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Abstract

Our work is motivated by mobile robotic applications where a team of autonomous robots cooperate in achiev-

ing a goal, e.g., using sensor feeds to locate trapped humans in a building on fire. To attain the goal, (a) kinematic

Line-Of-Sight (LOS) constraints must be enforced to build interference free communication paths, and (b) prece-

dence, communication and location constrained tasks must be allocated and scheduled across the processing

entities in a predictable and scalable fashion.

To maintain LOS constraints, symmetric task models are derived and coordinated. To improve the schedu-

lability of these tasks and to make the predictable scalability analysis possible in the presence of precedence,

communication and location constraints, both task dependencies and workloads are examined with the objective

of minimizing communication costs and workload of each processor.

Extensive experimental results using simulated scenarios show that the allocation and scheduling techniques

incorporated in our approach to addressing these issues are effective in improving the performance of the systems,

especially in resource limited environments. A real example application drawn from mobile robots is also used to

demonstrate the significant benefits that accrue from the proposed method.
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I. INTRODUCTION

One promising application for a team of mobile robots is searching a burning building for trapped people.

Assume that each robot has a position sensor, an obstacle detection sensor, and wireless communication capable

of point-to-point communication with other robots within a fixed transmission range. Given that the transmission

range imposes a constraint on the movements of the robots, one approach to performing the search task is for

the robots to form a serial kinematic chain, where each member in the chain is always within communication

distance of its neighbors. In the example of exploring a burning building, a mobile robot that is inside the building

will probably not be able to communicate directly with an operator outside, either because its transmitter is not

powerful enough, or because the walls of the building interfere with communications. By forming a multi-robot

chain, the leader of the search can communicate with the operator by relaying data through the chain. Thus,

in order for the chain to function, each robot must be able to communicate with its neighbors. In other words,

two robots must be within communication range and there must be an interference-free path between the robots

forming the team for communications to occur. This is known as the Line-Of-Sight (LOS) constraint.



2
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Fig. 1. A leader/follower coordination primitive in action. The leader robot is moving from right to left

To perform this search task, each robot must address multiple, concurrent objectives: either searching and

maintaining LOS with a follower, or maintaining LOS with both a leader and a follower. A pairwise coordination

strategy for multi-objective, concurrent controllers in a distributed robot team is presented in [27]. Figure 1 shows

three frames of a search task with LOS constraints between the leader and the follower, where the leader is the

bottom robot. The robots are equipped with IR sensors used to detect and map obstacles in the environment.

LOS is maintained by computing the physical area of the environment which is free of occluding obstacles and

within transmission range, referred to as the “LOS region.”

The pairwise LOS preserving controllers have two symmetric modes, denoted push and pull. By symmetric, we

mean that the task model of the system has a symmetric structure that can be easily generalized to accommodate

additional robots. The push and pull controllers differ in the way in which the LOS region is computed and

communicated between the pair. The task models for push and pull for two robots are shown in Figure 2.

Each robot must run IR obstacle detection and odometric sensor processing tasks, denoted by ����� and ���	�
� ,
respectively. In addition, both robots must run a command processing task, which takes desired heading and

speed commands and turns them into motor commands, denoted ��� . All three of these tasks are specific to the

hardware of each robot, so they are all preallocated to run locally on each robot, with the follower and leader

denoted ���� and ���� , respectively (the numbers attached in gray ellipses show the site where the tasks

are located). In the push configuration, the follower computes the LOS region in task ��� (standing for the

abbreviation of the path planner), and passes it to task ��� , which computes a new movement vector of the leader

that maximizes the search while keeping the leader within the specified LOS region. In the pull configuration, the

leader robot searches, and, concurrently, computes the LOS region in task ��� . This LOS region is based on the

leader’s local knowledge of the environment, gained through its IR sensor task ����� , and the follower’s position

task ���	��� . The qualitative difference between the two configurations is that with the pull controller, the leader

is able to “pull” the follower along while it performs the search, by specifying the LOS region to the follower.

In contrast, using the push configuration, the leader’s search task is limited in a way such that the leader must

always be in the LOS region assigned by the follower. Thus the follower is in effect “pushing” the leader along.

The three control tasks ��� , ��� , and ��� may reside on a single robot, or be distributed between the pair, if

necessary, to optimize processor utilization or communication costs. The functionality of the team is not affected

by changing the allocations of the control tasks. The sensor and motor tasks ��� � , �����!� , and �"� are designed to

be perform periodic updates. The control tasks are hence forced to execute periodically in order to consume the

new sensor data and give new motor commands. Consequently, the periods of the control tasks must be assigned
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Fig. 2. Tasks in Leader/Follower Robot Team with LOS Constraint

based on the periods of the sensor and motor tasks.

Intertask communication can occur through shared memory if the tasks execute on the same robot, or they

must use a shared communication channel if the tasks are distributed across different robots, which in this case

is assumed to be a wireless medium. In any case where tasks on different robots utilize the shared channel, a

non-negligible communication cost is incurred, that the scheduling and allocation must take into account. In

the push and pull coordinated control example, the locations of the control tasks � � and � � determine the total

communication costs. For example, in the push configuration, if � � and ��� reside on the leader robot, and � �
on the follower, then the communications are ����� � � � and � � � ��� . If ��� is moved to the follower, then the

cost � � � ��� is avoided, but new costs � � � � � and ��� � �"� are introduced.

Which allocation strategy is better depends on the communication costs, the precedence relationships, the uti-

lization of each processor, and finally, the scheduling scheme. So, in addition to periodicity constraints for tasks,

several constraints caused by task dependencies must also be considered, including: locality, communication, and

precedence constraints. All these constraints are related to each other. Locality and communication constraints

affect the allocation of unallocated tasks which, in turn, affects the workload of processors. Precedence con-

straints affect the earliest start time of information consuming tasks, if they are expected to consume up-to-date

data. Besides costs, communication relationships introduce two precedence constraints: producer � commu-

nication task � consumer. Even though communication costs can be ignored if two communicating tasks are

on the same node, their precedence relationship cannot be neglected. Obviously all these constraints affect the

schedulability of the tasks in a given system.

In teams of mobile robots, the other important but difficult issue is predictable scalability. Figure 3 shows

a sequence from a simulation with five robots, where robot � is the leader searching for the goal which is the

square in the lower left of the map. The gray lines between robots represent the LOS constraint between pairs of

robots. Figure 4 depicts task graphs for such teams with three and four active robots using the push strategy. The

interesting observation is that the shadowed area in Figure 4(b), where � ��� , is the same as the task set with

��� � �	� (Figure 4(a)), except for the communication to and from the robot � . Similarly, the subset shadowed

in Figure 4(a) for � robots is the same as the task set for � robots (Figure 2(a)) with the similar exception, and so

on for structures with ��
 � members. The question arises: what does this systematic model imply if the team

of � robots were to maintain the LOS property? what’s the largest � that can allow us to make feasible allocation

and scheduling decisions, in other words, how scalable is our coordinated control configuration?

Development of techniques that makes autonomous robot teams scalable and schedulable is the major contri-
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Fig. 3. A sequence of active robots in a robot team
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Fig. 4. Tasks in Three/Four Robot Teams with LOS Constraint

bution of this paper. The algorithms we propose allocate unallocated tasks to processing nodes, and schedule

all tasks such that the tasks meet their deadlines. The challenges of solving such problems in the symmetric

communication model include scaling the assignment strategy with an increase in the number of robots involved,

and keeping the schedulability guaranteed.

Assigning tasks with precedence relationships in a distributed environment is in general an NP-hard problem

[16]. And even some of the simplest scheduling problems are NP-hard in the strong sense [7]. Hence, it is

not possible to determine optimal allocation and schedules efficiently. When an additional robot is added, an

exponential increase in computational time may be required to obtain an optimal result, especially when the

team size is large. A systematically derived heuristic allocation and scheduling strategy is therefore proposed

and evaluated in this paper. Since some of the heuristics built into the task scheduling algorithm of [19] were

shown to be effective, we capitalize on them in developing the approach used in this paper. The results from

our experiments show that our allocation and scheduling strategies indeed improve the schedulability compared

to an approach (a) that does not explicitly deal with the task and system constraints or, (b) where the allocation

decisions, especially in resource limited environments, are not factored into the schedulability analysis.

The rest of the paper is structured as follows: Section II discusses related work. In Section III, task charac-

teristics and constraints considered by the algorithm are formulated. An overview of our solution is also given

in this section. The details of the algorithm are provided in Section IV. Results of evaluation of the algorithm

using synthetic task sets is provided in Section V. In Section VI, the application of our approach to a real-world

example of a distributed robotic system is analyzed and Section VII concludes the paper by summarizing the

important characteristics of the algorithm and discussing future work.
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II. RELATED WORK

Numerous research results have demonstrated the complexity of real-time design, especially with respect to

temporal constraints [9],[20],[22],[18],[21]. The schedulability analysis for distributed real-time systems has also

received a lot of attention in recent years [14],[15],[12],[28]. For tasks with temporal constraints, researchers have

focused on generating task attributes (e.g., period, deadline and phase) with the objective of minimizing the uti-

lization and/or maximizing system schedulability while satisfying all temporal constraints. For example, Gerber,

Hong and Saksena [9],[22] proposed the period calibration technique to derive periods and related deadlines and

release times from given end-to-end constraints. Techniques for deriving system-level constraints, e.g., maxi-

mum sensor-to-actuator latency and minimum sampling periods from performance requirements are proposed

by Seto, et al. [24],[23]. When end-to-end temporal constraints are transformed into intermediate task con-

straints, most previous research results are based on the assumption that task allocation has been done a priori.

However, schedulability is clearly affected by both temporal characteristics and the allocation of real-time tasks.

A more comprehensive approach that takes into consideration task temporal characteristics and allocations, in

conjunction with schedulability analysis, is required.

For a set of independent periodic tasks, Liu and Land [13] first developed the feasible workload condition

for schedulability analysis, e.g., � ����� � ����� � �
	 for Rate Monotonic Algorithm (RMA) and ��� � for

Earliest Deadline First (EDF) under uniprocessor environments. Much later, Baruah et al. [5] presented necessary

and sufficient conditions, namely, ��� � (n is the number of processors) based on P-fairness scheduling for

multiprocessors. Also, the upper bounds of workload specified for some given schedules, e.g., EDF and RMA, are

derived and analyzed for homogeneous and heterogeneous multiprocessor environments [26],[11],[10], [2],[6],

[4]. All these techniques are for preemptive tasks and task or job migrations are assumed to be permitted without

any penalty. However, if precedence and communication constraints exist among tasks as in our task systems,

these results cannot be used directly. Instead, an approach to task assignment that can take into account the

relationship of workload and schedulability must be explored for distributed real-time systems.

Abdelzaher and Shin [1], Ramamritham [17] and Peng et al. [16] studied the problem where subtasks or mod-

ules of a task can have precedence and communication constraints in a distributed environment. Both allocation

and scheduling decisions are considered in their approaches. In this respect, their work comes closest to ours.

But there are many differences. In their task models, subtasks or modules within a task that are to be scheduled

share the same period, while our algorithm handles tasks with different periods. In [1], Abdelzaher and Shin first

generate task and processor clustering recommendations based on heuristic analysis of communication capacities

and task periods, respectively. Task clusters are then mapped to processor clusters. Workload is considered in the

mapping stage. However, schedulability is not further analyzed in their approach. In [17], workload of processors

is not taken into consideration when the allocation algorithm make its decision on whether two communicating

tasks are to be assigned to the same site. A branch-and-bound search algorithm for assigning and scheduling

real-time tasks with the objective of minimizing maximum normalized task response time is presented in [16].

Even though the heuristic employed at nonterminal search vertices guides the algorithm efficiently towards an

optimal solution, the algorithm cannot be simply applied and extended to our situation. Firstly, in their task
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system model, tasks are the allocation entities and modules are the smallest schedulable objects. Hence, the

search space will explode if allocation and scheduling objects are the same smallest one as in our environment.

Secondly, the algorithm used in [3] for scheduling and calculating the lower bound of the non-leaf nodes finds

a preemptive schedule on a single machine. But we consider a non-preemptive schedule which is NP-hard in

the strong sense, even without precedence constraints [8]. Finally, if producer and consumer tasks have different

periods, the precedence constraints are predetermined among specific instances of tasks in their case. However,

since a task may consume data from more than one consumer, and one data may be consumed by more than one

consumer in our case, the predetermined approach is inapplicable. In fact, our algorithm gives more flexibility to

let the scheduler make the decision: which instance of the consumer will consume data from which instance of
the producer depends on the scheduling that satisfies the precedence constraints.

III. PROBLEM FORMULATION AND OVERVIEW OF OUR SOLUTION

A. System Model

We model a distributed system as a set of � sites � ��� ����� � � ��� ���
	�	�	�� �� , each site having one processor.

So, in this paper, we use � ���� and �������
��������� interchangeably. Also, in the interest of space, we study only the

case where all processors are identical; heterogeneous system is discussed in the conclusion section as future

work. The sites are connected by a shared communication medium. To prevent contention occurring for the

communication medium at run time, communications should be prescheduled.

B. Task Characteristics

A directed acyclic task graph (TG) is used to represent a set of � tasks � ���
� ��� �� ��� ���
	�	�	�� ��� , where, the

nodes in the graph represents tasks, and directed edges represent precedence (e.g., producer/consumer) relation-

ships. The properties of the real-time tasks in such a task model are:
� the period � � of task �
� . The period of a task defines the inter-release times of instances of the task. One

instance of the task should be executed every period. Given the period of task � � , the � �"! instance of � � will

be released at time ��#�� � � ���
	%$ � � .
� the relative deadline & #� of the � �"! instance of task � � . The deadline specifies the time before which each

task instance must complete its execution. In this paper, we assume that the deadline is equal to the period

for the given tasks in the TG. Therefore, the �'�"! instance of � � must complete execution before the relative

deadline: & #� � �($ ��� .
� the computation time ) � of task �
� . The computation time represents the Worst Case Execution Time

(WCET) of each task instance.

In addition to above task characteristics, additional constraints may be specified by system designers, such as:
� precedence relationship. Precedence relationships constrain the execution order of the tasks and the produc-

tion and consumption relationships on the data flow. If � � � � � , and the period of � � is equal to that of � � ,
let * #� be the earliest start time (the time all required resources are available) of the � �"! instance of task � � ,
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Fig. 5. Sample Task Graph with Locality and Communication Constraints

the constraint can be defined as :

� �
� ��� � � �
�
� � �

� � ��� � � 	�� ��* #��� )�� � * #� 	

If � � � � � , and the period of � � is different from � � , reading/writing logic may be complicated and depends

on the LCM (Least Common Multiple) of these two tasks. For instance, if the period of � � is � and the period

of � � is � , there are five instances of � � and three instances of � � to be executed within the LCM � ��� 	 . Which

data produced by � � will be consumed by � � depends on the scheduling scheme.
� locality constraint. Based on the nature of the environment, some tasks, e.g., sensor and motor systems, are

required to be executed on designated sites, e.g., specific robot platform. The locality constraint for task � �
is defined as:

�  ��� � �!��	 � �
�

� communication constraints. Communication between tasks that are on different sites requires a communica-

tion medium and time to send/receive the message. Messages sent between tasks must be scheduled with the

communication medium as a resource requirement. If we model the communication between each pair of

communicating tasks as a special task, this task must satisfy the precedence constraints with the two commu-

nicating tasks separately. Let �
	���� � be the communication task, the precedence communication constraint

is defined as:

� �
� ��� � � �
�
� � � 	

� � �  ��� � �!��	�� � ���� � � � 	 	

��� ��	���� � � �� � ��	���� � � � � 	
� harmonicity constraints. If we model the communicating tasks as producers and consumers from the data

production/consumption perspective, and if the producer and the consumer run with arbitrary periods, task

executions may get out of phase resulting in large latencies in communications [21]. Harmonicity constraints

are used to simplify the reading/writing logic and reduce the communication latencies [20]. Also harmonic

periods increase the feasible processor utilization bound [25]. To this end, the period of the consumer is

often made to be a multiple of the period of the producer:

� �!� ��� � � �!�
� � � 	���� � 
 � � � � � ��� � � 	

Figure 5 gives an example of such a task graph. (We use this task graph for illustration since it is more general

than the tasks of Figure 2.)
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C. Our Goal and Overview of Our Solution

Given a distributed symmetric real-time system with task characteristics and constraints described in Section

III-B, our goal is to: (a) allocate sites to tasks, and (b) determine schedule times for all task instances that make

scalability through schedulability possible.

To solve the problem, we present an off-line strategy that consists of four steps.

1. The first step of the algorithm assigns unallocated tasks to sites, which is described in detail in Section

IV-A. Two important issues that affect schedulability are considered in this part: 1) communication cost,

and 2) the workload of each processor. If we want to increase schedulability by eliminating communication

costs as much as possible, then the more communicating tasks placed on the same site, the better. But,

this will increase the workload of a site, which in turn might decrease schedulability. Heuristics that take

into account the trade-off between the communication cost and processor workload are proposed. The basic

idea is to cluster the tasks that incur a high communication cost on the same site, while minimizing the

utilization of each processor. This decision is based upon the Communication Cost Ratio (CCR) of a pair of

communicating tasks � � � � � :

) ) � ��� � �
� � � � � �  ��� �  � � � ����� � �
� � � � 	) � � ) �

A dynamic workload threshold is used, at each allocation step, to balance and minimize the load.

2. The second step, discussed in Section IV-B, is to construct communication tasks. The algorithm uses

communication tasks to model the communication cost and channel contention that occurs if communicating

tasks happen to be on different sites. The execution time of the communication task is the communication

cost; the period and the deadline of the task is computed based on the period and the latest start time of the

consumer, respectively.

3. The third step is to construct a comprehensive graph containing all instances of all tasks including commu-

nication tasks that will execute within the LCM of task periods, and preprocess precedence relations of tasks

by setting up the relative earliest start time of consumers. These details are in Section IV-C

4. Finally, a search is used to find a feasible schedule. The algorithm described in Section IV-D takes into

account various task characteristics, in particular, deadline, earliest start time and laxity.

If the tasks are schedulable, then the original system-level constraints are satisfied; otherwise the task attributes,

such as periods or deadlines, are adjusted until a schedulable task set is found, else the specifications of the

application are reevaluated by the system designers.

IV. DETAILS OF THE ALGORITHM

We now give the details of the algorithm. Notation used in the algorithm is explained in Table I.

A. Allocating Tasks

The optimal assignment of tasks to distributed processors is an intractable problem. We propose two resource-

bounded heuristics to solve the allocation problem. Based on the communication costs and utilization of proces-
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Notation Meaning���
Task id(ID)���
Period of task

���� �
Worst case execution time of task

� ��	��
Earliest start time of 
��� instance of

���� ��
Deadline of 
 �� instance of

���� �
Site ID� � Utilization of the site

� �
���� Utilization of the site

� �
that

� � is on� ��� ���
Precedence constraint between

���
and

� ������ �� �
Communication cost ratio of

� ��� ���
TABLE I

NOTATION RELATING TO TASK AND SYSTEM CHARACTERISTICS

sors, the two heuristics attempt to minimize communication cost and workload of each processor. The difference

between the algorithms lies in whether or not to cluster a set of communicating costs when selecting the next

task to be allocated.

A.1 Greedy Heuristic

This heuristic considers the amount of communication and computation involved for a pair of communicating

tasks. A decision is made as to whether the two tasks should be assigned to the same processor, thereby elimi-

nating the communication cost. At each step, the algorithm chooses an unallocated task � � that has the largest

Communication Cost Ratio, ) ) � ��� � � � � � � � �  ��� �  � � � ����� � �!� � � � 	�� � )�� � ) � 	 , among all such ratios,

where �
� has been allocated to processor � and � � is to be assigned. The algorithm attempts to allocate � � to

the same processor � as � � . The decision is made upon whether or not the utilization of � becomes larger than

a threshold � if � � is allocated to � . If the utilization � is not larger than � , it allocates task � � to � and does not

need to update � ; otherwise, the algorithm tries to find a processor  that currently has the least utilization and

attempts to allocate � � to  . In this case, � may need to be updated. If a proper processor can be finally found, the

algorithm continues with the next unallocated task that has the largest CCR of all remaining unallocated tasks.

The basic idea of updating the threshold � is to use increasing limits on utilization. Initially, � is the maximum

value of the utilizations of all processors to which preallocated tasks have been assigned. At each time, if needed,

� is updated according to where � � is assigned. Consider the selected task � � , processor � , and  that have been

discussed before, the pseudo-code for the function updating � is shown in Table VIII. The returned value is either

the new threshold if it finds a location, or � � if it does not.

If there is no task left to be assigned and the workload of every processor is less than � , the algorithm is deemed

successful; if the algorithm chooses a task to be allocated, but no site can be found (because each processor’s

utilization will be larger than � if allocated this task), the algorithm is deemed to have failed in its allocation step.

The pseudo-code for the greedy allocation algorithm is shown in Table IX. Next, we will see how this algorithm

works for the task set in Figure 5, i.e., how it derives allocations for �"! and �$# . The computation times, periods,

and locality constraints are given in Table II. The resulting site assignments are shown in Table II in boldface.
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Task ��� � � ��� � ! �$# ��� ��� ���
WCET ( ) � ) 10 8 5 20 25 8 15 8
Period ( � � ) 40 80 40 80 80 160 80 160

Site � � � � � � ��� ��� � � � � � �

TABLE II
PARAMETERS AND ASSIGNED SITES FOR TASKS OF FIGURE 5

C4 = 2

1 1 1

Site(T2)=SSite(T1)=S1

C1 = 2 C2 = 2 C3 = 1

1
Site(T3)=S

2

T4

T1 T3T2

Fig. 6. A simple example of communicating tasks

Let us assume that there are � sites in the system. Initially the utilizations of sites are: � � � ) � � � � � )�� � �	���
� 	 ��� � � � ) � � � � � ) � � � � � � 	 ��
� ��� and � � � ) � � � � � ) � � � � � � 	 ��� � , so the threshold ��� � 	 � . The

maximum communication cost ratio is ) ) �	� � #���� � ��
 � � � 	 � � 	 �� . If �$# is allocated to site 2, the utilization

of site � will be � � � � 	 ��
� � � � 	 �� � � 	 � �� � 
 � 	 � , therefore the algorithm finds that site 3 has the least

utilization, and because � � � � 	 �� � � 	 � � ��� � , it allocates � # to site 3. Because � 	 � �� � � � , the algorithm

updates the threshold � � � 	 � �� � , and updates � ��� � 	 � � � . After allocating task � # to site � , the algorithm begins

a new iteration and considers the current maximum communication cost ratio ) ) ��� � !���� � ��
 � � � 	���� 	 � � �
and task � ! . If it allocates � ! to site 2, � � � � 	 ��
� � � � 	 � � � � � 	 � � ����� ��� � 	 � �� � . So the algorithm assigns

� ! to site 2 and updates � ��� � 	 � � ��� . Since there is not task left and all utilizations are less than 1, the algorithm

stops with a successful assignment. The final utilizations are : � � � � 	 ��� � ��� � 	 � � ����� � � � � 	 � � � .

A.2 Aggressive Heuristic

Consider a simple situation with three located tasks and one unallocated task shown in Figure 6. The com-

munication cost ratios are ) ) ��� � ! � �! � ) ) � � � ! � �! and ) ) ��� � ! � �� . Therefore, if �$! is selected to be

assigned, and we assume the utilization is no larger than the threshold, it will be allocated to site � � by the

greedy heuristic. However, intuitively, we notice that the accumulated communication cost from � � is greater

than the cost from � � even though the individual cost from � � is less than that from � � . So we might need to

consider a more sophisticated heuristic that takes into account the sum of all communication cost ratios from

the same site. That is, at each step, when selecting an unallocated task � � , we cluster the communications from

the same source sites, and calculate the sum of CCRs, e,g., � � ) ) ����� � , where �
� � � � � and �
� s are placed on

the same site. Then we compare the values and select the one with the largest value. For instance in Figure 6,

) ) � � � ! � ) ) � � � ! � �� 
 ) ) � � � ! , hence, � ! should be considered to be assigned to site � � instead of site � � .
The second heuristic we propose is to take into account the total communication from the same site to see
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Fig. 7. Extended Task Graph Containing Communication tasks

which unallocated task has the largest accumulated communication cost ratio, and then we select this task to

be assigned next. Once the task is selected, the assignment and threshold update strategy is the same as in the

greedy algorithm. To this end, only line 5 in Table IX needs to be changed to: Initialize � � � ���� � � ����� � � ���� �
� � ) ) � ��� � ���!� ��� ���
� � � � , Site � �
��	 � �	� ; and line 12: � � ��
 � � � �� � ����� � � ��� ��� ��� � � ��� .

B. Construction of Communication Tasks

As mentioned earlier, if two tasks are placed on the same site, the communication cost between them is avoided

and no communication task needs to be constructed. Figure 7 shows the extended task graph that includes

communication tasks constructed from Figure 5 after allocating sites for � ! and �$# . Consider the constructed

communication task � 	���� � in �
� � � 	���� � � � � , it has following properties:

1. Its period ��	���� � is equal to the consumer’s. This is because each instance of the consumer task only needs

to process data sent from the producer once during a period;

2. The earliest start time of the � �"! instance is: * #� ��� � � � � � �
	 $ � 	���� � � * �� , where * �� is the earliest

start time of the first instance of � � . This is a lower bound on its start time because it should begin execution

at least after the completion of the first instance of the producer;

3. The deadline of the � �"! instance is: & #	���� � � �($ � 	���� � � ) � . This is an upper bound because it should

finish its execution no later than the latest start time of the consumer.

C. Constructing a Comprehensive Graph and Preprocessing Precedence Constraints

Given the extended task graph, the first step of this part is to construct a comprehensive graph that is composed

of � � ������ instances for each task � � including communication tasks, where � is the Least Common Multiple

(LCM) of the periods of all tasks. Because for a periodic task � � , the � �"! instance should be completed between

� � � $ � � ���
	 	 and � � � $�� 	 , the algorithm attempts to build a feasible schedule for all instances of tasks within

� . And since all tasks in the comprehensive graph have only precedence constraints, it turns out that by applying

certain preprocessing to the earliest start time or deadlines of related tasks we can ensure that the schedule

algorithm automatically enforces the precedence relationships. Two cases are to be considered in the second step

to preprocess the earliest start time: task with or without predecessors.
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1. If task � � has no predecessors, the first instance is ready to execute at time � with * �� � � , and for the � �"!
instance of the task, the earliest start time is * #� � � � � �
	%$ � � � � � ��� � � .

2. If task �
� has predecessors, its first instance becomes enabled only when all its predecessors have completed

execution. In order to achieve such a condition, the tasks in the original task graph are topologically ordered

(from inputs to outputs) and when a task ��� is processed, the lower bound of the earliest start time of its first

instance is set to * �� � � ��� ��* �� � * �� � ) � 	 , where
� � ��� � � � ��� � ��� ��������� � � �
� 	 . Since we have modeled

communication as a task if the producer and consumer are on different sites, and we have harmonicity

constraints for all producer and consumer pairs, initially the lower bound of the earliest start time of the �%�"!
instance of task � � can be assigned to � � � �
	%$ � � � * �� .

Except for the communication tasks, the deadline of the � �"! instance of � � is defined as & #� � � $ � � � � �
��� � � . The deadline of each instance of the communication task is given in Section IV-B.

D. Making Scheduling Decisions

Finally, we use search technique to find a feasible schedule. Every instance to be scheduled is considered as

an individual task. Searching for the feasible schedule is based on the algorithm of [19] that finds a schedule

for dynamically arriving tasks. However, here we apply this algorithm to a static environment, and therefore the

earliest start time of each task is dictated by the precedence relationships instead of by arrival times. Given a set

of tasks with earliest start times, deadlines, worst case execution times, and resource requirements, scheduling

such a set of tasks to find a feasible schedule is to determine, � � ��� , the schedule time for each task. This is

the time at which the task can begin execution, in other words, the time when resources required by the task are

available, and all of its related precedent tasks have completed execution before their deadlines.

The search process is structured as a search tree starting with an empty partial schedule as the root. By moving

to one of the vertices at the next level, the search tries to extend the schedule with one more task until a feasible

schedule is derived. It might take an exhaustive search to find a feasible schedule, an intractable computation in

the worst case. Therefore we take a heuristic approach.

To actively direct the searching to a plausible path, the heuristic function used for selecting the next task should

synthesize various characteristics affecting real-time decisions. The heuristic function � is applied to each of

the remaining unscheduled tasks at each level of the tree. The task with the smallest value is selected to extend

the current partial schedule. While extending the partial schedule, the algorithm determines whether or not the

current partial schedule is strongly-feasible [19]. A partial schedule is said to be strongly-feasible if all the

extensions of the schedule with any one of the remaining tasks are also feasible. Given a heuristic function, the

algorithm starts with an empty partial schedule and each step of the search involves:
� determining if the current partial schedule is strongly-feasible, if so:
� select the task � with the least heuristic value from the remaining tasks and extend the current partial schedule

with this task.
Potential heuristic functions � include:

1. Minimum deadline first: � � � 	 � �  � & ;
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2. Minimum earliest-start-time first: � � � 	 � �  � * ;

(Earliest-start-time is precedence driven as defined in Section IV-B and IV-C for communication tasks and

given tasks respectively)

3. Minimum laxity first: � � � 	 � �  � � � �  � ��& � � ��*�� � )�� 	 	 ;
4. � � � 	 � �  � & ����� �  � * ;

5. � � � 	 � �  � & ����� �  � � ;

6. � � � 	 � �  � * ����� �  � � ;

The first three are simple heuristics and the last three are integrated heuristics. � is the weight factor that is

used to adjust the effect of different temporal characteristics of tasks. Because �  � * takes into account the

precedence constraints, it performs better than other simple heuristics in our experiments. The simulation studies

also show that � �  � & ����� �  � * 	 has superior performance.

V. EVALUATION OF THE ALGORITHM

We have implemented the above algorithm in C++ and have tested it with many synthetic task sets with con-

straints discussed before (Subsequently, we discuss the application of our algorithm to a robotic scenario). All

the periodic tasks in our task set have precedence constraints that are represented as a directed acyclic graph and

have following characteristics.
� The computation time ) � of each task �
� is uniformly distributed between ) ��� # and ) ��� � set to 10 and 60

time units, respectively.
� The communication cost attached to a directed edge in the precedence graph lies in the range � ) � $
) ��� # � ) ��$ ) ��� � 	 , where ) � is the Communication Ratio used to assign communication costs. Ex-

periments were conducted with ) � values between 0.1 and 0.4.

� To facilitate the system design, we set a period range, � �  � �	�� � � ��� �
�� 	 , for each input task � � (task without

incoming edges), and � ��� � � � ���� 	 for each output task � � (task without outgoing edges). The period of an

input/output task can be a value within the range. In the experiments, the range for input task � � is set to:

�  � ��� � � ��� ��� $ )�� and � ��� ��� � � � ��� � $ )�� , where � ��� ��� � ��	 � and � � � � � � � 	 � . Also to ensure

that the periods of output tasks are no less than those of input tasks, a parameter, � �  � � ��� � ��� is used to set

the upper bound of period for output task � � : � ��� � �� � �
�  � � ��� � ��� $ � ��� � � ��� �
�� 	 , where �
� are input

tasks and � �  � � ��� � ��� is randomly chosen between 1 and 5.
� In order to address harmonicity constraints, the algorithm first processes the input tasks to make their peri-

ods harmonic, and then processes the output tasks. We tailor the techniques from [20] to assign harmonic

periods to output tasks and use the GCD technique for intermediate tasks to achieve harmonicity constraints.

Whereas, in their approach, they choose a random period � �� such that � � � � � �� � ��� � � �� � � ��� � �� for

the first output task that has the minimum � � � � , in our case, periods of output tasks cannot be considered

separately from those of input tasks, and this is achieved by calculating � �� based on the maximum period of

input tasks ( ���� ), � �� ��� � ��� � �� � �
���� � �
�� , other output tasks’ periods are calculated upon � �� to achieve
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harmonicity. The idea of computing the GCD is to do a backward period assignment: a task � � gets period

� � from all its successors so that � � ��� ) & � ��� � ��� � � � � �
� � � 	 � .
� Since a consumer can consume data generated from different producers and data generated by one producer

can be consumed by more than one consumer, the parameter � � � � ����� ��� was used to set the precedence

relationships. For each task except output tasks, the � � � � ����� ��� is randomly chosen between 1 and 3.
� Even though we have conducted experiments with different numbers of input and output tasks, all the results

shown here are for task sets with four input and four output tasks. The total number of tasks in a task set is:

� $ � � � � ���
� � �� � � � � ����� , where � � � ��� � ��� ��� �� � � ��� � ��� � 
 .
All the simulation results shown in this section are obtained from the average of 10 simulation runs. For each

run, we generate 100 test sets with each set satisfying � #�
	 � � )�� � ����	 � � , where � is the number of tasks and

� is the number of processors. For a given task set, if this condition is not held, at least one utilization will be

larger than 1. The scheme used here is to remove the task sets that are definitely infeasible. Obviously, this does

not eliminate all infeasible task sets because the presence of communication costs are not considered. As we

know, determining the feasibility of a given task set is a computationally intractable problem [17], therefore if a

heuristic algorithm does not succeed in finding a feasible schedule, it could be due to the infeasiblility of the task

set. If one heuristic scheme is able to determine a feasible schedule while another cannot, we can conclude that

the former is superior. Hence, the performance of the algorithms and parameter settings are compared using the

� � � �
����� � � �  � � � � 	 :

� � �
���� 	 	
�

���� 	 	 is the total number of schedulable task sets found by the algorithm, and � is the total number of task

sets tested. Here � is 100 for each simulation run. Therefore for each result point in the graphs, � � �
� � �����	 � � � ��	�� � � , where � � � � � �� 	�	 � � � � .

The tests involved a system with 2 to 12 processors connected by a multiple-access network. Resources other

than CPUs and the communication network were not considered.
Since there are several issues to be evaluated, we first study the heuristic functions to choose the best one and

then explore other factors that affect the algorithm using this heuristic function.

A. Choosing Scheduling Heuristics

Scheduling heuristics are based on the characteristics of tasks. We explore how different heuristic functions

can affect finding a schedule. First, we investigate the sensitivity of each heuristic to the number of processors.

Results are shown in Figure 8(a) and 9(a) for the greedy and aggressive algorithms respectively. As illustrated, for

both algorithms, �  � * works much better than other simple heuristics. This is because after constructing the

comprehensive graph, the earliest start time of each instance of the task encodes the basic precedence information.

And from the beginning, �  � * chooses the best task that can be scheduled; it also maintains the precedence

constraints. �  � � is not a good heuristic since the SR remains low even when the number of processors

increases. However, �  � � might work better than other simple heuristics [19] if there are no precedence
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Fig. 9. Effect of Heuristic and Weight for Aggressive Algorithm

constraints. Therefore, the task set with precedence constraints behaves differently from an independent task

environment, and �  � � is inadequate in such dependent environments.

Now let us focus on the integrated heuristics. We find that �  � & � � � �  � * has substantially better

performance than other heuristics including the best simple heuristic �  � * . The reason should be clear: beside

precedence constraints, deadline, an important temporal characteristic, is also taken into account in this heuristic

function. Even though the other two integrated heuristics also take the deadline and earliest start time into

consideration, they are more complex to compute, and their performance is not as good as �  � & � � � �  � * .

Therefore, we choose �  � & ����� �  � * as the scheduling heuristic for the following evaluations.

Since integrated heuristics are weighted combination of simple heuristics, we investigate the sensitivity of the

best integrated heuristic, �  � & � � � �  � * , to changes in weight values. In Figure 8(b) and 9(b), we

show one instance of the results with � � tasks and CR of 0.1 for the greedy and aggressive algorithms separately.

Hereafter, we denote “The Number of Processors” as “#Proc”, and “The Number of Tasks Within a Set” as

“#Task”. When the weight is 0, the heuristic becomes the simple heuristic �  � & and does not perform well.
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(a) � ���������
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(c) � ������������
Fig. 10. Effect of Heuristic Allocation Algorithms with

��� �����	
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Fig. 11. Effect of Heuristic Allocation Algorithms with

��� ���� �

When the weight increases from � to � , or from � to � � when � � ����� � � , we see a significant performance

increase for various � � ����� values. The algorithm is robust with respect to heuristics, as performance is affected

only slightly when the weight varies from � to � � (or � � to � � if � � ����� � � ).
Another observation is that we see a similar profile in performance for all number of processors, where there is

an initial increase to a peak, and then performance decreases slightly as the weight increases. The reason is that

when the weight becomes larger, the performance is affected more by �  � * . Therefore, the performance tends

to be more like the performance with the simple heuristic �  � * .

B. Performance of the Allocation Algorithm

In this section, we test the performance of the greedy and aggressive technique that base their decisions on

communication costs and processor workloads. Figures 10 and 11 show the results compared to those of the

random allocation algorithm with ) � � � 	 � and � 	 � , respectively. The heuristic function used is � � � 	��
�  � & � � � �  � * � � � � . Results are shown for three different task set sizes that have been tested

with different numbers of processors. For a given task set with � tasks and � processors, we first execute the

period assignment algorithm to find 100 such task sets that satisfy � #��	 � � )�� � � � 	 � � , and then apply greedy,

aggressive, and random approaches to allocate tasks to see how many feasible schedules can be found. The six

graphs illustrate that for all task set sizes with certain number of processors, the greedy heuristic performs better

than the random allocation, while the aggressive heuristic performs better than the greedy method. Therefore,

instead of assigning tasks randomly, exploiting inherent task characteristics and task relationships does help to

find feasible information driven allocations.
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Processor 4 6 8 10 12
CR = 0.1 19.2 15.6 9.7 3.7 2.4
CR = 0.4 17.9 14.6 15.0 13.7 15

Processor 4 6 8 10 12
CR = 0.1 4.7 13 7 2.9 0.3
CR = 0.4 4.5 12.1 11.4 12.3 13.1

(a) � � � � ��� � � (b) � � � � � � � �
TABLE III

IMPROVEMENT OF GREEDY OVER RANDOM APPROACH (PERCENTAGE)

Processor 4 6 8 10 12
CR = 0.1 24.8 20.2 13.2 6.5 3.8
CR = 0.4 22.8 18.3 18.1 16.1 16.3

Processor 4 6 8 10 12
CR = 0.1 7.1 14.3 7.7 4.0 0.3
CR = 0.4 6.4 12.5 11.8 13.3 13.6

(a) � � � � ��� � � (b) � � ��� ��� � �
TABLE IV

IMPROVEMENT OF AGGRESSIVE TO RANDOM APPROACH (PERCENTAGE)

Comparing these figures, we find that for a certain number of processors and task set size, the improvement in

performance of the greedy or aggressive strategy with ) � � � 	 � is larger than the improvement with ) � � � 	 � ,
especially when the task set size is large, say, no less than � � . For instance, with 
 processors and a task set

size of � � � � � � � � , the difference between the greedy (aggressive) and random algorithm is ��	 ��� � � ��	 ��� 	
when ) � � � 	 � , and the difference is ����� � � 
�	 ��� 	 when ) � � � 	 � . In Table III, we show the difference

in improvement of the greedy strategy compared to the random algorithm with a task set size of � � ��� � � � �
and � � � � � � � � respectively. Table IV shows the difference between the aggressive heuristic and the random

method. In most cases, the improvements with ) � � � 	 � are much larger than those with ) � � � 	 � for

either the greedy or the aggressive heuristic algorithm. When ) � � � 	 � , the communication costs introduce

more workload into the system, and hence increase the resource contention. So communication costs dictate the

schedulability much more than the case when ) � � � 	 � . In contrast to random assignment, our approaches

exploit this important property to direct the allocation assignment, so it is not surprising that our heuristic based

algorithms work better in a resource tight environment.

C. Effect of the Number of Processors and Tasks

In this section, we investigate the effects of processors and tasks. We investigate the performance of the

algorithm under different #Proc values and #Task to show how they affect the schedulability. Here we only

show evaluation results of the aggressive heuristic since it works better than the greedy heuristic. Figure 12(a)

shows the improvement in performance with increasing number of processors and Figure 12(b) shows the drop

in performance with increasing task set size. Both of them use the heuristic function of �  � & ����� �  � * .

For the effect of processors, it should be easy to understand that in normal cases, the larger the number of

processors, the greater the improvement in performance. We also notice that for a given task set size, there

might exist a key value for the number of processors. From � � ����� � � to that point, the performance improves
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Fig. 12. Effect of Processors and Tasks

substantially, and after that point, the increase of the performance tends to be stable. For example, the key points

are 6 and 5 for task set sizes of 12 and 16 respectively. This causes us to make an interesting observation: with

some other resource, such as a communication channel, becoming the limit, the number of processors appropriate

for a given task set will change.

Now let us take a look at the effect of the task set size. Given a processor set, when the task number increases,

the success ratio generally decreases. The reason should be clear in that the more tasks, the higher the workload

in the system. But we also find that given a fixed number of processors, the performance drops sharply until a

certain task set size, after which it decreases more slowly as the task set size increases. This observation further

shows that the schedulability is more sensitive to the integrated effect of processors and tasks than the single

effect of the number of processors or the task set size. The results therefore suggest that when we design a

system, we need to exploit the different types of resources and take into account all the factors that may explicitly

or implicitly affect the performance.

D. Effect of Communication

Finally, we investigate the effect of another important resource — communication. The algorithm uses the

greedy or aggressive allocation approaches to minimize the total communication cost by allocating two tasks

to the same site. However, in case where two communicating tasks have to be placed on different sites, the

communication cost becomes a very important factor in overall performance. Figure 13 shows the results of

communication ratios of 0.1 and 0.4 with respect to the heuristic function of �  � & � � � �  � * for three

different task set sizes. As we can see from the graphs, when the number of processors is very limited, e.g., 2

or 3, the performance of the two cases is almost the same. This is because in both cases, it is hard to find a

feasible schedule. But by increasing the number of processors, the performance with ) � � � 	 � is better than

with ) ��� � 	 � . Since each communication introduces two additional precedence constraints that affect the

earliest start time of consumers, and the communication costs affect the whole workload of the system, lowering

communication leads to improved schedulability.
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Fig. 13. Effect of Communication

VI. APPLICATION OF OUR STRATEGY TO MOBILE ROBOTICS

In this section, we return to the robotic problem discussed in Section I. The Worst Case Execution Times

(WCET) of tasks are taken from an experimental implementation on a StrongARM 206MHz CPU; communica-

tion costs are based on the bytes transmitted using 802.11b wireless protocol with 11 Mbit/s transmission rate.

The figures are given in Tables V and VI respectively. The periods are � � � � � for all sensor tasks and motor

drivers. Therefore, the periods of controller tasks are also assigned to be � � � � � by the harmonic constraint.

A. Allocation and Scheduling Decisions

First, let us use the aggressive heuristic to analyze the location of tasks executing the push policy. The starting

utilizations of the two processors are the same since initially they have the same hardware-related sensor tasks.

So � �	� � � � � � ��� � � � � � ��� � � � � � ��� � � � ��� 	 � �� � . Hence the threshold � � � 	 � �� � . Then the algorithm

works as follows:
1. Consider � � . Since the sum of ) ) � s from �  ����� is larger than that from � �� � � , and all sites have the same

utilization, � � is assigned to � � , and � � � � � � 	 
�
�� � .
2. Consider ��� . Since all communication costs are from tasks located on � �� � � , and the utilization of � ���� � is

less than the threshold if � � is assigned to � � , ��� is allocated to � � , and the threshold is still � � � 	 
�
�� � ;
3. Finally, consider task � � . Since ) ) ����� � � � 
 ) ) ����� � � � , and the threshold will be less than the current

value if ��� is assigned to � � , the algorithm will locate � � on � � .
After assigning tasks, only two communication costs need be consisdered: ����� � � � � � 	 � � � �� 	 and � � �

� � � ��	 �� � 	 . The earliest start time of � � is � � � � � ���	� ��� ��� ��� � ��� � � ��� � ����� ��� ��� ��� ��� ��� � � � �

� � 	 � � � � � � � ��� ��� 
�	 � � � �� 	 � ��� 
�	 � � � �� � � � 	 . Hence the task set is schedulable by �  � & � �  � * .

B. Prediction of Scalability

Now let us take a look at the team with three robots. The task and communication models are shown in
Figure 4(a). All tasks capture the same characteristics as two robots except the communication to or from � �� � � .
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Task ����� � � 	 � � ��� � � 	 � � ��� ��� � � � � 	
Push 20 120 35 25 5 20
Pull 20 120 25 25 18 20

TABLE V
WCETS(MS) OF TASKS IN FIGURE 2

Comm. ��� ��� ��� � � ��� ��� � ��� ��� ��� � � ��� ��� � � � ��� � � � � � ��� � � � � � � � � ��� � � � � ��� ���
Push 0.02327 0.01236 2.979 2.979 2.979 0 2.979(0)
Pull 0.02327 0.01236 0 2.979 2.979 0.01236 2.979(2.979)

TABLE VI
COMMUNICATION COSTS OF FIGURE 2

Following the same reasoning as two robots, the algorithm allocates � � and � � to � � .
When we design a collaborative robot team with the same type of robotic members, each robot will possess the

same task charateristics. Besides, if the communication pattern is similar, as in the push chain, a larger team can

be dealt with simply by generalizing the results from the smaller team, e.g., a two-robot pair, Leader/Follower.

This is because our allocation strategy captures and takes into account task characteristics, communication pattern

and workloads together. Therefore, our approach leads to predictable scalability analysis.

The only problem left is to study how the use of the shared communication channel scales for a larger team.

This can be analyzed based on the critical-path-time ) ��� � , the maximum sum of execution times of all tasks,

including communicaiton tasks, along any path from an (a set of) input task(s) to an output task in the task

graph. For a team with � robots as in our push model, if � is large enough, ) ��� � is calculated from the path:

� ����� ��� ��� ��� ��� � � � � � � � � � � ��	�	�	 � � # � � # , where � # is the motor task on the � �"! site. Therefore,

we can calculate the upper bound for the number of robots in such a team efficiently. For instance, considering the

push model for two robots, the ) � � � is � � � � � � � � 	 � � � �� � � � � ��	 �� � � � � � ��� � � ��	 � � � �� � � � 	 , the laxity

time within a period is � � � � � � ��	 � � � ���� � ��	 ������ � � � � 	 . When the team member increases, the computation

time from ��� � � ��� � is introduced. Hence, the upper bound is � � � � ��	 ������ �	� ��� � ��	 �� � 	 � � � � � , where

the laxity for Site � is ��	 � ���� � � � . Generally speaking, if we know that a team of size � is schedulable, and

since we know the effect on the computation time along the critical path of the � � � � � robot, we can compare

this effect with the laxity of the � robot team to see if the team with � � � members is schedulable. This is the

case if the laxity is larger than the sum of additional communication cost and additional task execution time (s).

If during the design phase, we find that the number of robots in a team is larger than � , the upper bound, we

can split the team into small groups geographically at run time, and each group is a high level robot in which only

one robot needs to communicate with a robot in another group to share the information and/or decisions. Even

though the communication resource is limited, we can know in advance how many resources will be free for a

small group given the pre-analysis done by our algorithm. For the example in our LOS communication chain,

the building blocks of a small robot group are push-push, push-pull, pull-push and pull-pull. How many groups
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are needed depends on the run time environment and team size. But once we have the allocation assignment

and the scheduling bound for each building block, optimal combinations of groups with different sizes can be

generated as a result of our algorithm. At run time a dedicated hierarchical communication model can be built

just by looking up the grouping of the robots.

VII. CONCLUSION

Allocating and scheduling of real-time tasks in a distributed environment is a difficult problem. In addition to

task-level constraints, e.g., periods and deadlines, such systems also have system-level constraints, e.g., prece-

dence, communication and locality. The algorithm discussed in this paper provides a framework for allocating

and scheduling periodic tasks in distributed embedded systems, in which the inherent scale and symmetric prop-

erties, such as the LOS chain of a multi-robot system, are well captured by our allocation methods.

In the scheduling part of the algorithm, various temporal characteristics of tasks are taken into account at each

search step. We evaluated the algorithm by varying several factors that could explicitly or implicitly affect the

performance of the system. Also, the algorithm was exercised using a case study of a real world example from

mobile robotics to achieve a simple but efficient allocation and communication scheme for a team of robots. We

believe that this approach can enable the system developers to design a predictable distributed embedded systems

even if it has a variety of temporal and resource constraints.

Now we discuss some of the possible extensions to the algorithm. First, even when the system design does

not constrain the locality of input/output tasks in advance, the heuristic allocation algorithm can still be used. In

this case, the initial load threshold is � since no processor has loaded any task. After selecting the first pair of

communicating tasks that have the largest communication cost ratio and assigning them to a randomly selected

processor, the algorithm can continue to allocate other tasks as discussed above.

Second, the algorithm can be extended to apply to heterogeneous systems. If processors are not identical,

the execution time of a task could be different if it runs on different sites. To apply our approach in such an

environment, first, we can take the worst case communication cost ratio, which is calculated by the slowest

processors for each pair of communicating tasks, and then we can use these values as estimates to choose the task

to be considered next as shown in the algorithm. Second, when select the processor, if the task can be assigned

to the processor that the producer is on, done; otherwise, we need to consider the utilization and the speed of a

processor the same time, e.g., compare the utilizations from the fastest processors to see which processor will

have the least utilization after loading the task, and choose the one with the minimum value. After assigning each

task, the threshold will change in a way similar to the original algorithm.

Finally, the algorithm can be tailored to apply to systems that go through different modes [17]. For instance,

a third robot could join a two-robot leader/follower team and become a follower or the roles of leader/follower

changes. Such a situation can be modeled as a mode change. Constraints can be imposed on the original schedules

constructed in anticipation of the arrival of robots into the team. In order to maintain continuity of allocation of

tasks and schedulability, we can do further off-line schedulability analysis for different workloads under possible

equivalent loads in different modes. Hence at run time, the system refers to a tabular representation of feasible

allocations and schedules.
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APPENDICES

Input, Output and variables of Allocation Algorithms

Input: a task graph � 	 ��� ��� � with period and worst case execution time for each task;

communication costs for all pairs of communicating tasks;

the locality constraints for input and output tasks;

the number of processors �
Output: an assignment to all unallocated tasks such that utilization of each processor is less than 1

Variables:�
: the set of tasks that have been allocated�
: the set of tasks that have not been allocated�
: the set of communication cost ratios �	
: array of utilizations (workload)

� : threshold of utilization� � ����
 �
: communication cost ratio of

���������� �  ��� � ��� ���� � � ������� �"!# �%$ # �

� We use the same notation & to express different functionalities in two heuristics algorithms

TABLE VII
NOTATIONS FOR ALLOCATION ALGORITHMS
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Function of Assignment and Threshold Update

� # � thresholdUpdate(float 
�� , int

�
, Task ��� )

/* t is the threshold, � � and processor
�

is selected, 
�� is the new workload if assinging � � to

�
*/

1. Case 1: 
���� � , do /* 

�� is less than the threshold � */

2. Assign task ��� to processor
�

;

3. Update
	

with the new utilization  � 	 
�� ;

4. Case 2: 
���� � , do /* 

�� is larger than the threshold � */

5. Find the processor � that has least utilization 
	 	 � � # �  � � �  ��� 	
, let 

�
	 	 	 �

#����� ;

6. Case 2.1: 
���� � , do /* processor

�
cannot take ��� */

7. If � ���	 � ��� � 
�
	 � ��� , do

8. Allocate task � � to processor � ;
9. Update

	
with the new  	 	 

�
	 ;

10. � 	 ��� � � � � 
�
	 � ;

11. Else return -1 ; /* � � 	 � �
� � 
�
	 � ��� , cannot find a processor to load � � */

12. Case 2.2: 
���� � , do /* 

�
	 � 

���� � */

13. Allocate task ��� to processor � ;
14. Update

	
with the new  	 	 

�
	 ;

15. � 	 
�� ;

16. Return � ; /* new threshold */

TABLE VIII
FUNCTION OF ASSIGNMENT AND THRESHOLD UPDATES

Greedy Allocation Algorithm

1. Initialize
	 	��  ��� � 	�� � � ������� � ��� , such that for each processor �

�
:

 � 	 � � # �� � � � ���
� � � � �! � � � � 	 �

�
;

2. Let � 	 � � � �  � � �  ��� 	
, /* � is the threshold for workload control, initialize the threshold */;

3. If � � � ��� ,do

4. exit without solution;

5. Initialize
� 	"� � � �$# 
 � � � #%� �

� � � � � � � � #�& � � ;

6. While (
�

is not empty) do
7. Find such task ��� that has the maximum value

� � � # 
 � out of
�

;

8. Let 
�� 	 �  � �

#��� � � ; /* � � �! � � # � 	 � � , calculate the new utilization if ��� is allocated to processor
�

*/

9. If � � � 	 �"!(') � ! � �+* 	-, * � �! � 
�� � � � �.� � �0/ ��� , do;

10. exit without solution; /* cannot find a processor */

11. Update set
�

,
�

such that
� 	 �21 � ��� � � � 	 �43 � �.� � ;

12. Update set
�

, such that
� 	 �53 � � � � # 
 � � 1 � � � � � 
 6 � , 7� # � �

� � 6 � � � � # & �.� �.� � ��� & � 6 � .

TABLE IX
GREEDY ALLOCATION ALGORITHM


