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Abstract

In this paper we present Cataclysm, a comprehensive approach
for handling extreme overloads in hosted Internet applications.
The primary contribution of our work is to develop an overload
control approach that brings together admission control, dy-
namic provisioning of platform resources, and adaptive degra-
dation of QoS into one integrated system. Cataclysm provides
several desirable features under overloads, such as preferential
admission of important requests, the ability to handle diverse
workloads, and revenue maximization at multiple time-scales
via dynamic provisioning and size-based admission control.
Cataclysm can transparently tradeoff the accuracy of its de-
cision making with the intensity of the workload allowing it
to handle incoming rates of several tens of thousands of re-
quests/second. We implement a prototype Cataclysm hosting
platform on a Linux cluster and demonstrate the benefits of our
integrated approach using a variety of workloads.

1 Introduction

1.1 Motivation

During the past decade, there has been a dramatic increase in
the popularity of Internet applications such as online news, on-
line auctions and electronic commerce. It is well known that
the workload seen by Internet applications varies over multiple
time-scales and often in an unpredictable fashion [12, 29]. Cer-
tain workload variations such as time-of-day effects are easy to
predict and handle by appropriate capacity provisioning [15].
Other variations such as flash crowds are often unpredictable.
On September 11th 2001, for instance, the workload on a pop-
ular news web site increased by an order of magnitude in thirty
minutes, with the workload doubling every seven minutes in
that period [29]. The load on e-commerce retail web sites can
increase dramatically during the final days of the popular hol-
iday season. Similarly, the load on online brokerage web sites
can be several times greater than the average load during an
unexpected market crash.

In this paper, we focus on handling extreme overloads seen
by Internet applications. Informally, an extreme overload is
a scenario where the workload unexpectedly increases by up
to an order of magnitude in a few tens of minutes. Our goals

are (i) to design a system that remains operational even in the
presence of an extreme overload and even when the incom-
ing request rate is several times greater than system capacity,
and (ii) to maximize the number of requests serviced by the
application during such an overload. We assume that Internet
applications or services run on a hosting platform—essentially
a server cluster that rents its resources to applications. Ap-
plication providers pay for server resources, and in turn, are
provided performance guarantees, expressed in the form of a
service level agreement (SLA). A hosting platform can take one
or more of three actions during an overload: (i) add capacity
to the application by allocating idle or under-used servers, (ii)
turn away excess requests and preferentially service only “im-
portant” requests, and (iii) degrade the performance of admit-
ted requests in order to service a larger number of aggregate
requests.

The first two approaches have been studied in the literature.
The first approach involves dynamic provisioning to match ap-
plication capacity to the workload demand [9, 24, 27]. The
second approach involves policing in the form of admission
control, which limits the number of admitted requests so that
the contracted performance guarantees are met [11, 14, 32, 35].
The notion of providing preferential treatment to “important”
requests has also been studied, although from the perspective
of maximizing revenue (e.g., by giving higher priority to cer-
tain requests, such as those involving financial transactions
[6]).

In this paper, we argue that a comprehensive approach to
handling extreme overloads should involve a synergistic com-
bination of all of the above techniques. A hosting platform
should, whenever possible, allocate additional capacity to an
application in order to handle increased demands. The plat-
form should degrade performance in order to temporarily in-
crease effective capacity during overloads. When no capacity
addition is possible or when the SLA does not permit any fur-
ther performance degradation, the platform should turn away
excess requests. While doing so, the platform should preferen-
tially admit important requests and turn away less important re-
quests to maximize overall utility. For instance, small requests
may be preferred over large requests, or financial transactions
may be preferred over casual browsing requests.

It is important to note that such a comprehensive approach
to handling severe overloads involves more than the implemen-



tation of separate mechanisms to achieve each of the above
goals. Mechanisms such as dynamic provisioning and admis-
sion control can be coupled in useful and non-trivial ways to
further improve the handling of extreme overloads. For in-
stance, the admission controller can pro-actively invoke the
dynamic provisioning mechanism when the request drop rate
exceeds a certain threshold. The dynamic provisioning mech-
anism in turn can provide useful information to the admission
controller regarding the provisioned capacity so that the lat-
ter can set appropriate performance thresholds for admitted re-
quests. Such an integration of mechanisms can enhance the
ability of the platform to handle overloads.

An orthogonal goal for the hosting platform is robustness
under severe overloads. Robustness—the ability to remain op-
erational under overloads—-requires the hosting platform to
be both extremely agile and efficient. Agility requires a quick
response in the face of a sudden workload spike. Efficiency re-
quires the above-mentioned mechanisms, and in particular the
admission controller, to have very low overheads. Since an ex-
treme overload may involve request rates that are up to an order
of magnitude greater than the currently allocated capacity, the
admission controller must be able to quickly examine requests
and discard a large fraction of these requests, when necessary,
with minimal overheads.

Whereas prior approaches for handling overloads have con-
sidered individual mechanisms such as provisioning and ad-
mission control, in this paper, we focus on an integrated ap-
proach, with a particular emphasis on handling extreme over-
loads.

1.2 Research Contributions of this Paper

In this paper, we present Cataclysm, a hosting platform that
is designed to handle extreme overloads in Internet applica-
tions. The key contribution of our work is to integrate tech-
niques such as admission control, dynamic resource provision-
ing, and adaptive degradation of QoS into one integrated sys-
tem for handling overloads. Unlike recent efforts on admis-
sion control [19, 32], our techniques are specifically focused
on handling extreme overloads. We propose very low over-
head admission control mechanisms that can scale to very high
request rates under overloads. Our mechanisms can preferen-
tially admit important requests during overload and transpar-
ently tradeoff accuracy of their decision making with the in-
tensity of the workload, enabling them to scale to incoming
rates of up to a few tens of thousands of requests/s (not all of
these requests are necessarily admitted and serviced; the ad-
mitted fraction depends on the available capacity). Multiple
admission controllers can be employed in larger Internet appli-
cations for greater scalability.

Our dynamic provisioning mechanism employs a G/G/1-
based queuing theoretic model of a replicable application in
conjunction with online measurements to dynamically vary the
number of servers allocated to each application. The provi-
sioning technique can be reactively invoked by the admission
controller when the request drop rates exceed certain values.

A novel feature of our platform is its ability to not only vary
the number of servers allocated to an application but also other
components such as the admission controller and the load bal-
ancing switches. Further, the admission controller and provi-
sioning mechanism cooperate with one another, and thereby
enhance the ability of the platform to counter overloads.

We have implemented a prototype Cataclysm hosting plat-
form on a cluster of Linux servers. We demonstrate the effec-
tiveness of our integrated overload control approach via an ex-
perimental evaluation. Our results show that (i) preferentially
admitting requests based on importance and size can increase
the utility and effective capacity of an application, (ii) reactive
provisioning is both agile and effective at diverting platform
resources to where they are needed most, while maximizing
platform revenue.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview of the proposed system. Sections 3, 4 and 5
describe the mechanisms that constitute our overload manage-
ment solution. Section 6 describes the implementation of our
prototype. In Section 7 we present the results of our experi-
mental evaluation. Section § presents related work and Section
9 concludes this paper.

2 System Overview

In this section, we present the system model for our Cataclysm
hosting platform and the model assumed for Internet applica-
tions running on the platform.

2.1 Cataclysm Hosting Platform

The Cataclysm hosting platform consists of a cluster of com-
modity servers interconnected by a modern LAN technology
such as gigabit Ethernet. One or more high bandwidth links
connect this cluster to the Internet. Each node in the hosting
platform can take on one of three roles: cataclysm server, cat-
aclysm sentry, or cataclysm control plane (see Figure 1).

Cataclysm Servers: Cataclysm servers are nodes that run
Internet applications. The hosting platform may host multiple
applications concurrently. Each application is assumed to run
on a subset of the nodes, and a node is assumed to run no more
than one application at any given time (this is referred to as
dedicated hosting in the literature). Not all cataclysm servers
need to be assigned to applications—a subset of the servers
may be unassigned and form the free server pool. The num-
ber of servers assigned to an application can change over time
depending on its workload. An application’s server pool can
be increased either by allocating servers from the free pool or
by deallocating under-utilized servers from another application
and reassigning them to the overloaded application.

Each server also runs the cataclysm nucleus—a software
component that performs online measurements of application-
specific resource usages, which are then conveyed to the other
two components that we describe next.

Cataclysm Sentry: Each application running on the plat-
form is assigned one or more sentries. A sentry guards the
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Figure 1: The Cataclysm Hosting Platform Architecture.

servers assigned to an application and is responsible for two
tasks. First, the sentry polices all requests to an application’s
server pool—incoming requests are subjected to admission
control at the sentry to ensure that the contracted performance
guarantees are met; excess requests are turned away during
overloads. Second, each sentry implements a layer-7 switch
that performs load balancing across servers allocated to an ap-
plication. There has been substantial research on load balanc-
ing techniques for clustered Internet applications [7]; any such
layer-7 load balancing technique may be used in the sentry.

Whereas a single sentry suffices for small applications,
large applications require multiple sentries, since a single sen-
try server will become a bottleneck when guarding a large
number of servers. Just as the number of servers allocated
to an application vary with the load, our hosting platform can
dynamically vary the number of sentries depending on the in-
coming request rate (and the corresponding load on the sen-
tries). When a sentry is assigned or deallocated, the appli-
cation’s server pool is repartitioned and each remaining sen-
try is assigned responsibility for a mutually exclusive subset
of nodes. Each sentry then independently performs admission
control and load balancing on arriving requests, thereby col-
lectively maintaining the SLA for the application as a whole.
A round-robin DNS scheme is used to partition (and loosely
balance) the incoming requests across multiple sentries.

Cataclysm Control Plane: The control plane is responsi-
ble for provisioning servers and sentries for individual appli-
cations. It tracks the resource usages on nodes, as reported by
Cataclysm nuclei, and determines the resources (in terms of the
number of servers and sentries) to be allocated to each appli-
cation. The control plane and the sentries cooperate with one
another during an overload. A sentry can invoke the provision-
ing mechanisms in the control plane when an overload is de-
tected, and the control plane can provide provisioning-related
information to sentries for admission control.

2.2 Model for Internet Applications

The Internet applications considered in this work are assumed
to be inherently replicable. That is, the application is assumed
to run on a cluster of servers, and it is assumed that running
the application on a larger number of servers results in an ef-
fective increase in capacity. Many, but by no means all, In-
ternet applications fall into this category. Vanilla clustered
web servers are an example of a replicable application. Multi-
tiered Internet applications are partially replicable. A typi-
cal multi-tiered application has three components: a front-end
HTTP server, a middle-tier application server, and a back-end
database server. The front-end HTTP server is easily replica-
ble but is not necessarily the bottleneck. The middle-tier—a
frequent bottleneck—can be implemented in different ways.
One popular technique is to use server-side scripting such as
Apache’s php functionality, or to use cgi-bin scripting lan-
guages such as perl.! If the scripts are written carefully to
handle concurrency, it is possible to replicate the middle-tier as
well. More complex applications use Java application servers
to implement the middle-tier. Dynamic replication of Java ap-
plication servers is more complex and techniques for doing
so are beyond the scope of this paper. Dynamic replication
of back-end databases is an open research problem. Conse-
quently, most dynamic replication techniques in the literature,
including this work, assume that the database is sufficiently
well provisioned and does not become a bottleneck even dur-
ing overloads.

Given a replicable Internet application, we assume that the
application specifies the desired performance guarantees in the
form of a service level agreement. An SLA has two compo-
nents: (1) a description of the QoS guarantees that the platform
will provide to the application, and (2) the revenue scheme that
will be used by the platform to bill the application (which may
include penalties for violations of the contracted performance
guarantees). The SLA is defined as follows:

Ry if arrival rate € [0, A1)

Ro if arrival rate € [A1, \2)

Resp time R = (1)

Ry if arrival rate € [Ag—1, 00)

v1 ifRT < Rjand arrivals < Ay

v2 ifRT < Roand arrivals < Ay
Revenue = - 2)

vk tfRT < Rpand arrivals > Ag_1

0 otherwise

Essentially, the SLA specifies the desired response times for
different arrival rates and also the revenue earned by the plat-
form for meeting the desired response time at the correspond-
ing arrival rate. Figure 2 illustrates one such SLA. Addition-
ally, the SLA may also specify a lower bound on the number
of servers that an application should be assigned.

' A common technique for implementing a multi-tiered application is to use
the so-called “LAMP” servers—Linux, Apache, mysql and php.
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Figure 2: A sample service level agreement.

3 Cataclysm Sentry Design

In this section, we describe the design of a Cataclysm sentry
which is responsible for two tasks—admission control and load
balancing. As indicated earlier, the load balancing technique
used in the sentry is not a focus of this work, and we assume
the sentry employs a layer-7 load balancing algorithm such as
[26]. Given our focus on extreme overloads, our design of the
admission controller focuses on two key issues: (i) to ensure
very low overhead admission control tests in order to scale to
very high request rates seen during overloads, and (ii) to max-
imize the utility and the number of requests serviced during
overloads by preferentially admitting more important requests.
In the rest of this section, we elaborate on these two issues in
detail.

3.1 Admission Control Basics

Each Internet application is assumed to consist of L request
classes: Ci,Cs,...,Cr. The sentry maps each incoming
request to a class. The class of a request determines its
importance—requests mapped to class C; are treated as most
important and those in Cf, as the least important. The num-
ber of request classes L and the function that maps requests
to classes is application-dependent. To illustrate, a vanilla web
server may define two classes and may map all requests smaller
than a certain size s to class C; and larger requests to C'y. In
contrast, an online brokerage web site may define three classes
and may map financial transactions to C, other types of cus-
tomer requests such as balance inquiries to Cs, and casual
browsing requests from non-customers to Cs. Each class has
a queue associated with it; incoming requests are appended to
the corresponding class-specific queue (see Figure 3).

The admission controller processes queued requests in the
decreasing order of importance—requests in C'; are subjected
to the admission control test first, and then those in Cy and so
on. Doing so ensures that requests in class C; are given higher
priority than those in class Cj, j > . The admission control
test—which is described in detail in the next section—admits
requests so long as the system has sufficient capacity to meet
the contracted SLA. Note that, if requests in a certain class
C; fail the admission control test, all queued requests in less
important classes can be rejected without any further tests.

Requests within each class can be processed either in FIFO
order or in order of their service times. In the former case, all
requests within a class are assumed to be equally important,
whereas in the latter case smaller requests are given priority
over larger requests within each class. Admitted requests are
handed to the load balancer, which then forwards them to one
of the Cataclysm servers in the application’s server pool.

Observe that the above admission control strategy meets
one of our two goals—it preferentially admits only important
requests during an overload and turns away less important re-
quests. However, the strategy needs to invoke the admission
control test on each individual request, resulting in a complex-
ity of O(r), where r is the number of queued up requests.
Further, when requests within a class are examined in order
of service times instead of FIFO, the complexity increases to
O(r - logr) due to the need to sort requests. Since the incom-
ing request rate can be several times higher than capacity dur-
ing an extreme overload, running the admission control test
on every request or sorting requests prior to admission control
may be simply infeasible. Consequently, in what follows, we
present two strategies for very low overhead admission control
that scale well during overloads.

3.2 Efficient Batch Processing

One possible approach for reducing the admission control
overhead is to process requests in batches. Observe that re-
quest arrivals tend to be very bursty during severe overloads,
with a large number of requests arriving in a short duration of
time. These requests are queued up in the appropriate class-
specific queues at the sentry. Our technique exploits this fea-
ture by conducting a single admission control test on an entire
batch of requests within a class, instead of doing so for each
individual request. Such batch processing can amortize the ad-
mission control overhead over a larger number of requests, es-
pecially during overloads.

To perform efficient batch-based admission control, we de-
fine b buckets within each request class. Each bucket has a
range of request service times associated with it. The sentry
estimates the service time of a request and then hashes it into
the bucket corresponding to that service time. To illustrate, a
request with an estimated service time in the range (0, s1] is
hashed to bucket 1, that with service time in the range (s1, s2]
to bucket 2, and so on. By defining an appropriate hashing
function, hashing a request to a bucket can be implemented
efficiently as a constant time operation.

The admission control is invoked periodically on each re-
quest class. The admission control then considers each non-
empty bucket in that class and invokes a single admission con-
trol test on all requests in that bucket (i.e., all requests within
a bucket are treated as a batch). Consequently, no more than
b admission control tests are needed within each class, one for
each bucket. Since there are L request classes, this reduces
the admission control overhead to O(b - L), which is substan-
tially smaller than the O(r) overhead for admitting individual
requests. Since successive buckets contain requests with pro-
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Figure 3: Class-based differentiation for admission control.

gressively larger service times, the technique implicitly gives
priority to smaller requests. Moreover, no sorting of requests is
necessary—the hashing implicitly “sorts” requests when map-
ping them into buckets.

Having provided the intuition behind batch-based admis-
sion control, we discuss the hashing process and the admis-
sion control test in detail. In order to hash a request into a
bucket, the sentry must first estimate the inherent service time
of that request. The inherent service time of a request is the
time needed to service the request on a lightly loaded server
(i.e., when the request does not see any queuing delays). The
inherent service time of a request R is defined to be

Sinherent = chu + o - Ryata 3)

where Ry, is the total CPU time needed to service R, Ryqtq
is the IO time of the request (which includes the time to fetch
data from disk, the time the request is blocked on a database
query, the network transfer time, etc.), and «a is an empiri-
cally determined constant. Section 3.4 discusses online mea-
surement techniques for estimating these parameters. The in-
herent service time is then used to hash the request into an
appropriate bucket—the request maps to a bucket ¢ such that
84 S SinheTent S Si41-

The specific admission control test for each batch of re-
quests within a bucket is as follows. Let 8 denote the batch
size (i.e., the number of requests) in a bucket. Let @ denote
the estimated queuing delay seen by each request in the batch.
The queuing delay is the time the request has to wait at a Cat-
aclysm server before it receives service; the queuing delay is
a function of the current load on the server and its estimation
is discussed in Section 3.4. Let n denote the average number
of requests (connections) that are currently being serviced by
a server in the application’s server pool. Then the § requests
within a batch are admitted if and only if the sum of the queu-
ing delay seen by a request and its actual service time does not
exceed the contracted SLA. That is,

Q+(n+[§])‘SSRsla 4

where S is the average inherent service time of the requests in
a batch, n is the number of servers allocated to the application,

and Ry, is the desired response time. The term (1 + [%]) -5
is an estimate of the actual service time of the /ast request in
the batch, and is determined by scaling the inherent service
time .S by the server load—which is the number of the requests
currently in service, i.e., 7, plus the number of requests from
the batch that might be assigned to the server i.e, [%] Rather
than actually computing the mean inherent service time of the
request in a batch, it is approximated as S = (s; + si41)/2,
where (s;, s;4+1] is the service time rage associated with the
bucket.

As indicated above, the admission control is invoked for
each class periodically—the invocation is more frequent for
important classes and less frequent for less important classes.
This ensures that important requests are always given priority
(by being admitted first) over less important requests. Further,
it reduces the chances of admitting less important requests into
the system and have them deny service to more important re-
quests that arrive shortly thereafter. Let dy,ds,...dr denote
the period of invocation for the L classes, di < da < ...dL.
Since a request may wait in a bucket for up to d; time units be-
fore admission control is invoked for its batch, the above test
is modified as

Q+<n+’rg-l>'SSRsla_di (5)

In the event this condition is satisfied, all requests in the batch
are admitted into the system. Otherwise requests in the batch
are dropped. Techniques for estimating parameters such as the
queuing delay, inherent service time, and the number of exist-
ing connections are discussed in Section 3.4.

3.3 Scalable Threshold-based Admission Con-
trol

Batch processing eliminates the need to invoke the admission
control test for individual requests and reduces the overhead to
one test per batch. Whereas this enhances the scalability of the
sentry, it may still impose significant processing demands dur-
ing extreme overloads. In this section, we present techniques
for further reducing the admission control overhead. Our tech-
nique trades efficiency of the admission control for accuracy
and reduces the overhead to a few arithmetic operations per
request.

The key idea behind this technique is to periodically pre-
compute the number of requests that should be admitted in each
class and then simply enforce these limits without conducting
any additional per-request tests. The technique estimates the
arrival rate in each class and the average service time of a re-
quest, and uses these values to pre-compute a threshold for the
number of requests that can be admitted in each class. As an
example, assume that the system capacity is 100 requests/s,
and that an application has two request classes with arrival
rates of Ay = 75 requests/s and A2 = 50 requests/s. In this
case, the threshold is set so that all requests from class C; and
only half the requests in class C'y are admitted. If the incom-
ing request rates change to A = 150 and A = 75, then a new



threshold is computed that admits two out of every three re-
quests in C; and turns away all requests in C'2. Observe that,
such a strategy can be implemented very efficiently. Once a
request is mapped onto a class, the admission controller only
needs to determine if the request is above the threshold in order
to admit it (thus the additional overhead beyond request clas-
sification is only a few arithmetic operations). A drawback of
the approach is that the actual arrival rates may differ from the
estimates, resulting in errors—if the threshold is set too low,
the SLA may be violated and if it is too high, more requests
may be turned away than necessary.

The threshold is defined to be a pair (class 4, fraction pgrop)
and has the following meaning: all requests in classes less im-
portant than ¢ should be dropped, requests in class ¢ should
be admitted with probability p4rop, and all requests in classes
more important than ¢ should be admitted. We determine these
parameters based on observations of arrival rates and service
times for requests of various classes over periods of moderate
length (we use periods of length 30sec). Denoting the arrival
rates to classes 1,..., L by A1,..., AL and the observed aver-
age service times by s, ..., sy, the threshold-pair (%, pgrop) is
obtained such that

J=1
dXiesi>1 (6)
j=1

and
j=i—1
Parop- i si+ Y Aj-sj<1 (7)
i=1

Thus, admission control now merely involves applying the in-
expensive classification function on a new request to determine
its class and then using the equally lightweight thresholding
function to decide if it should be admitted.

The threshold-based and the batch-based admission control
strategies need not be mutually exclusive. The sentry can em-
ploy the more accurate batch-based admission control strategy
so long as the incoming request rate permits one admission
control test per batch. If the incoming rate increases signifi-
cantly, the processing demands of the batch-based admission
control may saturate the sentry. In such an event, when the
load at the sentry exceeds a threshold, the sentry can trade ac-
curacy for efficiency by dynamically switching to a threshold-
based admission control strategy. This ensures greater scal-
ability and robustness during overloads. The sentry reverts to
the batch-based admission control when the load decreases and
stays below the threshold for a sufficiently long duration.

3.4 Online Parameter Estimation

The batch-based and threshold-based admission control re-
quire estimates of a number of system parameters. These pa-
rameters are estimated using online measurements. The nu-
clei running on the cataclysm servers and sentries collectively
gather and maintain various statistics for admission control.
The following statistics are maintained:

o Arrival rate A\;: The arrival rates in each request class are
measured at the sentry. Since each request is mapped onto
a class at the sentry, it is trivial to use this information to
measure the incoming arrival rates in each class.

o Queuing delay Q: The queuing delay incurred by a re-
quest is measured at the cataclysm server. The queuing
delay is measured as the difference between the time the
request arrives at the server and the time it is accepted
by the HTTP server for service (we assume that the delay
incurred at the sentry is negligible). The nuclei can mea-
sure these values by appropriately instrumenting the op-
erating system kernel. The nuclei periodically report the
observed queuing delays to the sentry, which then com-
putes the mean delays across all servers in the applica-
tion’s pool.

o Number of requests in service 1. This parameter is mea-
sured at the Cataclysm server. By appropriately instru-
menting the OS kernel, the nuclei can track the number of
active connections serviced by the application and period-
ically report the measured values to the sentry. The sentry
then computes the mean of the reported values across all
servers for the application.

® Request service time s: This parameter is also measured
at the server. The actual service time of a request is mea-
sured as the difference between the arrival time at the
server and the time at which the last byte of the response
is sent. The measurement of the inherent service time is
more complex. Doing so requires careful instrumentation
of the OS kernel and some instrumentation of the appli-
cation itself. This instrumentation —discussed further in
Section 6— enables the nucleus to compute the CPU pro-
cessing time for a request as well as the duration for which
the requested is blocked on I/O. Together, these values de-
termine the inherent service time (see Equation 3).

o Constant a: The constant « in Equation 3 is measured us-
ing offline measurements on the Cataclysm servers. We
execute several requests with different CPU demands and
different-sized responses under light load conditions and
measure their execution times. We also compute the CPU
demands and the I/O times as indicated above. The con-
stant « is then empirically determined as the value that
minimizes the difference between the actual execution
time and the inherent service time in Equation 3.

The sentry uses past statistics to estimate the inherent ser-
vice time of an incoming request in order to map it onto a
bucket. To do so, the sentry maintains a hash table for main-
taining the usage statistics for the requests it has admitted so
far. Each entry in this table consists of the requested URL
(which is used to compute the index of the entry in the table)
and a vector of the resource usage values for this request as re-
ported by the various servers. Requests for static content pos-
sess the same URL every time and so always map to the same



entry in the hash table. The URL for requests for dynamic con-
tent, on the other hand, may change (e.g. the arguments to a
script may be specified as part of the URL). For such requests,
we get rid of the arguments and hash based on the name of
the script invoked. The resource usage values for requests that
invoke these scripts may change depending on the arguments.
We maintain exponentially decayed averages of their usages.

4 Provisioning for Cataclysms

Although the admission control mechanisms maintain the SLA
of admitted requests even during overloads, a significant frac-
tion of the requests may be turned away during extreme over-
loads. In such situations, the number of requests that are turned
away can be reduced by increasing the capacity of the applica-
tion. The Cataclysm control plane implements a provisioning
mechanism to dynamically vary the number of servers allo-
cated to the applications. The application’s server pool is in-
creased during overloads by allocating servers from the free
pool or by reassigning under-used servers from other applica-
tions. The control plane can also dynamically provision sentry
servers when the incoming request rates imposes significant
processing demands on the existing sentries. The rest of this
section discusses our techniques for dynamically provisioning
Cataclysm servers and sentries.

4.1 Queuing-theoretic Model for Replicable Ap-
plications

The dynamic provisioning problem can be formulated as a con-
strained optimization problem whose goal is to determine a
partitioning of the servers among the hosted application that
will maximize the platform’s expected revenue. The key chal-
lenge in the formulation of this optimization problem is that of
determining the utility of assigning a certain number of servers
to an application. Utility-based provisioning has been studied
in the Muse system [9], where an economic approach is used
for formulating the optimization problem. Chandra et al. [8]
model a server resource that services multiple applications as a
GPS system and devise an optimization problem to derive re-
source allocations. Our approach is also an instance of utility-
based provisioning where we use a queuing-theoretic model
for an application.

We use a well known queuing theory result to devise a
model for determining the utility of a server set of a given size
for a replicable application under a certain workload [20]. Our
model does not make any assumptions about the nature of the
request arrival processes or the service times. Our abstraction
of a single replica of a service is a G/G/1 queuing system. The
following upper bound is known on the average response time
for a G/G/1 queuing system:

os + 03
2-(1-p)

Here E[R] is the average response time, E[S] is the average
service time, X is the request arrival rate, p = X - E[S] is the

E[R] < E[S]+ X~ ®)

utilization, and o2 and o7 are the variance of inter-arrival time
and the variance of service time respectively. Rewriting in-
equality (8), we have the following:
02 + of -
2- (E[R] - E[S])

A> |E[S]+ 9)

The above inequality gives a lower bound on the request ar-
rival rate for which one application replica will be able to pro-
vide an average response time of E[R]. We denote this by A,
henceforth. We define the utility of n servers for an applica-
tion a, U(a, n) as the expected revenue that n servers would
generate for s. Recall from the SLA defined in Section 2 that
to determine this, we need to predict the overall arrival rate
to the service during the next provisioning cycle (simply cy-
cle henceforth). Having predicted this rate Ap,eq, the response
time target E[R)] is read from the entry in the QoS table of the
SLA corresponding to an arrival rate of Apreq. We use the Rev-
enue Table of the SLA to determine the revenue per admitted
request r for this arrival rate. Thus we have

U(a,n) =n-Xin -7 Tprow (10)
Tprov denotes the length of a cycle. Also, because of the lower
bound k,,,;, on the number of servers assigned to s, we only
need to compute U (a,n) for n in the following range
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Here N is the total number of cataclysm servers in the cluster.
These utility curves are then used to determine the partitioning
of the cataclysm servers among applications that would maxi-
mize the expected revenue over the next cycle. This is achieved
by solving the following constrained optimization problem

Maximize: ), U(a,n,)
Subjectto: Y- ng < N

N denotes the number of host-servers in the platform. Figure
4 outlines the steps involved in determining this optimal par-
titioning. The final step in this procedure is solving the above
optimization problem. For the replicable applications that we
consider in our work (see Section 2.2), the utility curves are
linear. A simple greedy heuristic can be used to solve this prob-
lem optimally. This heuristic begins by assigning to each appli-
cation a number of servers equal to the lower bound guaranteed
in its SLA. It then proceeds in steps, each resulting in assign-
ing one additional server to some application. In each step, the
heuristic determines the application that would experience the
most gain in revenue due to an additional server and that has
not yet reached its upper bound on number of servers. This
process continues till (1) all the servers have been assigned or
(2) all applications have reached their upper bounds or (3) no
application would experience a positive gain in revenue due to
an additional server.
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Figure 4: Dynamic provisioning in the control plane.

4.2 Sentry Provisioning

In general, allocation and deallocation of sentries is signifi-
cantly less frequent than that of Cataclysm servers. Further, the
number of sentries needed by an application is much smaller
than the number of servers running it. Consequently, a simple
provisioning scheme suffices for dynamically varying the num-
ber of sentries assigned to an application. Our scheme uses the
CPU utilization of the existing sentry servers as the basis for
allocating additional sentries (or deallocating active sentries).
If the utilization of a sentry stays in excess of a pre-defined
threshold highcp,, for a certain period of time, it requests the
control plane for an additional sentry server. Upon receiving
such requests from one or more sentries of an application, the
control plane assigns each an additional sentry. Similarly, if the
utilization of a sentry stays below a threshold lowcp,, it is re-
turned to the free pool while ensuring that the application has at
least one sentry remaining. Whenever the control plane assigns
(or removes) a sentry server to an application, it repartitions the
application’s servers pool equally among the various sentries.
The DNS entry for the application is also updated upon each
allocation or deallocation; a round-robin DNS scheme is used
to loosely partition incoming requests among sentries. Since
each sentry manages a mutually exclusive pool of servers, it
can independently perform admission control and load balanc-
ing on arriving requests; the SLA is collectively maintained by
virtue of maintaining it at each sentry.

5 Integrating Policing and Provisioning

A novel feature of our hosting platform is the cooperation be-
tween the admission controller and the provisioning mecha-
nism in the control plane. The two mechanisms operate at dif-
ferent time scales—while the admission control handles over-
loads at request arrival time scales (milliseconds), the provi-
sioning mechanism handles overloads at the time scale of min-

utes. Nevertheless, cooperation between these mechanisms en-
hances the capability of the platform in handling overloads.

The dynamic provisioning mechanism normally operates in
a predictive fashion. It is invoked periodically (once every 30
minutes in our prototype) and uses the workload observations
in the previous time period to reallocate servers to applications
if necessary. Since overloads are often unanticipated, a sentry
of an overloaded application can dynamically invoke the pro-
visioning mechanism whenever the request drop rate exceeds a
certain pre-defined value. In such a scenario, the provisioning
mechanism operates in a reactive mode to counter the over-
load. The mechanism uses recent workload measurements for
the overloaded application to recompute its utility curve (un-
like the predictive mode where all utility curves are recom-
puted, only the curve for the overloaded application is recom-
puted in the reactive mode). The provisioning mechanism then
allocates additional servers to the overloaded application. Un-
desirable oscillations in such allocations are prevented using
two constraints: (i) a limit of A is imposed on the number of
servers that can be allocated to an application in a single step in
the reactive mode and (ii) a delay of § time units is imposed on
the duration between two successive invocations of the provi-
sioning mechanism in the reactive mode (4 is set to 5 minutes
in our prototype).

Observe that, while provisioning of servers to applications
can be both predictive and reactive, provisioning of sentries is
always purely reactive—allocation of sentries is a less frequent
event than the allocation of servers and it suffices to do so in a
purely reactive fashion.

Reactive provisioning involves communication from the
sentry to the control plane. Communication from the con-
trol plane to the sentry is also present in our hosting platform.
Clearly, after each provisioning step, the control plane must
provide the new allocations to each sentry. In addition, the pro-
visioning mechanism conveys the response time targets to the
sentries after each invocation. Recall that the QoS table in the
SLA permits degraded response time targets for higher arrival
rates. The provisioning mechanism may degrade the response
time to the extent permitted by the SLA, add more capacity, or
a bit of both. The optimization drives these decisions, and the
resulting target response times are conveyed to the admission
controllers. Thus, these interactions enable integration of ad-
mission control, provisioning and adaptive performance degra-
dation in the hosting platform. We experimentally demonstrate
various aspects of this integration in Section 7.

6 Implementation Considerations

We implemented a prototype Cataclysm hosting platform on
a cluster of 20 Pentium machines connected via a 1Gbps eth-
ernet switch and running Linux 2.4.20. Each machine in the
cluster was used for running one of the following entities: (1)
an application replica, (2) a cataclysm sentry, (3) the cataclysm
provisioning, (4) a workload generator for an application. In
this section we discuss our implementation of the cataclysm



sentry and provisioning.

6.1 Cataclysm Sentry

We used Kernel TCP Virtual Server (ktcpvs) version 0.0.14
[22] to implement the policing mechanisms described in Sec-
tion 3. ktcpvs is an open-source, Layer-7 load balancer im-
plemented as a Linux module. It listens for client requests
at a well-known port and distributes arriving requests among
back end servers. It accepts TCP connections from clients,
opens separate connections with servers (one for each connec-
tion from a client) and transparently relays data between these.
We modified kt cpvs to implement all the sentry mechanisms
described in Sections 3-5.

ktcpvs has a multi-threaded design, with a number of ker-
nel threads waiting for new connections to arrive. Upon the ar-
rival of a connection, one of the threads accepts it, opens a sep-
arate TCP connection with one of the servers and copies data
back and forth between these connections. When this connec-
tion closes, the thread goes back to waiting for new arrivals.
We modify ktcpvs so it consists of three classes of kernel
threads—(1) one accepter thread, (2) one policer thread per
class supported by the service, and (3) a large number of re-
layer threads. The accepter thread accepts a newly arrived con-
nection and creates a connection object containing information
that would be needed for transferring data over this connec-
tion if it gets admitted. It determines the class that this request
belongs to. 2 This object is then moved to the wait queue
corresponding to the request’s class. A wait queue is a FIFO
queue used as an intermediate storage for accepted requests of
a class before the admission control acts on them. The policer
thread corresponding to a certain class wakes up once every
processing interval for that class (Section 3, see Figure 3) and
invokes the admission control test on the current batch of re-
quests in that class’s wait queue. The admitted connections
are moved to the admit queue, a single FIFO queue for admit-
ted connections. The connections dropped by the admission
control are closed. The relayer threads wait for connections
arriving into the admit queue. After picking a connection from
the admit queue, a relayer thread opens a new connection with
the least loaded server (chosen as described in Section 3) and
handles the relaying of data between these connections. It re-
turns to waiting for the arrival of new admitted connections
into the admit queue once it is done servicing this connection.
In our experiments, we had upto three classes, which meant
upto three policer threads and three wait queues. The number
of relayer threads could change dynamically depending on the
request arrival rate. We imposed lower and upper bounds of 80
and 2560 respectively on the number of relayer threads in our
experiments.

2In our current implementation, the class of a request is decided based on
the URL requested. This mapping is read by the sentry from a configuration
file at startup time. In general a request’s class may be determined based on
other criterion such as client IP address.

6.2 Cataclysm Provisioning

Cataclysm provisioning was implemented as a user-space dae-
mon running on a dedicated machine. At startup, it reads in-
formation needed to communicate with the sentries and infor-
mation about the servers in the cluster from a configuration
file. It communicates with the sentries over TCP sockets. The
sentries gather and report various statistics needed by the pro-
visioning algorithm over these sockets. The provisioning al-
gorithm can be invoked in one of two ways described in Sec-
tions 4 and 5. The default kt cpvs implementation provides
a flexible user-space utility tcpvsadm using which the set
of back end servers that it forwards the incoming requests to
can be changed dynamically. We make use of this utility in
our implementation. After determining a partitioning of the
cluster’s servers among the hosted applications, the provision-
ing daemon remotely logs on to the nodes running the sentries
and uses t cpvsadm with the appropriate arguments to affect
the applications’ server sets in this partitioning. In our experi-
ments, we chose the length of the default provisioning duration
to be 30 min.

7 Evaluation

In this section we present the experimental setup followed by
the results of our experimental evaluation.

7.1 Experimental Setup

Our prototype was built on a cluster of 20 Pentium machines
connected by a 1Gbps Ethernet switch. The cataclysm sen-
tries were run on dual-processor 1GHz machines with 1GB
RAM. Cataclysm provisioning was run on a dual-processor
450MHz machine with 1GB RAM. The machines used as cat-
aclysm servers had 2.8GHz processors and 512MB RAM. Fi-
nally, the workload generators were run on machines with pro-
cessor speeds varying from 450MHz to 1GHz and with RAM
sizes in the range 128MB-512MB. All the machines ran Linux
2.4.20.

In our experiments we constructed replicable applications
using the Apache 1.3.28 web server with PHP support en-
abled. The file set serviced by these web servers comprised
files of size varying from 1kB to 256kB to represent the range
from small text files to large image files. In addition, these
web servers hosted PHP scripts worth different amounts of
CPU computation. The dynamic component of the workload of
these applications consisted of requests for these scripts. The
MaxClient limit for Apache was increased from the default 150
to 500. Recall from Section 3 that knowing a request’s CPU re-
quirement was crucial for the determination of its inherent size.
We make minor modifications to Apache and the Linux CPU
scheduler to enable the measurement of per-request CPU us-
age. In all the experiments, the SLA presented in Figure 2 was
used for the applications.

Recall from Section 3 that knowing a request’s CPU re-
quirement was crucial for the determination of its inherent
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Figure 5: Demonstration of class-based differentiation
achieved by the admission control.

size. Since the notion of a request is specific to the ser-
vice (the Apache web server in our case) and the operat-
ing system is oblivious of it, we made a minor modifica-
tion to Apache to enable per-request CPU usage measurement.
This consisted of inserting invocations of two new system
calls begin_record_cpu () and end_record_cpu () in
the Apache source code before request processing starts
and after it ends respectively. The Linux CPU sched-
uler code was modified so that the CPU time used by
a process (and all its descendants) is recorded between
when it calls begin_record_cpu () till when it calls
end_record._cpu().

The workload generators for these applications were based
on httperf [25], an open-source web workload generator.
httperf offers a variety of workload generators. While run-
ning, it keeps track of a number of performance metrics that
are summarized in the form of statistics that are reported at
the end of the run. We enhance httperf to record a speci-
fied percentile of the response time experienced by the requests
during a run.

7.2 Class-based Differentiation

Our first experiment investigates the efficacy of the mecha-
nisms employed by the Cataclysm sentry to provide class-
based differentiation to requests. The Cataclysm provision-
ing was kept turned off in this experiment. We constructed a
replicated web server consisting of three Apache servers. This
application supported three classes of requests—Gold, Silver
and Bronze in decreasing order of significance. The class of a
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request could be uniquely determined from its URL. The invo-
cation period of the admission control was set to 0, 50 and 100
msec for the three classes respectively.

The workload consisted of requests for members of a set
of PHP scripts. The capacity of each Apache server for this
workload (i.e., the request arrival rate for which the 95t* per-
centile response time of the requests was below the response
time target) was determined offline and was found to be nearly
60 requests/sec. Figure 5(a) shows the workload used in this
experiment. Request arrival rates for the three classes started at
low values but gradually picked up to create an overload, first
increasing at a slow and steady rate and then suddenly attain-
ing a high value. The durations during which the peak loads
for the three classes persisted were chosen to have the nested
structure as seen in Figure 5(a)—arrival rate of Bronze requests
was the first to peak and the last to drop down, Silver requests
peaked next etc—to clearly bring out the class-based differen-
tiation achieved by the sentry. Figures 5(b) and 5(d) show the
rates at which these requests were admitted and the 95" per-
centile response time of admitted requests respectively during
the experiment. Nearly all the requests arriving till t=130 sec
were admitted by the sentry. Between t=130 sec and t=195
sec, the Bronze requests were dropped almost exclusively. At
t=195 sec the arrival rate of Silver requests shot up and reached
nearly 120 requests/sec. The admission rate of Bronze requests
dropped to almost zero to admit as many Silver requests as pos-
sible. At t=210 sec, the arrival rate of Gold requests shot up
to 200 requests/sec. The sentry totally suppressed all arriving
Bronze and Silver requests now and let in only Gold requests
as long as the increased arrival rate of Gold requests persisted.
Figure 5(c) is an alternate representation of the system behav-
ior in this experiment and depicts the variation of the fraction
of requests of the three classes that were admitted. Figure 5(d)
depicts the performance of admitted requests. We find that the
sentry was very successful in maintaining the response time be-
low 1000 msec. From the admission rates shown in Figure 5(b)
we find that the admission control was somewhat conservative
and admitted requests at slightly lower rate than that capacity
revealed by offline measurement of system capacity. Observe
that the few instances when the 95" percentile response time
for some class was worse than 1000 msec correspond to when
very few requests of that class were admitted implying there
was not enough data for these observations to be considered
statistically significant.

7.3 Cataclysm Provisioning

We conducted an experiment with two web applications hosted
on our Cataclysm platform. The control plane ran on a dedi-
cated node. Each application had its sentry running on a sep-
arate node. The total number of cataclysm servers available
in this experiment was 11. The SLAs for both the applications
were identical and are described in Figure 2. Further, the SLAs
imposed a lower bound of 3 on the number of servers that each
application could be assigned. The workload generators for the
applications ran on four nodes in the cluster. The default provi-
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Figure 6: Dynamic provisioning and admission control: Per-
formance of Applications 1 and 2. D: Default invocation of
provisioning, T: Provisioning triggered by excessive drops,
[N=n]: size of the server set is n now. Only selected provi-
sioning events are shown.

sioning duration used by the control plane was 30 min. In this
experiment, when migrating a server from one application to
another, we did not have the control plane actually reboot the
server and install the data for the new application. We installed
all the content served by the two applications on all the cata-
clysm servers in the cluster. Therefore, migration was achieved
simply by having the control plane send messages to the sen-
tries for the donor and the receiver applications of the server
being moved. As a result, server migration time was negligi-
ble.

The workloads for the two applications consisted of re-
quests for an assortment of PHP scripts and files in the size
range 1kB-128kB. Requests were sent at a sustainable base rate
to the two applications throughout the experiment. Overloads
were created by sending increased number of requests for a
small subset of the scripts and static files (to simulate a subset
of the content becoming popular). The experiment began with
the two applications running on 3 servers each, corresponding
to the lower bound in their SLAs. The free pool contained 5
servers at this time. A value of 50% was used for the threshold
farop by the sentries. Figures 6(a) and 6(c) depict the arrival
rates to the two applications. The request arrival rate for Ap-
plication 2 was kept at a sustainable 100 requests/sec. The ar-
rival rate for Application 1 was made to increase in a step-like
fashion starting from 100 requests/sec, doubling roughly once
every 5 min till it reached a peak value of 1600 requests/sec.
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At this point Application 1 was heavily overloaded with the
arrival rate several times higher than system capacity (which
was roughly 60 request/sec per server assigned to the service
as determined by offline measurements). Also shown in Fig-
ure 6(a) are the working of the sentry for Application 1 and the
provisioning. At t=910 sec the sentry, having observed more
than 50% of the requests being dropped over the last 5 min,
triggered the provisioning algorithm as described in Section 5.
The provisioning algorithm responded by pulling one server
from the free pool and adding it to Application 1. At t=1210
sec, the continuously increasing rate of arrivals to Application
1 resulted in the addition of another server from the free pool.
Observe in Figure 6(a) the increases in the admission rates cor-
responding to these additional servers being made available to
Application 1. The next interesting event was the default invo-
cation of provisioning at t=1800 sec. The provisioning algo-
rithm added all the 3 servers remaining in the free pool to the
heavily overloaded Application 1. Also, based on recent obser-
vation of arrival rates, it predicted an arrival rate in the range
1000-10000 requests/sec and degraded the response time tar-
get for Application 1 to 2000 msec based on its QoS table (see
Figure 2).

In the second half of the experiment, the overload of Ap-
plication 1 subsided and Application 2 got overloaded. Fig-
ure 6(c) depicts the arrival and admission rates for Application
2. Till t=2710 sec, Application 2 was well-provisioned for its
workload and its sentry admitted almost all the requests. After
this, the service was exposed to increasingly high arrival rates
peaking at approximately 1200 requests/sec that sustained for
the remainder of the experiment. The functioning of the provi-
sioning was qualitatively similar to when Service 1 was over-
loaded. The sentry of Application 2 triggered the provisioning
at t=3190 sec resulting in one server being moved from Appli-
cation 1. Att=3600 sec, the second default invocation of provi-
sioning occurred. This resulted in 2 more servers being moved
from Application 1 to Application 2. The response time tar-
get for Application 1 was reduced back to 1000 msec because
its arrival rate was predicted to be less than 1000 requests/sec,
while that for Application 2 was degraded to 2000 msec.

Figures 6(b) and 6(d) show the 95" percentile response
times for the two services during the experiment. There are
two key observations. First, the control plane was able to pre-
dict changes to arrival rates and degrade the response time tar-
get according to the SLA resulting in an increased number of
requests being admitted. Secondly, the sentries were able to
keep the admission rates well below system capacity to achieve
response times within the appropriate target with only sporadic
violations (which were on fewer than 4% of the occasions).

7.4 Scaling to Handle Extreme Overloads

We conducted an experiment to investigate the improvement
in the scalability of the sentry due to the threshold-based ad-
mission control. We measured the CPU utilization at the sen-
try server for different request arrival rates for both the batch-
based and the threshold-based admission control. Figure 7
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Figure 8: Performance of the threshold-based admission con-
trol. At t=135sec, the threshold was set to reject all Bronze re-
quests; at t=180sec, it was updated to reject all Bronze and Sil-
ver requests; at t=210sec it was updated to also reject Gold re-
quests with a probability 0.5; finally, at t=390sec, it was again
set to reject only Bronze requests.

shows our observations of CPU utilization with 95% confi-
dence intervals. Since we were interested only in the overheads
of the admission control and not in the data copying overheads
inherent in the design of the kzcpvs switch, we forced the sentry
to drop all requests after conducting the admission control test.
We increased the request arrival rates till the CPU at the sentry
server became saturated (nearly 90% utilization). We observe
more than a four-fold improvement in the sentry’s scalability—
whereas the sentry CPU saturated at 4000 requests/sec with
the batch-based admission control, it was able to handle al-
most 19000 requests/sec with the threshold-based admission
control.

A second experiment was conducted to investigate the
degradation in the decision making due to the threshold-based
admission controller. We repeated the experiment reported
in Section 7.2 (Figure 5) but forced the sentry to employ the
threshold-based admission controller. The thresholds used by
the admission control were computed once every 15 sec. Fig-
ure 8(a) shows changes in the admission rates for requests of
the three classes. At t=135 sec, after observing the high ar-
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Figure 9: Dynamic provisioning of sentries. [S=n] means the
number of sentries is n now.

rival rate of Bronze requests, the threshold was set to reject
all Bronze requests. Following this, at t=180 sec, when re-
quests to all three classes were observed to arrive at high rates,
the threshold was recomputed to reject all Bronze and Silver
requests. At t=210 sec it was made tighter—all Bronze and

SSilver requests were dropped while Gold requests were admit-

ted with a probability of 0.5. At t=390 sec, after the overload
due to Gold and Silver requests had subsided, the threshold
changed back to reject only Bronze requests. The impact of the
inaccuracies inherent in the threshold-based admission con-
troller resulted in degraded performance during periods when
the threshold chosen was incorrect. We observe two such pe-
riods (120-135 sec and 190-210 sec) during which the 95tk
percentile of the response time deteriorated compared to the
target of 1000 msec. The response times during the rest of the
experiment were kept under control due to the threshold get-
ting updated to a strict enough value.

Finally, we conducted an experiment to demonstrate the
ability of the system to dynamically provision additional sen-
tries to a heavily overloaded service. Figure 9 shows the out-
come of our experiment. The workload consisted of requests
for small static files sent to the sentry starting at 4000 re-
quests/sec and increasing by 4000 requests/sec every minute
and is shown in Figure 9(a). If the CPU utilization of the sen-
try server remained above 80% for more than 30 sec, a request
was issued to the control plane for an additional sentry. Fig-
ure 9(b) shows the variation of the CPU utilization at the first
sentry. At t=210 sec, a second sentry was added to the service.
Subsequent requests were distributed equally between the two
sentries causing the arrival rate and the CPU utilization at the
first sentry to drop. A third sentry was added at t=420 sec,
when the total arrival rate to the service had reached 32000
requests/sec overwhelming both the existing sentries.
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Figure 10: Revenue maximization via size-aware admission
control.

7.5 Revenue Maximization via Size-aware Ad-
mission Control

We conducted an experiment with an application constructed
as in the first experiment to demonstrate the impact of the
size-aware working of the admission control on system per-
formance. The workload consisted of text files (1kB-8kB), im-
age files (64kB-128kB) and dynamic requests for a collection
of PHP scripts. Figures 10(a), (b) depict the workload used
in the experiment and the rate at which requests of the three
kinds were admitted by the sentry. There are three regions of
overloads — first between t=100 sec and t=1250 sec due to the
increased arrival rates of both static and dynamic, second be-
tween t=1250 sec and t=1900sec due to high incidence of the
dynamic requests and finally after t=1900 sec due to arrival of
excessive static requests. Because the admission control uti-
lizes information about the resource requirements of the in-
coming requests gathered using the profiling described in Sec-
tion 3.4, it is able to selectively admit almost all the requests
for the lightweight text files. Requests for image files that are
the most resource demanding in this workload are punished
most severely. This demonstrates the ability of the admission
control to maximize the number of admitted requests in the
face of diverse workloads. A comparison of Figures 10(c) and
(d) illustrates the efficacy of the admission control in maintain-
ing response time targets. Without the admission control, the
response times are observed to degrade uncontrollably under
overload conditions as seen in Figure 10(d).

13

8 Related Work

Previous literature on issues related to overload management
in platforms hosting Internet services spans several areas. In
this section we describe the important pieces of work on these
topics.

Admission Control for Internet Services: Many papers
have developed overload management solutions based on do-
ing admission control. Several admission controllers operate
by controlling the rate of admission but without distinguish-
ing requests based on their sizes. Voigt et al. [33] present
kernel-based admission control mechanisms to protect web
servers against overloads—SYN policing controls the rate and
burst at which new connections are accepted, prioritized listen
queue reorders the listen queue based on pre-defined connec-
tion priorities, HTTP header-based control enables rate polic-
ing based on URL names. Welsh and Culler [35] propose an
overload management solution for Internet services built us-
ing the SEDA architecture. A salient feature of their solution
is feedback-based admission controllers embedded into indi-
vidual stages of the service. The admission controllers work
by gradually increasing admission rate when performance is
satisfactory and decreasing it multiplicatively upon observing
QoS violations. The QGuard system [17] proposes an adap-
tive mechanism that exploits rate controls for inbound to fend
off overload and provide QoS differentiation between traffic
classes. The determination of these rate limits, however, is
not dynamic but is delegated to the administrator. Iyer et
al. [16] propose a system based on two mechanisms—using
thresholds on the connection queue length to decide when to
start dropping new connection requests and sending feedback
to the proxy during overloads which would cause it to re-
strict the traffic being forwarded to the server. However, they
do not address how these thresholds may be determined on-
line. Cherkasova and Phaal [11] propose an admission con-
trol scheme that works at the granularity of sessions rather
than individual requests and evaluate it using a simple simu-
lation study. This was based on a simple model to characterize
sessions. The admission controller was based on rejecting all
sessions for a small duration if the server utilization exceeded
a pre-specified threshold and has some similarity to our ap-
proximate admission control, except we use information about
the sizes of requests in various classes to determine the drop
threshold.

Several efforts have proposed solutions based on analyti-
cal characterization of the workloads of Internet services and
modeling of the servers. In [19], Kanodia and Knightly uti-
lize a modeling technique called service envelops to devise an
admission control for web services that attempts to different
response time targets for multiple classes of requests. Li and
Jamin [23] present a measurement-based admission control to
distribute bandwidth across clients of unequal requirement. A
key distinguishing feature of their algorithm is the introduc-
tion of controlled amounts of delay in the processing of cer-
tain requests during overloads to ensure different classes of re-
quests are receiving the appropriate share of the bandwidth.



Knightly and Shroff [21] describe and classify a broad class
of admission control algorithms and evaluate the accuracy of
these algorithms via experiments. They identify key aspects
of admission control that enable it to achieve high statistical
multiplexing gains.

Two admission control algorithms have been proposed re-
cently that utilize measurements of request sizes to guide their
decision making. Verma and Ghosal [32] propose a service
time based admission control that uses predictions of arrivals
and service times in the short-term future to admit a sub-
set of requests that would maximize the profit of the service
provider. In [14], the authors present an admission control
for multi-tier e-commerce sites that externally observes execu-
tion costs of requests, distinguishing different requests types.
Our measurement-based admission control is based on similar
ideas, although the techniques differ in the details.

Dynamic Provisioning and Managing Resources in Clus-
ters: The work on dynamic provisioning of a platform’s re-
sources may be classified into two categories. Some papers
have addressed the problem of provisioning resources at the
granularity of individual servers as in our work. Ranjan et al.
[27] consider the problem of dynamically varying the number
of servers assigned to a single service hosted on a data center.
Their objective is to minimize the number of servers needed
to meet the service’s QoS targets. The algorithm is based on
a simple scheme to extrapolate the current size of the server
set based on observations of utilization levels and workloads
to determine the server set of the right size and is evaluated
via simulations. The Oceano project at IBM [3] has devel-
oped a server farm in which servers can be moved dynamically
across hosted applications depending on their changing needs.
The main focus of this paper was on the implementation is-
sues involved in building such a platform rather than the exact
algorithms for provisioning.

Other papers have considered the provisioning of resources
at finer granularity of resources. Muse [9] presents an archi-
tecture for resource management in a hosting center. Muse
employs an economic model for dynamic provisioning of re-
sources to multiple applications. In the model, each applica-
tion has a utility function which is a function of its throughput
and reflects the revenue generated by the application. There is
also a penalty that the application charges the system when its
goals are not met. The system computes resource allocations
by attempting to maximize the overall profit. Cluster Reserves
[4] has also investigated resource allocation in server clusters.
The work assumes a large application running on a cluster,
where the aim is to provide differentiated service to clients
based on some notion of service class. This is achieved by
making the OS schedulers provide fixed resource shares to ap-
plications spanning multiple nodes. The Cluster-On Demand
(COD) [10] work presents an automated framework to man-
age resources in a shared hosting platform. COD introduces
the notion of a virtual cluster, which is a functionally isolated
group of hosts within a shared hardware base. A key element
of COD is a protocol to resize virtual clusters dynamically in
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cooperation with pluggable middleware components. Chandra
et al. [8] model a server resource that services multiple appli-
cations as a GPS system and presents online workload predic-
tion and optimization-based techniques for dynamic resource
allocation. In [30] the authors address the problem of provid-
ing resource guarantees to distributed applications running on a
shared hosting platform. [31] proposes a resource overbooking
based scheme for maximizing revenue in a shared platform.

An alternate approach for improving performance of over-
loaded web servers is based on re-designing the scheduling
policy employed by the servers. Schroeder and Harchol-
Balter [28] propose to employ the SRPT algorithm based on
scheduling the connection with the shortest remaining time and
demonstrate that it leads to improved average response time.
While scheduling can improve response times, under extreme
overloads admission control and the ability to add extra capac-
ity are indispensable. Better scheduling algorithms are com-
plementary to our solutions for handling overloads.

Design of Efficient Load Balancers: Our admission con-
trol scheme is necessarily based on the use of a Layer-7 switch
and hence the scalable design of such switches is important
to our implementation. Pai et al. [26] design locality-aware re-
quest distribution (LARD)), a strategy for content-based request
distribution that can be employed by front servers in network
servers to achieve high locality in the back end servers and
good load balancing. They introduce a TCP handoff protocol
that can hand off an established TCP connection in a client-
transparent manner. A load balancer based on TCP handoff
has been shown to be more scalable than the ktcpvs load
balancer we have used. In [5] a highly scalable architecture
for content-aware request distribution in Web server clusters.
The front switch is a Layer-4 switch that distributed requests
to a number of back-end nodes. Content-based distribution is
performed by these back-end servers. [7] provides a compre-
hensive survey of the main mechanisms to split traffic among
the servers in a cluster, discussing both the various architec-
tures and the load sharing policies. Our admission control and
load balancing schemes are independent of the actual switch
implementation so long as it is Layer-7 and hence may be im-
plemented in any of the aforementioned scalable switches.

Modeling of Internet Services: Accurate modeling of ap-
plications is crucial for translating QoS needs to resource re-
quirements. Doyle et al. [13] present a model-based utility
resource management focusing on coordinated management of
memory and storage. They develop an analytical model for a
web service with static content. In [18] Kamra et al. use an
M/GI/1 processor sharing queue as an abstraction for a 3-tier
e-commerce application.

SLAs and Adaptive QoS Degradation: The WSLA
project at IBM [34] addresses service level management issues
and challenges in designing an unambiguous and clear specifi-
cation of SLAs that can be monitored by the service provider,
customer and even by a third-party. Abdelzaher and Bhatti [1]
propose to deal with server overloads by adapting delivered
content to load conditions. This is a different kind of QoS



degradation than what we have proposed in our work, but it
can be integrated into a Cataclysm platform by defining appro-
priate SLAs based on it.

9 Conclusions and Future Work

In this paper we presented Cataclysm, a comprehensive ap-
proach for handling extreme overloads in a hosting platform
running multiple Internet services. The primary contribution
of our work was to develop an overload management solution
that brought together the techniques of admission control, dy-
namic provisioning of the platform’s resources and adaptive
degradation of QoS into one integrated system. Cataclysm pro-
vides several desirable features under overloads, such as pref-
erential admission of more important requests, the ability to
handle diverse workloads and revenue maximization at mul-
tiple time-scales via dynamic provisioning of resources and
size-based admission control. The cataclysm sentry can trans-
parently tradeoff the accuracy of its decision making with the
intensity of the workload allowing it to handle incoming rates
of up to 19000 requests/second. We implemented a prototype
Cataclysm hosting platform on a Linux cluster and demon-
strated the benefits of our integrated approach using a variety
of workloads.

As part of future work, we plan to extend our overload man-
agement techniques to complex, multi-tiered Internet applica-
tions.
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