
Resource Overbooking and Application Profiling in Shared Hosting Platforms
�

Bhuvan Urgaonkar, Prashant Shenoy and Timothy Roscoe
�

Department of Computer Science
�
Intel Research at Berkeley

University of Massachusetts 2150 Shattuck Avenue Suite 1300
Amherst MA 01003 Berkeley CA 94704�

bhuvan,shenoy � @cs.umass.edu troscoe@intel-research.net

Abstract

In this paper, we present techniques for provisioning CPU and
network resources in shared hosting platforms running poten-
tially antagonistic third-party applications. The primary con-
tribution of our work is to demonstrate the feasibility and ben-
efits of overbooking resources in shared platforms. Since an
accurate estimate of an application’s resource needs is nec-
essary when overbooking resources, we present techniques to
profile applications on dedicated nodes, possibly while in ser-
vice, and use these profiles to guide the placement of appli-
cation components onto shared nodes. We then propose tech-
niques to overbook cluster resources in a controlled fashion
such that the platform can provide performance guarantees to
applications even when overbooked. We show how our tech-
niques can be combined with commonly used QoS resource al-
location mechanisms to provide application isolation and per-
formance guarantees at run-time. We implement our techniques
in a Linux cluster and evaluate them using common server ap-
plications. We find that the efficiency (and consequently rev-
enue) benefits from controlled overbooking of resources can be
dramatic. Specifically, we find that overbooking resources by
as little as 1% we can increase the utilization of the cluster by
a factor of two, and a 5% overbooking yields a 300-500% im-
provement, while still providing useful resource guarantees to
applications.

1 Introduction and Motivation

Server clusters built using commodity hardware and software
are an increasingly attractive alternative to traditional large
multiprocessor servers for many applications, in part due to
rapid advances in computing technologies and falling hardware
prices.

This paper addresses challenges in the design of a particular
type of server cluster we call shared hosting platforms. These
can be contrasted with dedicated hosting platforms, where ei-
ther the entire cluster runs a single application (such as a web

�
Portions of this research were done when Timothy Roscoe was a researcher

at Sprint ATL and Bhuvan Urgaonkar was a summer intern at Sprint ATL. This
research was supported in part by NSF grants CCR-9984030, EIA-0080119 and
a gift from Sprint Corporation.

search engine), or each individual processing element in the
cluster is dedicated to a single application (as in the “man-
aged hosting” services provided by some data centers). In
contrast, shared hosting platforms run a large number of dif-
ferent third-party applications (web servers, streaming media
servers, multi-player game servers, e-commerce applications,
etc.), and the number of applications typically exceeds the num-
ber of nodes in the cluster. More specifically, each application
runs on a subset of the nodes and these subsets can overlap
with one another. Whereas dedicated hosting platforms are used
for many niche applications that warrant their additional cost,
the economic reasons of space, power, cooling and cost make
shared hosting platforms an attractive choice for many applica-
tion hosting environments.

Shared hosting platforms imply a business relationship be-
tween the platform provider and application providers: the lat-
ter pay the former for resources on the platform. In return,
the platform provider gives some kind of guarantee of resource
availability to applications[20].

Perhaps the central challenge in building such a shared host-
ing platform is resource management: the ability to reserve
resources for individual applications, the ability to isolate ap-
plications from other misbehaving or overloaded applications,
and the ability to provide performance guarantees to applica-
tions. Arguably, the widespread deployment of shared hosting
platforms has been hampered by the lack of effective resource
management mechanisms that meet these requirements. Conse-
quently, most hosting platforms in use today adopt one of two
approaches.

The first avoids resource sharing altogether by employing a
dedicated model. This delivers useful resources to application
providers, but is expensive in machine resources. The second
approach is to share resources in a best-effort manner among
applications, which consequently receive no resource guaran-
tees. While this is cheap in resources, the value delivered to ap-
plication providers is limited. Consequently, both approaches
imply an economic disincentive to deploy viable hosting plat-
forms.

Some recent research efforts have proposed resource man-
agement mechanisms for shared hosting platforms [2, 7, 29].
While these efforts take an initial step towards the design of ef-
fective shared hosting platforms, many challenges remain to be

1

addressed. This is the context of the present work.

1.1 Research Contributions

The contribution of this paper is threefold. First, we show how
the resource requirements of an application can be derived us-
ing online profiling and modeling. Second, we demonstrate
the efficiency benefits to the platform provider of overbooking
resources on the platform, and how this can be usefully done
without adversely impacting the guarantees offered to applica-
tion providers. Thirdly, we show how untrusted and/or mutually
antagonistic applications in the platform can be isolated from
one another.

Automatic derivation of QoS requirements

Recent work on resource management mechanisms for clusters
(e.g. [2, 29]) implicitly assumes that the resource requirements
of an application are either known in advance or can be de-
rived, but does not specifically address the problem of how
to determine these requirements. However, the effectiveness
of these techniques is crucially dependent on the ability to re-
serve appropriate amount of resources for each application—
overestimating an application’s resource needs can result in
idling of resources, while underestimating them can degrade
application performance.

A shared hosting platform can significantly enhance its util-
ity to users by automatically deriving the QoS requirements of
an application. Automatic derivation of QoS requirements in-
volves (i) monitoring an application’s resource usage, and (ii)
using these statistics to derive QoS requirements that conform
to the observed behavior.

In this paper, we employ kernel-based profiling mechanisms
to empirically monitor an application’s resource usage and pro-
pose techniques to derive QoS requirements from this observed
behavior. We then use these techniques to experimentally pro-
file several server applications such as web, streaming, game,
and database servers. Our results show that the bursty resource
usage of server applications makes it feasible to extract statisti-
cal multiplexing gains by overbooking resources on the hosting
platform.

Revenue maximization through overbooking

The goal of the owner of a hosting platform is to maximize rev-
enue, which implies that the cluster should strive to maximize
the number of applications that can be housed on a given hard-
ware configuration. One approach is to overbook resources—a
technique routinely used to maximize yield in airline reserva-
tion systems [24].

Provisioning cluster resources solely based on the worst-
case needs of an application results in low average utilization,
since the average resource requirements of an application are
typically smaller than its worst case (peak) requirements, and
resources tend to idle when the application does not utilize its
peak reserved share. In contrast, provisioning a cluster based on

a high percentile of the application needs yields statistical mul-
tiplexing gains that significantly increase the average utilization
of the cluster at the expense of a small amount of overbooking,
and increases the number of applications that can be supported
on a given hardware configuration.

A well-designed hosting platform should be able to provide
performance guarantees to applications even when overbooked,
with the proviso that this guarantee is now probabilistic instead
of deterministic (for instance, an application might be provided
a 99% guarantee (0.99 probability) that its resource needs will
be met). Since different applications have different tolerance
to such overbooking (e.g., the latency requirements of a game
server make it less tolerant to violations of performance guar-
antees than a web server), an overbooking mechanism should
take into account diverse application needs.

The primary contribution of this paper is to demonstrate the
feasibility and benefits of overbooking resources in shared host-
ing platforms. We propose techniques to overbook (i.e. under-
provision) resources in a controlled fashion based on applica-
tion resource needs. Although such overbooking can result in
transient overloads where the aggregate resource demand tem-
porarily exceeds capacity, our techniques limit the chances of
transient overload of resources to predictably rare occasions,
and provide useful performance guarantees to applications in
the presence of overbooking.

The techniques we describe are general enough to work with
many commonly used OS resource allocation mechanisms. Ex-
perimental results demonstrate that overbooking resources by
amounts as small as 1% yields a factor of two increase in the
number of applications supported by a given platform config-
uration, while a 5-10% overbooking yields a 300-500% in-
crease in effective platform capacity. In general, we find that
the more bursty the application resource needs, the higher are
the benefits of resource overbooking. We also find that collo-
cating CPU-bound and network-bound applications as well as
bursty and non-bursty applications yields additional multiplex-
ing gains when overbooking resources.

Placement and isolation of antagonistic applications

In a shared hosting platform, it is assumed that third-party ap-
plications may be antagonistic to each other and/or the platform
itself, either through malice or bugs. A hosting platform should
address these issues by isolating applications from one another
and preventing malicious, misbehaving, or overloaded applica-
tions from affecting the performance of other applications.

A third contribution of our work is to demonstrate how un-
trusted third-party applications can be isolated from one an-
other in shared hosting platforms. This isolation takes two
forms. Local to a machine, each processing node in the plat-
form employs resource management techniques that “sandbox”
applications by restricting the resources consumed by an ap-
plication to its reserved share. Globally, the process of place-
ment, whereby components of an application are assigned to
individual processing nodes, can be constrained by externally
imposed policies—for instance, by risk assessments made by

2

App A

App E

App B

App F App G

App C

App H

Cluster Interconnect (gigabit ethernet)

cpu

NIC

Figure 1: Architecture of a shared hosting platform. Each ap-
plication runs on one or more nodes and shares resources with
other applications.

the provider about each application, which may prevent an ap-
plication from being collocated with certain other applications.
Since a manual placement of applications onto nodes is infea-
sibly complex in large clusters, the design of automated place-
ment techniques that allow a platform provider to exert suffi-
cient control over the placement process is a key issue.

1.2 System Model and Terminology

The shared hosting platform assumed in our research consists
of a cluster of � nodes, each of which consists of processor,
memory, and storage resources as well as one or more network
interfaces. Platform nodes are allowed to be heterogeneous
with different amounts of these resources on each node. The
nodes in the hosting platform are assumed to be interconnected
by a high-speed LAN such as gigabit ethernet (see Figure 1).
Each cluster node is assumed to run an operating system kernel
that supports some notion of quality of service such as reserva-
tions or shares. Such mechanisms have been extensively stud-
ied over the past decade and many deployed commercial and
open-source operating systems such as Solaris [26], IRIX [22],
Linux [27], and FreeBSD [5] already support such features. In
this paper, we primarily focus on managing two resources—
CPU and network interface bandwidth—in shared hosting plat-
forms. The challenges of managing other resources in host-
ing environments, such as memory and storage, are beyond the
scope of this paper. Nevertheless, we believe the techniques
developed here are also applicable to these other resources.

We use the term application for a complete service running
on behalf of an application provider; since an application will
frequently consist of multiple distributed components, we use
the term capsule (borrowed from [13]) to refer to that compo-
nent of an application running on a single node. Each applica-
tion has at least one capsule, possibly more if the application
is distributed. Capsules provide a useful abstraction for logi-
cally partitioning an application into sub-components and for
exerting control over the distribution of these components onto
different nodes. To illustrate, consider an e-commerce applica-
tion consisting of a web server, a Java application server and a
database server. If all three components need to be collocated

on a single node, then the application will consist of a single
capsule with all three components. On the other hand, if each
component needs to be placed on a different node, then the ap-
plication should be partitioned into three capsules. Depending
on the number of its capsules, each application runs on a subset
of the platform nodes and these subsets can overlap with one
another, resulting in resource sharing (see Figure 1).

The rest of this paper is structured as follows. Section 2 dis-
cusses techniques for empirically deriving an application’s re-
source needs, while Section 3 discusses our resource overbook-
ing techniques and capsule placement strategies. We discuss
implementation issues in Section 4 and present our experimen-
tal results in Section 5. Section 6 discusses related work, and
finally, Section 7 presents concluding remarks.

2 Automatic Derivation of Application QoS
Requirements

The first step in hosting a new application is to derive its re-
source requirements. While the problem of QoS-aware re-
source management has been studied extensively in the litera-
ture [4, 8, 14, 15], the problem of how much resource to allocate
to each application has received relatively little attention. In this
section, we address this issue by proposing techniques to auto-
matically derive the QoS requirements of an application (the
terms resource requirements and QoS requirements are used in-
terchangeably in this paper.) Deriving the QoS requirements
is a two step process: (i) we first use profiling techniques to
monitor application behavior, and (ii) we then use our empiri-
cal measurements to derive QoS requirements that conform to
the observed behavior.

2.1 Application QoS Requirements: Definitions

The QoS requirements of an application are defined on a per-
capsule basis. For each capsule, the QoS requirements specify
the intrinsic rate of resource usage, the variability in the re-
source usage, the time period over which the capsule desires
resource guarantees, and the level of overbooking that the ap-
plication (capsule) is willing to tolerate. As explained earlier,
in this paper, we are concerned with two key resources, namely
CPU and network interface bandwidth. For each of these re-
sources, we define the QoS requirements along the above di-
mensions in an OS-independent manner. In Section 4.1, we
show how to map these requirements to various OS-specific re-
source management mechanisms that have been developed.

More formally, we represent the QoS requirements of an ap-
plication capsule by a quintuple ����������	
���
����� :

� Token Bucket Parameters ��������� : We capture the basic re-
source requirements of a capsule by modeling resource us-
age as a token bucket �������
� [28]. The parameter � de-
notes the intrinsic rate of resource consumption, while �
denotes the variability in the resource consumption. More
specifically, � denotes the rate at which the capsule con-
sumes CPU cycles or network interface bandwidth, while

3

� captures the maximum burst size. By definition, a token
bucket bounds the resource usage of the capsule to ��� ��� �
over any interval

�
.

� Period 	 : The third parameter 	 denotes the time pe-
riod over which the capsule desires guarantees on resource
availability. Put another way, the system should strive to
meet the QoS requirements of the capsule over each inter-
val of length 	 . The smaller the value of 	 , the more strin-
gent are the desired guarantees (since the capsule needs to
be guaranteed resources over a finer time scale). In par-
ticular, for the above token bucket parameters, the capsule
requires that it be allocated at least ��� 	 � � resources every
	 time units.

� Usage Distribution � : While the token bucket parameters
succinctly capture the capsule’s resource requirements,
they are not sufficiently expressive by themselves to de-
note the QoS requirements in the presence of overbook-
ing. Consequently, we use two additional parameters—
� and � —to specify resource requirements in the pres-
ence of overbooking. The first parameter � denotes the
probability distribution of resource usage. Note that � is a
more detailed specification of resource usage than the to-
ken bucket parameters ��������� , and indicates the probability
with which the capsule is likely to use a certain fraction of
the resource (i.e., � ����� is the probability that the capsule
uses a fraction � of the resource, �
	���	�
). A prob-
ability distribution of resource usage is necessary so that
the hosting platform can provide (quantifiable) probabilis-
tic guarantees even in the presence of overbooking.

� Overbooking Tolerance � : The parameter � is the over-
booking tolerance of the capsule. It specifies the probabil-
ity with which the capsule’s requirements may be violated
due to resource overbooking (by providing it with less re-
sources than the required amount). Thus, the overbooking
tolerance indicates the minimum level of service that is
acceptable to the capsule. To illustrate, if ������� ��
 , the
capsule’s resource requirements should be met 99% of the
time (or with a probability of 0.99 in each interval).

In general, we assume that parameters 	 and � are specified
by the application provider. This may be based on a contract be-
tween the platform provider and the application provider (e.g.,
the more the application provider is willing to pay for resources,
the stronger are the provided guarantees), or on the particular
characteristics of the application (e.g., a streaming media server
requires more stringent guarantees and is less tolerant to viola-
tions of these guarantees). In the rest of this section, we show
how to derive the remaining three parameters � , � and � using
profiling, given values of 	 and � .

2.2 Kernel-based Profiling of Resource Usage

Our techniques for empirically deriving the QoS requirements
of an application rely on profiling mechanisms that monitor ap-
plication behavior. Recently, a number of application profiling

mechanisms ranging from OS-kernel-based profiling [1] to run-
time profiling using specially linked libraries [23] have been
proposed.

We use kernel-based profiling mechanisms in the context of
shared hosting platforms, for a number of reasons. Firstly, be-
ing kernel-based, these mechanisms work with any application
and require no changes to the application at the source or bi-
nary levels. This is especially important in hosting environ-
ments where the platform provider may have little or no ac-
cess to third-party applications. Secondly, accurate estimation
of an application’s resource needs requires detailed information
about when and how much resources are used by the application
at a fine time-scale. Whereas detailed resource allocation infor-
mation is difficult to obtain using application-level techniques,
kernel-based techniques can provide precise information about
various kernel events such as CPU scheduling instances and
network packet transmissions times.

The profiling process involves running the application on a
set of isolated platform nodes (the number of nodes required
for profiling depends on the number of capsules). By isolated,
we mean that each node runs only the minimum number of
system services necessary for executing the application and no
other applications are run on these nodes during the profiling
process—such isolation is necessary to minimize interference
from unrelated tasks when determining the application’s re-
source usage. The application is then subjected to a realistic
workload, and the kernel profiling mechanism is used to track
its resource usage. It is important to emphasize that the work-
load used during profiling should be both realistic and represen-
tative of real-world workloads. While techniques for generating
such realistic workloads are orthogonal to our current research,
we note that a number of different workload-generation tech-
niques exist, ranging from trace replay of actual workloads to
running the application in a “live” setting, and from the use of
synthetic workload generators to the use of well-known bench-
marks. Any such technique suffices for our purpose as long as
it realistically emulates real-world conditions, although we note
that, from a business perspective, running the application “for
real” on an isolated machine to obtain a profile may be prefer-
able to other workload generations techniques.

We use the Linux trace toolkit as our kernel profiling mech-
anism [16]. The toolkit provides flexible, low-overhead mech-
anisms to trace a variety of kernel events such as system call
invocations, process, memory, file system and network opera-
tions. The user can specify the specific kernel events of interest
as well as the processes that are being profiled to selectively
log events. For our purposes, it is sufficient to monitor CPU
and network activity of capsule processes—we monitor CPU
scheduling instances (the time instants at which capsule pro-
cesses get scheduled and the corresponding quantum durations)
as well as network transmission times and packet sizes. Given
such a trace of CPU and network activity, we now discuss the
derivation of the capsule’s QoS requirements.

4

time

End CPU quantum/Network transmission

Begin CPU quantum/Network transmission

Idle/ Non capsule
related activity (OFF) Busy period (ON)

Figure 2: An example of an On-Off trace.

Measurement interval I

TimeFraction resource usage
0 1

Pr
ob

ab
ili

ty

���������	�

�� ��
����

���
�	�

Time

C
um

ul
at

iv
e

re
so

ur
ce

 u
sa

ge1

 I I

(a) Usage distribution (b) Token bucket parameters

Figure 3: Derivation of the usage distribution and token bucket
parameters.

2.3 Empirical Derivation of the QoS Require-
ments

We use the trace of kernel events obtained from the profiling
process to model CPU and network activity as a simple On-Off
process. This is achieved by examining the time at which each
event occurs and its duration and deriving a sequence of busy
(On) and idle (Off) periods from this information (see Figure
2). This trace of busy and idle periods can then be used to de-
rive both the resource usage distribution � as well as the token
bucket parameters �������
� .

Determining the usage distribution � : Recall that, the us-
age distribution � denotes the probability with which the cap-
sule uses a certain fraction of the resource. To derive � , we
simply partition the trace into measurement intervals of length�

and measure the fraction of time for which the capsule was
busy in each such interval. This value, which represents the
fractional resource usage in that interval, is histogrammed and
then each bucket is normalized with respect to the number of
measurement intervals

�
in the trace to obtain the probability

distribution � . Figure 3(a) illustrates this process.
Deriving token bucket parameters ��������� : Recall that a token

bucket limits the resource usage of a capsule to � � � � � over any
interval

�
. A given On-Off trace can have, in general, many (� ,

�) pairs that satisfy this bound. To intuitively understand why,
let us compute the cumulative resource usage for the capsule
over time. The cumulative resource usage is simply the total re-
source consumption thus far and is computed by incrementing
the cumulative usage after each ON period. Thus, the cumula-
tive resource usage is a step function as depicted in Figure 3(b).

Our objective is to find a line ��� � � � that bounds the cumulative
resource usage; the slope of this line is the token bucket rate �
and its Y-intercept is the burst size � . As shown in Figure 3(b),
there are in general many such curves, all of which are valid
descriptions of the observed resource usage.

Several algorithms that mechanically compute all valid
��������� pairs for a given On-Off trace have been proposed re-
cently. We use a variant of one such algorithm [28] in our
research—for each On-Off trace, the algorithm produces a
range of � values (i.e., � ������� ���������!) that constitute valid to-
ken bucket rates for observed behavior. For each � within this
range, the algorithm also computes the corresponding burst size
� . Although any pair within this range conforms to the observed
behavior, the choice of a particular ��������� has important practi-
cal implications.

Since the overbooking tolerance � for the capsule is given,
we can use � to choose a particular ��������� pair. To illustrate,
if � ��� � �#" , the capsule needs must be met 95% of the time,
which can be achieved by reserving resources corresponding to
the $%"'&)(percentile of the usage distribution. Consequently, a
good policy for shared hosting platforms is to pick a � that cor-
responds to the �
�* ���%+
 � � &)(percentile of the resource usage
distribution � , and to pick the corresponding � as computed by
the above algorithm. This ensures that we provision resources
based on a high percentile of the capsule’s needs and that this
percentile is chosen based on the specified overbooking toler-
ance � .

2.4 Profiling Server Applications: Experimental
Results

In this section, we profile several commonly-used server appli-
cations to illustrate the process of deriving an application’s QoS
requirements. Our experimentally derived profiles not only il-
lustrate the inherent nature of various server application but also
demonstrate the utility and benefits of resource overbooking in
shared hosting platforms.

The test bed for our profiling experiments consists of a clus-
ter of five Dell Poweredge 1550 servers, each with a 966 MHz
Pentium III processor and 512 MB memory running Red Hat
Linux 7.0. All servers runs the 2.2.17 version of the Linux ker-
nel patched with the Linux trace toolkit version 0.9.5, and are
connected by 100Mbps Ethernet links to a Dell PowerConnect
(model no. 5012) ethernet switch.

To profile an application, we run it on one of our servers and
use the remaining servers to generate the workload for profil-
ing. We assume that all machines are lightly loaded and that all
non-essential system services (e.g., mail services, X windows
server) are turned off to prevent interference during profiling.
We profile the following server applications in our experiments:

� Apache web server: We use the SPECWeb99 benchmark
[25] to generate the workload for the Apache web server
(version 1.3.24). The SPECWeb benchmark allows control
along two dimensions—the number of concurrent clients
and the percentage of dynamic (cgi-bin) HTTP requests.

5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ro

ba
bi

lit
y

Fraction of CPU

Apache Web Server, SPECWEB99 default

Probability

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Fraction of CPU

Apache Web Server, SPECWEB99 default

Cumulative Probability

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ur

st
, r

ho
 (

m
se

c)

Rate, sigma (fraction)

Valid Token Bucket Pairs

(a) Probability distribution (PDF) (b) Cumulative distribution function (CDF) (c) Token bucket parameters

Figure 4: Profile of the Apache web server using the default SPECWeb99 configuration.

We vary both parameters to study their impact on Apache’s
resource needs.

� MPEG streaming media server: We use a home-grown
streaming server to stream MPEG-1 video files to multiple
concurrent clients over UDP. Each client in our experiment
requests a 15 minute long variable bit rate MPEG-1 video
with a mean bit rate of 1.5 Mb/s. We vary the number
of concurrent clients and study its impact on the resource
usage at the server.

� Quake game server: We use the publicly available Linux
Quake server to understand the resource usage of a multi-
player game server; our experiments use the standard ver-
sion of Quake I—a popular multi-player game on the In-
ternet. The client workload is generated using a bot—
an autonomous software program that emulates a human
player. We use the publicly available “terminator” bot to
emulate each player; we vary the number of concurrent
players connected to the server and study its impact on the
resource usage.

� PostgreSQL database server: We profile the postgreSQL
database server (version 7.2.1) using the pgbench 1.2
benchmark. This benchmark is part of the postgreSQL dis-
tribution and emulates the TPC-B transactional benchmark
[19]. The benchmark provides control over the number of
concurrent clients as well as the number of transactions
performed by each client. We vary both parameters and
study their impact on the resource usage of the database
server.

We now present some results from our profiling study.
Figure 4(a) depicts the CPU usage distribution of the

Apache web server obtained using the default settings of the
SPECWeb99 benchmark (50 concurrent clients, 30% dynamic
cgi-bin requests). Figure 4(b) plots the corresponding cumu-
lative distribution function (CDF) of the resource usage. As
shown in the figure (and summarized in Table 1), the worst
case CPU usage (
 � �#&)(profile) is 25% of CPU capacity. Fur-
ther, the $ $ &)(and the $#"!&)(percentiles of CPU usage are 10

and 4% of capacity, respectively. These results indicate that
CPU usage is bursty in nature and that the worst-case require-
ments are significantly higher than a high percentile of the us-
age. Consequently, under provisioning (i.e., overbooking) by a
mere 1% reduces the CPU requirements of Apache by a factor
of 2.5, while overbooking by 5% yields a factor of 6.25 reduc-
tion (implying that 2.5 and 6.25 times as many web servers can
be supported when provisioning based on the $#$%&)(and $#"!&)(
percentiles, respectively, instead of the
 � �#&)(profile). Thus,
even small amounts of overbooking can potentially yield sig-
nificant increases in platform capacity. Figure 4(c) depicts the
possible valid �������
� pairs for Apache’s CPU usage. Depend-
ing on the specified overbooking tolerance � , we can set � to
an appropriate percentile of the usage distribution � , and the
corresponding � can then be chosen using this figure.

Figures 5(a)-(d) depict the CPU or network bandwidth distri-
butions, as appropriate, for various server applications. Specif-
ically, the figure shows the usage distribution for the Apache
web server with 50% dynamic SPECWeb requests, the stream-
ing media server with 20 concurrent clients, the Quake game
server with 4 clients and the postgreSQL server with 10 clients.
Table 1 summarizes our results and also presents profiles for
several additional scenarios (only a small subset of the three
dozen profiles obtained from our experiments are presented due
to space constraints). Table 1 also lists the worst-case resource
needs as well as the $#$ &)(and the $%"'&)(percentile of the resource
usage.

Together, Figure 5 and Table 1 demonstrate that all server
applications exhibit burstiness in their resource usage, albeit
to different degrees. This burstiness causes the worst-case re-
source needs to be significantly higher than a high percentile
of the usage distribution. Consequently, we find that the $#$%&)(
percentile is smaller by a factor of 1.1-2.5, while the $%"#&)(per-
centile yields a factor of 1.3-6.25 reduction when compared to
the
 � � &)(percentile. Together, these results illustrate the po-
tential gains that can be realized by overbooking resources in
shared hosting platforms.

6

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
ro

b
a

b
ili

ty

Fraction of CPU

Apache Web Server, 50% cgi-bin

Probability

(a) Apache: dynamic requests

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
ro

b
a

b
ili

ty

Fraction of Network Bandwidth

Streaming Media Server, 20 clients

Probability

(b) Streaming media server

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.005 0.01 0.015 0.02 0.025

P
ro

b
a

b
ili

ty

Fraction of CPU

Quake Game Server, 4 clients

Probability

(c) Quake Server

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
ili

ty

Fraction of CPU

Postgres Database Server, 10 clients

Probability

(d) PostgreSQL Server

Figure 5: Profiles of Various Server Applications

3 Resource Overbooking and Capsule
Placement in Hosting Platforms

Having derived the QoS requirements of each capsule, the next
step is to determine which platform node will run each capsule.
Several considerations arise when making such placement de-
cisions. First, since platform resources are being overbooked,
the platform should ensure that the QoS requirements of a cap-
sule will be met even in the presence of overbooking. Second,
since multiple nodes may have the resources necessary to house
each application capsule, the platform will need to pick a spe-
cific mapping from the set of feasible mappings. This choice
will be constrained by issues such as trust among competing
applications. In this section, we present techniques for over-
booking platform resources in a controlled manner. The aim is
to ensure that: (i) the QoS requirements of the application are
satisfied and (ii) overbooking tolerances as well as external pol-
icy constraints are taken into account while making placement
decisions.

3.1 Resource Overbooking Techniques

A platform node can accept a new application capsule so long as
the resource requirements of existing capsules are not violated,
and sufficient unused resources exist to meet the requirements
of the new capsule. However, if the node resources are over-
booked, another requirement is added: the overbooking toler-
ances of individual capsules already placed on the node should
not be exceeded as a result of accepting the new capsule. Veri-
fying these conditions involves two tests:

Application Resource Res. usage at percentile
���������	�
�
�
�� ����
�� ����
��

for ���
��
�	
WS,default CPU 0.25 0.10 0.04 (0.10, 0.218)

WS, 50% dynamic CPU 0.69 0.29 0.12 (0.29, 0.382)
SMS,k=4 Net 0.19 0.16 0.11 (0.16, 1.89)

SMS,k=20 Net 0.63 0.49 0.43 (0.49, 6.27)
GS,k=2 CPU 0.011 0.010 0.009 (0.010, 0.00099)
GS,k=4 CPU 0.018 0.016 0.014 (0.016, 0.00163)

DBS,k=1 (def) CPU 0.33 0.27 0.20 (0.27, 0.184)
DBS,k=10 CPU 0.85 0.81 0.79 (0.81, 0.130)

Table 1: Summary of profiles. Although we profiled both
CPU and network usage for each application, we only present
results for the more constraining resource due to space con-
straints. Abbreviations: WS=Apache, SMS=streaming media
server, GS=Quake game server, DBS=database server, k=num.
clients.

Test 1: Resource requirements of the new and existing cap-
sules can be met. To verify that a node can meet the require-
ments of all capsules, we simply sum the requirements of indi-
vidual capsules and ensure that the aggregate requirements do
not exceed node capacity. For each capsule � on the node, the
QoS parameters (� � , � �) and 	 � require that the capsule be allo-
cated ��� � ��	 � � � � � resources in each interval of duration 	 � . Fur-
ther, since the capsule has an overbooking tolerance � � , in the
worst case, the node can allocate only ��� � ��	 � � � � �!+ �
 * � � � re-
sources and yet satisfy the capsule needs (thus, the overbooking
tolerance represents the fraction by which the allocation may
be reduced if the node saturates due to overbooking). Conse-
quently, even in the worst case scenario, the resource require-
ments of all capsules can be met so long as the total resource
requirements do not exceed the capacity:

��� 	�
� � 	

����� � 	 ��� � � � ��� ���
 * � � ��	�� � 	 ����� (1)

where � denotes the CPU or network interface capacity on the
node, � denotes the number of existing capsules on the node,
� �
 is the new capsule, and 	 ��� � � min � 	 	 ��	� � � � ��	 �!� 	 �
is the period 	 for the capsule that desires the most stringent
guarantees.

Test 2: Overbooking tolerances of all capsules are met.
The overbooking tolerance of a capsule is met only if the to-
tal amount of overbooking is smaller than its specified toler-
ance. To compute the aggregate overbooking on a node, we
must first compute the total resource usage on the node. Since
the usage distributions � � of individual capsules are known, the
total resource on a node is simply the sum of the individual us-
ages. That is, " �$# ��� 	

� � 	 � � , where " denotes the of aggregate
resource usage distribution on the node. Assuming each � � is
independent, the resulting distribution " can be computed from
elementary probability theory.1 Given the total resource usage
distribution " , the probability that the total demand exceeds the

1This is done using the z-transform. The z-transform of a random variable%
is the polynomial &(' %()+*-,/.(021�,�3402165�, 5 0879797

where the coefficient
of the :<;�= term represents the probability that the random variable equals :
(i.e.,

% '>:)). If
% 3�? % 5 ?A@B@B@B? %DC!E 3 are F 0-G

independent random variables,

7

CAPSULES NODES

3

1

4

2

1

3

2

Figure 6: A bipartite graph indicating which capsules can be
placed on which nodes

node capacity should be less than the overbooking tolerance for
every capsule, that is,�

� � "�� ��� 	 � ��� � (2)

where � denotes the CPU or network capacity on the node.
Rather than verifying this condition for each individual capsule,
it suffices to do so for the least-tolerance capsule. That is,�

� � "������ 	 min ��� 	 � � � � � � � � �!� 	 � (3)

where

�
� � "�� ��� � #	�� ��
 " � ��� . Note that Equation 3 en-

ables a platform to provide a probabilistic guarantee that a cap-
sule’s QoS requirements will be met at least �
 * � �������
�
 � � %
of the time.

Equations 1 and 3 can easily handle heterogeneity in nodes
by using appropriate � values for the CPU and network capac-
ities on each node.

A new capsule can be placed on a node if Equations 1 and 3
are satisfied for both the CPU and network interface. Since mul-
tiple nodes may satisfy a capsule’s CPU and network require-
ments, especially at low and moderate utilizations, we need to
devise policies to choose a node from the set of all feasible
nodes for the capsule. We discuss this issue next.

3.2 Capsule Placement Algorithms

Consider an application with � capsules that needs to be placed
on the shared hosting platform with � nodes. For each of the �
capsules, we can determine the set of feasible platform nodes.
A feasible node is one that can satisfy the capsule’s resource
requirements (i.e., satisfies Equations 1 and 3 for both the CPU
and network requirements). The platform must then pick a fea-
sible node for each capsule such that all � capsules can be
placed on the platform, with the constraint that no two cap-
sules can be placed on the same node (since, by definition, two
capsules from the same application are not collocated).

The placement of capsules onto nodes subject to the above
constraint can be handled as follows. We model the placement
problem using a graph that contains a vertex for each of the� capsules and � nodes. We add an edge from a capsule
to a node if that node is a feasible node for the capsule (i.e.,

and � * #
C�E 3��� 3 % � , then &('��) *�� C!E 3��� 3 & ' % �) . The distribution of �

can then be computed using a polynomial multiplication of the z-transforms of% 3�? % 5 ? 797A7 ? %DC!E 3 [18].

has sufficient resources to house the application). The result
is a bipartite graph where each edges connects a capsule to a
node. Figure 6 illustrates such a graph with three capsules and
four nodes. As shown in the figure, determining an appropriate
placement is a non-trivial problem since the placement decision
for one capsule can impact the placement of other capsules. In
the above figure, for instance, placing either capsule 2 or 3 onto
node 3 eliminates any possible placement for capsule 1 (which
has node 3 as its only feasible node). Multiple such constraints
may exist, all of which will need to be taken into account when
determining the final placement.

Given such a graph, we use the following algorithm to de-
termine a placement. The algorithm starts with the capsule that
is most constrained (i.e., has the least number of edges/feasible
nodes) and places it on any one of its feasible nodes (this node
can be chosen randomly). The node and all of its edges are
deleted (since no other capsule can be placed on it). The algo-
rithm then picks the next most constrained capsule and repeats
the above process until all � capsules are placed onto nodes. In
Figure 6, for instance, such an algorithm would first attempt to
place capsule 1 and then capsules 3 and 2. By considering more
constrained capsules first, the algorithm maximizes the chances
of finding a placement for all � capsules. In fact, it can be
shown that such a greedy algorithm will always find a place-
ment if one exists. In Lemma 1 we formally state and prove this
property of any such algorithm. Further, the algorithm is effi-
cient, since capsules can be placed in a single linear scan once
they are sorted in the increasing order of out-degree, resulting
in an overall complexity of � ����� log � � .
Lemma 1 Any placement algorithm that considers capsules in
a non-decreasing order of their out-degrees (or equivalently, in
a non-decreasing order of the sizes of their feasible sets) will
find a placement if one exists.

Proof: First, we state without proof the following obvious in-
variant that is necessary and sufficient for there to be a feasible
placement of a set of capsules on a given set of nodes. We de-
note this invariant by � .� : Let � denote the set of capsules and � denote the set of
nodes. Let ��� � ��� represent the set of nodes feasible for the
set of capsules � . For any non-null subset of � , call it � , the
following must hold: �

�
�
	

�
��� � ���

�
(4)

Let us examine any placement algorithm that considers cap-
sules in a non-decreasing order of their out-degrees. Assume
that there is atleast one valid placement of the capsules � on
the nodes � . As already alluded to, the placement algorithm
proceeds in stages — in each stage, it picks from the set of
unplaced capsules a capsule with the smallest out-degree and
places it on any of its feasible nodes that is still free. Since ex-
actly one capsule gets placed in each stage, an algorithm that
places all the capsules comprises

�
�

�
stages. We denote these

by �
 , ... � �
 � ! 	 .
We claim that for an algorithm that behaves in the above

manner, if the invariant � holds before any stage, then it also

8

holds after it. Clearly, � holds to start with because of our as-
sumption of the existence of atleast one valid placement. Sup-
pose � holds before a stage � � , ��� � 	

�
�

�
*
 . Denote by������� the set of capsules remaining to be placed and by �������

the set of nodes that are free before stage � � . Let �	� ����
�

��� & be
the capsule that our algorithm picks from ������� in stage � � and
places it one of its feasible nodes. Note that our assumption that� holds before stage � � guarantees that there would be atleast
one node where �	� ����
�
���� & may be placed. Let our algorithm
place � � ����

��� & on ��� making ��� an infeasible node for the re-
maining capsules. For any capsule in � ����� *�� ��� ��
�

��� & , the size
of the feasible set goes down by atmost 1 due to the placement
of � � ����
�

��� & on ��� . Also, for no capsule does the feasible set
become null because � holds for (� ����� , � �����), and the degree
of any capsule is � the degree of � � ����
�

��� & due to the way our
algorithm works. Therefore, � holds after stage �'� . This proves
our lemma.

Whereas the above algorithm randomly picks a node for a
capsule when multiple feasible nodes exist, as we will show
in Sec. 5.2, the choice of a particular feasible node can have
important implications of the total number of applications sup-
ported by the cluster. Consequently, we consider three other
policies, in addition to random, for making this decision. The
first policy is best-fit, where we choose the feasible node which
has the least unused resources (i.e., constitutes the best fit for
the capsule). The second policy is worst-fit, where we place the
capsule onto the feasible node with the most unused resources.
In general, the unused network and CPU capacities on a node
may be different, and similarly, the capsule may request dif-
ferent amounts of CPU and network resources. Consequently,
defining the best and worst fits for the capsule must take into ac-
count the unused capacities on both resources—we currently do
so by simply considering the mean unused capacity across the
two resources and compare it to the mean requirements across
the two resources to determine the “fit”.

A third policy is to place a capsule onto a node that has
other capsules with similar overbooking tolerances. Since a
node must always meet the requirements of its least toler-
ant capsule per Equation 3, collocating capsules with similar
overbooking tolerances permits the platform provider to maxi-
mize the amount of resource overbooking in the platform. For
instance, placing a capsule with a tolerance of 0.01 onto a
node that has an existing capsule with � ����� �%" reduces the
maximum permissible overbooking on that node to 1% (since
� ����� � min ��� � ��
 � ��� �%" � � � � ��
). On the other hand, plac-
ing this less-tolerant capsule on another node may allow future,
more tolerant capsules to be placed onto this node, thereby al-
lowing nodes resources to be overbooked to a greater extent.
We experimentally compare the effectiveness of these three
policies in Section 5.2.

3.3 Policy Constraints on Capsule Placement

Whereas the strategies outlined in the previous section take QoS
requirements into account while making placement decisions,

they do not consider externally imposed policies which might
constrain placement. For example, a platform provider might
refuse to collocate capsules from applications owned by com-
peting providers. Alternatively, the decision as to whether to
collocate application capsules might be a quantitative one, in-
volving some model of risk assessment.

To capture these notions, we quantify the “trust” between a
newly arriving application and the existing � applications us-
ing a trust vector ��� 	 ��� � � � � ��� � � . Essentially, the vector
specifies trust between applications in a pair-wise fashion; the
�	&)(element of the vector, � � , denotes the trust between the new
application and application � . � � can vary between 0 and 1 de-
pending on the level of trust between the two applications—a
value of 0 indicates no trust whatsoever, a 1 indicates complete
trust, and intermediate values indicate varying degrees of trust.
A application capsule should not be collocated with a capsule
with � � � � . In general, application capsules should be placed
on nodes containing capsules with larger trust values.

The policies outlined in the previous section can be mod-
ified to account for this notion of potentially antagonistic ap-
plications (as determined by an external policy). To do so, we
enhance the bipartite graph with a weight on each edge. The
weight of an edge is the trust value of the least trust-worthy
application capsule on that node and the current application.
Edges with a weight 0 are deleted. Given the resulting bipar-
tite graph, we need to pick a placement that attempts to max-
imize the sum of the weights of the chosen edges (which en-
sures that capsules get placed onto nodes running applications
that are trusted to a greater extent). The resulting placement
decisions are driven by two considerations: (i) metrics such as
best-fit, worst-fit or the overbooking tolerance (which impacts
the effective platform capacity), and (ii) the weight of the edges
(which determines the level of trust between collocated cap-
sules). Such decisions can be made by computing a weighted
sum of the two metrics—namely the nature of the “fit” and the
weight of the edge—and picking a feasible node with the max-
imum weighted sum. Thus, we can ensure that external policy
constraints are taken into account when making placement de-
cisions.

4 Implementation Considerations

In this section, we first discuss implementation issues in inte-
grating our resource overbooking techniques with OS resource
allocation mechanisms. We then present an overview of our
prototype implementation.

4.1 Providing Application Isolation at Run Time

The techniques described in the previous section allow a plat-
form provider to overbook platform resources and yet provide
guarantees that the QoS requirements of applications will be
met. The task of enforcing these guarantees at run-time is the
responsibility of the OS kernel. To meet these guarantees, we
assume that the kernel employs resources allocation mecha-
nisms that support some notion of quality of service. Numer-

9

ous such mechanisms—such as reservations, shares and token
bucket regulators [4, 8, 14, 15]—have been proposed recently.
All of these mechanisms allow a certain fraction of each re-
source (CPU cycles, network interface bandwidth) to be re-
served for each application and enforce these allocations on a
fine time scale.

In addition to enforcing the QoS requirements of each ap-
plication, these mechanisms also isolate applications from one
another. By limiting the resources consumed by each appli-
cation to its reserved amount, the mechanisms prevent a ma-
licious or overloaded application from grabbing more than its
allocated share of resources, thereby providing application iso-
lation at run-time—an important requirement in shared hosting
environments running untrusted applications.

Our overbooking techniques can exploit many commonly
used QoS-aware resource allocation mechanisms. Since the
QoS requirements of an application are defined in a OS- and
mechanism-independent manner, we need to map these OS-
independent QoS requirements to mechanism-specific parame-
ter values. We outline these mappings for three commonly-used
QoS-aware mechanisms.

CPU reservations: A reservation-based CPU scheduler
[14, 15] requires the CPU requirements to be specified as a pair
� � ��� � where the capsule desires � units of CPU time every �
time units (effectively, the capsule requests � � fraction of the
CPU). For reasons of feasibility, the sum of the requests alloca-
tions should not exceed 1 (i.e., #�� ���� � 	�
). In such a scenario,
the QoS requirements of a capsule with token bucket param-
eters ��� � ��� ��� and an overbooking tolerance � � can be trans-
lated to CPU reservation by setting �
 * � � ��� ��� � ���� � and
�
 * � � � ���%� � ��� . To see why, recall that �
 * � � � ����� denotes
the rate of resource consumption of the capsule in the presence
of overbooking, which is same as ���� � . Further, since the capsule
can request � � units of the CPU every �%� time units, and in the
worst case, the entire � � units may be requested continuously,
we set the burst size to be �
 * � � � � �%� ����� . These equations
simplify to � � � �
 * � � � � � � and � � � � �
	 � � .

Proportional-share and lottery schedulers: Proportional-
share and lottery schedulers [8, 11, 32] enable resources to be
allocated in relative terms—in either case, a capsule is assigned
a weight � � (or � � lottery tickets) causing the scheduler to al-
locate � � # � � � fraction of the resource. Further, two capsules
with weights � � and � � are allocated resources in proportion
to their weights (� �
� � �). For such schedulers, the QoS re-
quirements of a capsule can be translated to a weight by setting
� � � �
 * � � ��� � � . By virtue of using a single parameter
� � to specify the resource requirements, such schedulers ignore
the burstiness � in the resource requirements. Consequently, the
underlying scheduler will only approximate the desired QoS re-
quirements. The nature of approximation depends on the exact
scheduling algorithm—the finer the time-scale of the allocation
supported by the scheduler, the better will the actual allocation
approximate the desired requirements.

Rate regulators: Rate regulators are commonly used to po-
lice the network interface bandwidth used by an application.
Such regulators limit the sending rate of the application based

on a specified profile. A commonly used regulator is the token
bucket regulator that limits the amount of bytes transmitted by
an application to � � � � � over any interval

�
. Since we model

resource usage of a capsule as a token bucket, the QoS require-
ments of a capsule trivially map to an actual token bucket regu-
lator and no special translation is necessary.

4.2 Prototype Implementation

We have implemented a Linux-based shared hosting platform
that incorporates the techniques discussed in the previous sec-
tions.2 Our implementation consists of three key components:
(i) a profiling module that allows us to profile applications and
empirically derive their QoS requirements, (ii) a control plane
that is responsible for resource overbooking and capsule place-
ment, and (iii) a QoS-enhanced Linux kernel that is responsible
for enforcing application QoS requirements.

The profiling module runs on a set of dedicated (and there-
fore isolated) platform nodes and consists of a vanilla Linux
kernel enhanced with the Linux trace toolkit. As explained in
Section 2, the profiling module gathers a kernel trace of CPU
and network activities of each capsule. It then post-processes
this information to derive an On-Off trace of resource usage
and then derives the usage distribution � and the token bucket
parameters for this usage.

The control plane is responsible for placing capsules of
newly arriving applications onto nodes while overbooking node
resources. The control plane also keeps state consisting of a list
of all capsules residing on each node and their QoS require-
ments. It also maintains information about the hardware char-
acteristics of each node. The requirements of a newly arriving
application are specified to the control plane using a resource
specification language. This specification includes the CPU
and network bandwidth requirements of each capsule and the
trust vector. The control plane uses this specification to derive a
placement for each capsule as discussed in Section 3.2. In addi-
tion to assigning each capsule to a node, the control plane also
translates the QoS parameters of the capsules to parameters of
commonly used resource allocation mechanisms (discussed in
the previous section).

The third component, namely the QoS-enhanced Linux ker-
nel, runs on each platform node and is responsible for enforc-
ing the QoS requirements of capsules at run time. We choose
Linux over other operating system kernels since a number of
QoS-aware resource allocation mechanisms have already been
implemented in Linux, allowing us to experiment with these
mechanisms. For the purposes of this paper, we implement the
H-SFQ proportional-share CPU scheduler [11]. H-SFQ is a hi-
erarchical proportional-share scheduler that allows us to group
resource principals (processes, lightweight processes) and as-
sign an aggregate CPU share to the entire group. This func-
tionality is essential since a capsule contains all processes of
an application that are collocated on a node and the QoS re-
quirements are specified for the capsule as a whole rather than

2Source code for our prototype will be publicly released in early summer.
Interested readers may contact the authors for an early pre-release version.

10

for individual resource principals. To implement such an ab-
straction, we create a separate node in the H-SFQ scheduling
hierarchy for each capsule, and attach all resource principals
belonging to a capsule to this node. The node is then assigned a
weight (determined using the capsule’s QoS requirements) and
the CPU allocation of the capsule is shared by all resource prin-
cipals of the capsule.3 We implement a token bucket regula-
tor to provide QoS guarantees at the network interface card.
Our rate regulator allows us to associate all network sockets be-
longing to a group of processes to a single token bucket. We
instantiate a token bucket regulator for each capsule and reg-
ulate the network bandwidth usage of all resource principals
contained in this capsule using the �������
� parameters of the cap-
sule’s network bandwidth usage. In Section 5.3, we experimen-
tally demonstrate the efficacy of these mechanisms in enforcing
the QoS requirements of capsules even in the presence of over-
booking. While we have experimented with other resource al-
location mechanisms such as reservations [15] and have found
that overbooking techniques indeed work well with other com-
monly used mechanisms, we omit here the results obtained us-
ing these other mechanisms due to space constraints.

5 Experimental Evaluation

In this section, we present the results of our experimental eval-
uation. The setup used in our experiments is identical to that
described in Section 2.4—we employ a cluster of Linux-based
servers as our shared hosting platform. Each server runs a QoS-
enhanced Linux kernel consisting of the H-SFQ CPU scheduler
and a leaky bucket regulator for the network interface. The con-
trol plane for the shared platform implements the resource over-
booking and capsule placement strategies discussed earlier in
this paper. For ease of comparison, we use the same set of ap-
plications discussed in 2.4 and their derived profiles (see Table
1) for our experimental study.

5.1 Efficacy of Resource Overbooking

Our first experiment examines the efficacy of overbooking re-
sources in shared web hosting platforms—a type of shared host-
ing platform that runs only web servers. Each web server run-
ning on the platform is assumed to conform to one of the four
web server profiles gathered from our profiling study (two of
these profiles are shown in Table 1; the other two employed
varying mixes of static and dynamic SPECweb99 requests).
The objective of our experiment is to examine how many such
web servers can be supported by a given platform configuration
for various overbooking tolerances. We vary the overbooking
tolerance from 0% to 10%, and for each tolerance value, at-
tempt to place as many web servers as possible until the plat-
form resources are exhausted. We first perform the experiment
for a cluster of 5 nodes (identical to our hardware configuration)
and then repeat it for cluster sizes ranging from 16 to 128 nodes

3The use of the scheduling hierarchy to further multiplex capsule resources
among resource principals in a controlled way is clearly feasible but beyond the
scope of this paper

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10

N
um

be
r

of
 W

eb
 S

er
ve

rs
 P

la
ce

d

Overbooking (percent)

Effect of Different Overbooking Tolerances

N=5
N=16
N=32
N=64

N=128

Figure 7: Benefits of resource overbooking in a web hosting
platform.

(since we lack clusters of these sizes, for these experiments, we
only examine how many applications can be accommodated on
the platform and do not actually run these applications). Fig-
ure 7 depicts our results with 95% confidence intervals. The
figure shows that, the larger the amount of overbooking, the
larger is the number of web servers that can be run on a given
platform. Specifically, for a 128 node platform, the number of
web servers that can be supported increases from 307 when no
overbooking is employed to over 1800 for 10% overbooking (a
factor of 5.9 increase). Even for a modest 1% overbooking, we
see a factor of 2 increase in the number of web servers that can
be supported on platforms of various sizes. Thus, even modest
amounts of overbooking can significantly enhance revenues for
the platform provider.

Next, we examine the benefits of overbooking resources in
a shared hosting platform that runs a mix of streaming servers,
database servers and web servers. To demonstrate the impact of
burstiness on overbooking, we first focus only on the streaming
media server. As shown in Table 1, the streaming server (with
20 clients) exhibits less burstiness a typical web server, and con-
sequently, we expect smaller gains due to resource overbook-
ing. To quantify these gains, we vary the platform size from
5 to 128 nodes and determine the number of streaming servers
that can be supported with 0%, 1% and 5% overbooking. Fig-
ure 8(a) plots our results with 95% confidence intervals. As
shown, the number of servers that can be supported increases by
30-40% with 1% overbooking when compared to the no over-
booking case. Increasing the amount of overbooking from 1%
to 5% yields only a marginal additional gain, consistent with
the profile for this streaming server shown in Table 1 (and also
indicative of the less-tolerant nature of this soft real-time appli-
cation). Thus, less bursty applications yield smaller gains when
overbooking resources.

Although the streaming server does not exhibit significant
burstiness, large statistical multiplexing gains can still accrue
by collocating bursty and non-bursty applications. Further,
since streaming server is heavily network-bound and uses a
minimal amount of CPU, additional gains are possible by col-
locating applications with different bottleneck resources (e.g.,
CPU-bound and network-bound applications). To examine the

11

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

N
um

be
r

of
 S

tr
ea

m
in

g
S

er
ve

rs
 S

up
po

rt
ed

Number of Nodes

Placement on Clusters of Different Sizes

No overbooking
ovb=1%
ovb=5%

��������

������ �����
�����
�����

���
���
���

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

�

�

�

�

�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
���

���
���
���
��� ���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���

0

50

100

150

200

250

300

350

5 16 32 64 128

N
u

m
b

e
r

o
f

A
p

p
li

c
a
ti

o
n

s
 S

u
p

p
o

rt
e
d

Cluster size

Collocating CPU Bound and Network Bound Capsules

Streaming Server
Apache Server

Postgres Server

(a) Streaming media servers (b) Mix of applications

Figure 8: Benefits of resource overbooking for a less bursty streaming server application and for application mixes.

validity of this assertion, we conduct an experiment where we
attempt to place a mix of streaming, web and database servers—
a mix of CPU-bound and network-bound as well as bursty and
non-bursty applications. Figure 8(b) plots the number of ap-
plications supported by platforms of different sizes with 1%
overbooking. As shown, an identical platform configuration
is able to support a large number of applications than the sce-
nario where only streaming servers are placed on the platform.
Specifically, for a 32 node cluster, the platform supports 36 and
52 additional web and database servers in addition to the ap-
proximately 80 streaming servers that were supported earlier.
We note that our capsule placement algorithms are automati-
cally able to extract these gains without any specific “tweaking”
on our part. Thus, collocating applications with different bottle-
neck resources and different amounts of burstiness enhance ad-
ditional statistical multiplexing benefits when overbooking re-
sources.

5.2 Capsule Placement Algorithms

Our next experiment compares the effectiveness of the best-fit,
worst-fit and random placement algorithms discussed in Sec-
tion 3.2. Using our profiles, we construct two types of applica-
tions: a replicated web server and an e-commerce application
consisting of a front-end web server and a back-end database
server. Each arriving application belongs to one of these two
categories and is assumed to consist of 2-10 capsules, depend-
ing on the degree of replication. The overbooking tolerance
is set to 5%. We then determine the number of applications
that can be placed on a given platform by different placement
strategies. Figure 9(a) depicts our results. As shown, best-fit
and random placement yield similar performance, while worst-
fit outperforms these two policies across a range of platform
sizes. This is because best-fit places capsules onto nodes with
smaller unused capacity, resulting in “fragmentation” of unused
capacity on a node; the leftover capacity may be wasted if no
additional applications can be accommodated. Worst fit, on the
other hand, reduces the chances of such fragmentation by plac-
ing capsules onto nodes with the larger unused capacity. While
such effects become prominent when application capsules have

widely varying requirements (as observed in this experiment),
they become less noticeable when the application have simi-
lar resource requirements. To demonstrate this behavior, we
attempted to place Quake game servers onto platforms of var-
ious sizes. Observe from Table 1 that the game server profiles
exhibit less diversity than a mix of web and database servers.
Figure 9(b) shows that, due to the similarity in the application
resource requirements, all policies are able to place a compara-
ble number of game servers.

Finally, we examine the effectiveness of taking the over-
booking tolerance into account when making placement de-
cisions. We compare the worst-fit policy to an overbooking-
conscious worst-fit policy. The latter policy chooses the three
worst-fits among all feasible nodes and picks the node that best
matches the overbooking tolerance of the capsule. Our exper-
iment assumes a web hosting platform with two types of ap-
plications: less-tolerant web servers that permit 1% overbook-
ing and more tolerant web servers that permit 10% overbook-
ing. We vary the platform size and examine the total number
of applications placed by the two policies. As shown in Figure
9(c), taking overbooking tolerances into account when making
placement decisions can help increase the number of applica-
tions placed on the cluster. However, we find that the additional
gains are small (� 6% in all cases), indicating that a simple
worst-fit policy may suffice for most scenarios.

5.3 Effectiveness of Kernel Resource Alloca-
tion Mechanisms

While our experiments thus far have focused on the impact
of overbooking on platform capacity, in our next experiment,
we examine the impact of overbooking on application perfor-
mance. We show that combining our overbooking techniques
with kernel-based QoS resource allocation mechanisms can in-
deed provide application isolation and quantitative performance
guarantees to applications (even in the presence of overbook-
ing). We begin by running the Apache web server on a dedi-
cated (isolated) node and examine its performance (by measur-
ing throughput in requests/s) for the default SPECWeb99 work-
load. We then run the web server on a node running our QoS-

12

������

������������������������������

������
������
������

������
������
������
���

������
������
������
���

������
������
������
������
������
������
������

������
������
������
������
������
������
������

	�		�	
�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

0

10

20

30

40

50

60

70

80

90

16 32 64

N
u

m
b

e
r

o
f

A
p

p
li

c
a
ti

o
n

s
 S

u
p

p
o

rt
e
d

Cluster size

Performance of Different Placement Heuristics, ovb=5%

Random
Best Fit

Worst Fit

��������

������
������
������
���

������
������
������
���

������
������
������
������
������
���

������
������
������
������
������
���

��

������
������
������
������
������
������
������
������
������
������
����������������������

�����������������������������������

�����������������������������������

��

��

������
������
������
������
������
������
������
������
������
������
���

 � �
 � �
 � �
 � �
 � �
 � �
 � �
 � �
 � �
 � �
 �

0

500

1000

1500

2000

2500

3000

3500

16 32 64

N
u

m
b

e
r

o
f

A
p

p
li

c
a
ti

o
n

s
 S

u
p

p
o

rt
e
d

Cluster size

Performance of Different Placement Heuristics, ovb=5%

Random
Best Fit

Worst Fit

!�!�!"�"

#�#�##�#�##�#�##�#�##�#�##�#�#

$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$

%�%%�%
%�%%�%
%�%%�%
%�%%�%
%�%%�%
%�%

&�&&�&
&�&&�&
&�&&�&
&�&&�&
&�&&�&
&�&

'�'�'

(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(

0

100

200

300

400

500

600

700

16 32 64

N
u

m
b

e
r

o
f

A
p

p
li

c
a
ti

o
n

s
 S

u
p

p
o

rt
e
d

Cluster size

Comparison of Worst Fit and Close Overbooking

Worst Fit
Ovb. conscious

(a) Placing diverse applications (b) Placing similar applications (c) Overbooking-conscious placement

Figure 9: Performance of various capsule placement strategies.

Application Metric Isolated Node
)+*,* ;�= -,-6;�= -/.�;�= Average

Apache Throughput (req/s) 0,132 -,46587 2 *,9 0,132 .) 5:7 2) 7 0;0<2 -) 5:7 2 1;0 0>=?2 9<) 5:7 2 . = 4;- 2 9 7@5:. 2 7 0
PostgreSQL Throughput (transactions/s) 7,7 2 9 = 5 * 2 . = 7;7 2 =/0 5 * 2 =/0 7;7 2 7) 5 * 2 0 4 7) 2 1 9 5 * 2 .) - 2 * = 5 9 .
Streaming Length of violations (sec)

* * * 2 4) 5 * 2 * = * 2 .;-65 * 2 * . . 2 7;465 * 2 7,7

Table 2: Effectiveness of kernel resource allocation mechanisms. All results are shown with 95% confidence intervals.

enhanced Linux kernel. We first allocate resources based on the

 � �!&)(percentile of its usage (no overbooking) and assign the
remaining capacity to a greedy dhrystone application (this ap-
plication performs compute-intensive integer computations and
greedily consumes all resources allocated to it). We measure
the throughput of the web server in presence of this background
dhrystone application. Next, we reserve resources for the web
server based on the $#$ &)(and the $#"!&)(percentiles, allocate the
remaining capacity to the dhrystone application, and measure
the server throughput. Table 2 depicts our results. As shown,
provisioning based on the
 � � &)(percentile yields performance
that is comparable to running the application on an dedicated
node. Provisioning based on the $ $%&)(and $#"!&)(percentiles re-
sults in a small degradation in throughput, but well within the
permissible limits of 1% and 5% degradation, respectively, due
to overbooking. Table 2 also shows that provisioning based on
the average resource requirements results in a substantial fall in
throughout, indicating that reserving resources based on mean
usage is not advisable for shared hosting platforms.

We repeat the above experiment for the streaming server and
the database server. The background load for the streaming
server experiment is generated using a greedy UDP sender that
transmits network packets as fast as possible, while that in case
of the database server is generated using the dhrystone applica-
tions. In both cases, we first run the application on an isolated
node and then on our QoS-enhanced kernel with provisioning
based on the
 � � &)(, $#$!&)(and the $%"'&)(percentiles. We mea-
sure the throughput in transaction/s for the database server and
the mean length of a playback violation (in seconds) for the
streaming media server. Table 2 plots our results. Like in the
web server, provisioning based on the
 � � &)(percentile yields
performance comparable to running the application on an iso-
lated node, while small amounts of overbooking results in a

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

Fraction of CPU

Postgres Profile on Isolated Node

Cumulative Probability

(a) CDF on isolated node

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

Fraction of CPU

Postgres Profile When Overbooked by 1%

Cumulative Probability

(b) CDF on overbooked node

Figure 10: Effect of overbooking on the PostgreSQL server
CPU profile.

corresponding small amount of degradation in application per-
formance.

For each of the above scenarios, we also computed the ap-
plication profiles in the presence of background load and over-
booking and compared it to the profiles gathered on the isolated
node. Figure 10 shows one such pair and compares the profile
of the database server on the isolated node with that obtained
with background load and 1% overbooking. As can be seen, the
two profiles look similar, indicating that the presence of back-
ground load does not interfere with the application behavior,
and hence, the profiles obtained by running the application on
an isolated node are representative of the behavior on an over-
booked node (for a given workload).

Together, these results demonstrate that our kernel resource
allocation mechanisms are able to successfully isolate applica-
tions from one another and are able to provide quantitative per-
formance guarantees even when resources are overbooked.

13

6 Related Work

Research on clustered environments over the past decade has
spanned a number of issues. Systems such as Condor have in-
vestigated techniques for harvesting idle CPU cycles on a clus-
ter of workstations to run batch jobs [17]. The design of scal-
able, fault-tolerant network services running on server clusters
has been studied in [9]. Use of virtual clusters to manage re-
sources and contain faults in large multiprocessor systems has
been studied in [10]. Scalability, availability and performance
issues in dedicated clusters have been studied in the context of
clustered mail servers [21] and replicated web servers [2]. On-
going efforts in the grid computing community have focused
on developing standard interfaces for resource reservations in
clustered environments [12].

In the context of QoS-aware resource allocation, numer-
ous efforts over the past decade have developed predictable
resource allocation mechanisms for single machine environ-
ments [4, 8, 14, 15]. Such techniques form the building block
for resource allocation in clustered environments. The specific
problem of QoS-aware resource management for clustered en-
vironments has been investigated in [2, 3]. Both efforts build
upon single node QoS-aware resource allocation mechanisms
and propose techniques to extend their benefits to clustered en-
vironments. Provisioning resources in hosting centers based on
energy considerations has studied in [7]. The technique uses an
economic approach for sharing resources in such environments
and is driven by energy considerations. In contrast, our work
focuses on maximizing revenue by overbooking resources. Sta-
tistical admission control techniques that overbook resources
have been studied in the context of video-on-demand servers
[31] and ATM networks [6]. To the best of our knowledge, this
is the first work to consider resource overbooking in context of
shared hosting platforms (i.e., clustered environments).

7 Concluding Remarks

In this paper, we presented techniques for provisioning CPU
and network resources in shared hosting platforms running po-
tentially antagonistic third-party applications. We argued that
provisioning resources solely based on the worst-case needs of
applications results in low average utilization, while provision-
ing based on a high percentile of the application needs can yield
statistical multiplexing gains that significantly increase the uti-
lization of the cluster. Since an accurate estimate of an ap-
plication’s resource needs is necessary when provisioning re-
sources, we presented techniques to profile applications on ded-
icated nodes, possibly while in service, and used these profiles
to guide the placement of application components onto shared
nodes. We then proposed techniques to overbook cluster re-
sources in a controlled fashion such that the platform can pro-
vide performance guarantees to applications even when over-
booked. Our techniques, in conjunction with commonly used
OS resource allocation mechanisms, can provide application
isolation and performance guarantees at run-time in the pres-
ence of overbooking. We implemented our techniques in a

Linux cluster and evaluated them using common server appli-
cations. We found that the efficiency benefits from controlled
overbooking of resources can be dramatic. Specifically, over-
booking resources by as little as 1% increases the utilization
of the hosting platform by a factor of 2, while overbooking by
5-10% results in gains of up to 500%. The more bursty the ap-
plication resources needs, the higher are the benefits of resource
overbooking. More generally, our results demonstrate the ben-
efits and feasibility of overbooking resources for the platform
provider.

References
[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Lueng,

M. Vandervoorde, C. Waldspurger, and W. Weihl. Continuous Profiling:
Where Have All the Cycles Gone? In Proceedings of the 16th ACM
Symposium on Operating Systems Principles, pages 1–14, October 1997.

[2] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster Reserves: A Mech-
anism for Resource Management in Cluster-based Network Servers. In
Proceedings of the ACM SIGMETRICS Conference, Santa Clara, CA,
June 2000.

[3] A. Arpaci-Dusseau and D E. Culler. Extending Proportional-Share
Scheduling to a Network of Workstations. In Proceedings of Parallel
and Distributed Processing Techniques and Applications (PDPTA’97),
Las Vegas, NV, June 1997.

[4] G. Banga, P. Druschel, and J. Mogul. Resource Containers: A New Fa-
cility for Resource Management in Server Systems. In Proceedings of
the third Symposium on Operating System Design and Implementation
(OSDI’99), New Orleans, pages 45–58, February 1999.

[5] J. Blanquer, J. Bruno, M. McShea, B. Ozden, A. Silberschatz, and
A. Singh. Resource Management for QoS in Eclipse/BSD. In Proceed-
ings of the FreeBSD’99 Conference, Berkeley, CA, October 1999.

[6] R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn. Statistical
Service Assurances for Traffic Scheduling Algorithms. IEEE Journal on
Selected Areas in Communications, 18(12):2651–2664, December 2000.

[7] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing
Energy and Server Resources in Hosting Centers. In Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles (SOSP),
pages 103–116, October 2001.

[8] K. Duda and D. Cheriton. Borrowed Virtual Time (BVT) Scheduling:
Supporting Lantency-sensitive Threads in a General-Purpose Scheduler.
In Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP’99), Kiawah Island Resort, SC, pages 261–276, December 1999.

[9] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.
Cluster-based Scalable Network Services. In Proceedings of the sixteenth
ACM symposium on Operating systems principles (SOSP’97), Saint-
Malo, France, pages 78–91, December 1997.

[10] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular Disco:
Resource Management using Virtual Clusters on Shared-memory Multi-
processors. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP’99), Kiawah Island Resort, SC, pages 154–169, De-
cember 1999.

[11] P. Goyal, X. Guo, and H.M. Vin. A Hierarchical CPU Scheduler for Mul-
timedia Operating Systems. In Proceedings of Operating System Design
and Implementation (OSDI’96), Seattle, pages 107–122, October 1996.

[12] Global Grid Forum: Scheduling and Resource Management Working
Group. http://www-unix.mcs.anl.gov/ schopf/ggf-sched, 2002.

[13] Open Distributed Processing – Reference Model: Overview. Recommen-
dation X.901, International Telecommunication Union, March 1997.

[14] M B. Jones, D Rosu, and M Rosu. CPU Reservations and Time Con-
straints: Efficient, Predictable Scheduling of Independent Activities. In
Proceedings of the sixteenth ACM symposium on Operating Systems Prin-
ciples (SOSP’97), Saint-Malo, France, pages 198–211, December 1997.

14

[15] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fair-
bairns, and E. Hyden. The Design and Implementation of an Operating
System to Support Distributed Multimedia Applications. IEEE Journal on
Selected Areas in Communication, 14(7):1280–1297, September 1996.

[16] Linux Trace Toolkit Project Page. http://www.opersys.com/LTT/, 2002.

[17] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Worksta-
tions. In Proceedings of the 8th International Conference of Distributed
Computing Systems, pages 104–111, June 1988.

[18] A. Papoulis. Probability, Random Variables, and Stochastic Processes.
McGraw Hill, 1991.

[19] The pgbench man page, PostgreSQL software distribution, 2002.

[20] T. Roscoe and B. Lyles. Distributing Computing without DPEs: Design
Considerations for Public Computing Platforms. In Proceedings of the
9th ACM SIGOPS European Workshop, Kolding, Denmark, September
2000.

[21] Y. Saito, B. Bershad, and H. Levy. Manageability, Availability and Per-
formance in Porcupine: A Highly Available, Scalable Cluster-based Mail
Service. In Proceedings of the 17th SOSP, Kiawah Island Resort, SC,
pages 1–15, December 1999.

[22] REACT: IRIX Real-time Extensions. Silicon Graphics, Inc.,
http://www.sgi.com/software/react, 1999.

[23] S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman, and
S. Karmesin. Portable Profiling and Tracing for Parallel Scientific Ap-
plications using C++. In Proceedings of ACM SIGMETRICS Symposium
on Parallel and Distributed Tools (SPDT), pages 134–145, Aug 1998.

[24] B C. Smith, J F. Leimkuhler, and R M. Darrow. Yield Management at
American Airlines. Interfaces, 22(1):8–31, January-February 1992.

[25] The Standard Performance Evaluation Corporation (SPEC),
http://www.spec.org. SPECWeb99 Benchmark Documentation.

[26] Solaris Resource Manager 1.0: Controlling System Resources Effec-
tively. Sun Microsystems, Inc., http://www.sun.com/software/white-
papers/wp-srm/, 1998.

[27] V Sundaram, A. Chandra, P. Goyal, P. Shenoy, J Sahni, and H Vin. Ap-
plication Performance in the QLinux Multimedia Operating System. In
Proceedings of the Eighth ACM Conference on Multimedia, Los Angeles,
CA, November 2000.

[28] P. Tang and T. Tai. Network Traffic Characterization Using Token Bucket
Model. In Proceedings of IEEE Infocom’99, New York, NY, March 1999.

[29] B. Urgaonkar and P. Shenoy. Sharc: Managing CPU and Network Band-
width in Shared Clusters. Technical Report TR01-08, Department of
Computer Science, University of Massachusetts, October 2001.

[30] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource Overbooking and
Application Profiling in Shared Hosting Platforms. Technical report, De-
partment of Computer Science, University of Massachusetts, May 2002.

[31] H. M. Vin, P. Goyal, A. Goyal, and A. Goyal. A Statistical Admission
Control Algorithm for Multimedia Servers. In Proceedings of the ACM
Multimedia’94, San Francisco, pages 33–40, October 1994.

[32] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible
Proportional-share Resource Management. In Proceedings of symposim
on Operating System Design and Implementation, November 1994.

15

