hybrid
approach strikes a balance between the trade offs of scalability,
fidelity , and network overheads (Table III). The algorithms
achieve good fidelity at low cost by considering the data
items in a CAQT as a semantic unit, since this reduces the
dissemination overheads if the data values are changing such
that there is very little chance of a CAQT’s threshold being
exceeded.
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