Capsule: An Energy-Optimized Object Storage System for
Memory-Constrained Sensor Devices

Gaurav Mathur, Peter Desnoyers, Deepak Ganesan, Prashant Shenoy

{gmathur, pjd, dganesan, shenoy} @cs.umass.edu
Department of Computer Science
University of Massachusetts, Amherst, MA 01003

Abstract 1 Introduction

Recent gains in energy-efficiency of new-generation NANBHlator- Storage is an essential ingredient of any data-centric sen-
age have strengthened the case for in-network storage &ycdatric sensor ~ SOr network application. Common uses of storage in sen-
network applications. This paper argues that a simple fitéesy abstrac- sor applications include archival storage [9], temporatad
tion is inadequate for realizing the full benefits of highpaeity low-power storage [6], storage of sensor calibration tables [10], in-
NAND flash storage in data-centric applications. Insteadasteocate a network indexing [20], in-network querying [19] and code
rich object storage abstraction to support flexible use eftorage system Storage for network reprogramming [7], among others. Until
for a variety of application needs and one that is specificaitimized for recently, sensor applications and systems were desigred un
memory and energy-constrained sensor platforms. We pedpagsule an der the assumption that computation is significantly cheape
energy-optimized log-structured object storage systanfldsh memories that both communication and storage, with the latter two in-
that enables sensor applications to exploit storage ressim a multitude of curring roughly equal costs. However, the emergence of a
ways. Capsule employs a hardware abstraction layer thes i vagaries ~ new generation of NAND flash storage has significantly al-
of flash memories for the application and supports enerdiyaaed imple- tered this trade-off, with a recent study showing that flash
mentations of commonly used storage objects such as stréifmsarrays, storage is noviwo orders of magnitude cheaptvan com-
queues and lists. Further, Capsule supports checkpoiatidgollback of munication and comparable in cost to computation [11]. This
object states to tolerate software faults in sensor agjslits running on observation challenges conventional wisdom and argues for

inexpensive, unreliable hardware. Our experiments detraiesthat Cap- redesigning systems and applications to exploit locabster
sule provides platform-independence, greater functiynahore tunability, and computation whenever possible in order to reduce ex-
and greater energy-efficiency than existing sensor stasafygions, while pensive communication.

operating even within the memory constraints of the MicazeM@®ur ex- While the case for in-network storage has strengthened
periments not only demonstrate the energy and memoryesffigi of 1/0 with the emergence of high-capacity energy-efficient NAND
operations in Capsule but also shows that Capsule consesethan 15% flash memories, existing storage systems built for flash de-
of the total energy cost in a typical sensor application. vices (see Table 1) have a number of drawbacks:

. . . Mismatch between storage abstraction and application
Categories and Subject Descriptors needs:Many flash-based storage systems, such as YAFFS,
D.4.2 [Software]: Operating Systems Storage Manage- YAFFS2 [25], Matchbox [5] and ELF [3], provide a file sys-
ment Secondary storage; D.2.130ftware]: Software En- tem abstraction to the application. While a file-based ab-
gineering Reusable Software Reusable libraries straction is useful in many scenarios, it is a poor fit for han-

dling the varied needs of sensor applications. For instamce
General Terms 9 Or app . nst
i)) common use of local storage is to store a time series of sen-
design, performance, experimentation sor observations and maintain a index on these readings to
K d support queries. A data stream abstraction—an append-only
eywords ; : .
flash fici bi store of time series data—and hash-based index strucasres,
st;to(r%gedsystem, ash memaory, el?ef,rlgy efficiency, objects, yronosed in MicroHash [27] are better suited for these needs
embedded systems, sensor network, file system However, even supporting only this abstraction is reswect
since it does not enable flash to be used for other purposes
such as for “live” application data storage, calibratidoiés,
packet queues for radio transmission, hibernation, ete. In
stead, we argue that the storage substrate should support a
“rich” object storage abstraction with the ability to creat
Permission to make digital or hard copies of all or part of thiork for personal or store and retrieve data objects of various types such as files
classroom use is granted without fee provided that copesarmade or distributed . . K
for profit or commercial advantage and that copies bear titismand the full citation streams, lists, arrays, queues, etc. This will enable senso
onrthe first page. To copy s;therwis?, to repu;/lish, FO postenvess or to redistribute applications to exploit flash storage in a multitude of ways.
to lists, requires prior specific permission and/or a fee. H H
SenSys'06November 1-3, 2006, Boulder, Colorado, USA. Supportlng Use as a Backmg StoreCu_rrent flash-
Copyright 2006 ACM 1-59593-343-3/06/0011 ...$5.00 based storage systems use flash as a persistent data storage

Table 1. Comparison of Capsule to related efforts.

Storage Energy Memory Wear Checkpointing | Abstraction Usage Models
Devices Optimized Optimized Leveling
Matchbox NOR No Yes No No Filesystem File storage; Calibration Tables
MicroHash MMC Yes No Yes No Stream/Index | Stream Storage and Indexing
ELF NOR No Yes Yes No Filesystem Same as Matchbox
YAFFS NAND No No Yes No Filesystem Portable devices
Capsule NAND, Yes Yes Yes Yes Object Data Storage and Indexing; Packet
NOR Queues; Temporary Arrays

medium. However, memory is often a scarce commodity on for instance, data-centric indexing using indices, terapor
small sensor platforms, with Telos and Mica motes contain- buffers using arrays, buffering of outgoing network pasket
ing 10KB and 4KB of RAM, respectively. With empirical using queues and storing time-series sensor observation us
studies showing the energy cost of accessing flash approaching streams. Furthermore, the supported objects can also be
ing that of RAM, it is now possible for applications to use used by applications to store live data and use flash as an
higher-capacity flash for storing live application data and extension of RAM.
manipulating it in an energy efficient manner. For instance, Energy-efficient and memory-efficient desigihile tra-
tasks can exploit flash as a form of backing store to store ditional storage systems are optimized for throughput and
large data structures, intermediate results for data psing latency, Capsule is explicitly designed for energy- and
tasks, etc. Itis also feasible to implement local data gece memory-constrained platforms. Capsule achieves a com-
ing algorithms that manipulate data sets larger than thee siz bination of very high energy-efficiency and a low memory
of RAM. Such use of flash as a backing store also argues forfootprint using three techniques: (a) a log-structuredgies
supporting a richer storage abstraction than the tradition along with write caching for efficiency, (b) optimizing the o
file abstraction. ganization of storage objects to the type of access methods,
Optimizing for Energy and Memory ConstraintSnergy and (c) efficient memory compaction techniques for objects.
efficiency and the small amount of available memory are key While its log-structured design makes Capsule easy to sup-
constraints of tetherless sensor platforms — consequémly port on virtually any storage media, this paper focuses on
storage subsystem for sensor platforms must optimize bothexploiting the energy efficiency of NAND flash memories.
constrain.ts.. In contrast, t(aditionally storage systeimgeh _ Support for CompactionA unique aspect of Capsule is
been opt|m|zed_ for bandwidth and access latency. Even injtg support for compaction of data when storage resources
energy-aware file systems such as BlueFS [14], the targetare limited in comparison with the storage needs of an appli-
energy efficiency is far less than the requirement of long- cation. Each object in Capsule supports a compaction proce-
lived sensor platforms. Among existing approaches dedigne dure that moves data to reclaim space in flash.
specifically for sensor devices, only MicroHash [27] makes pandjing Failures using CheckpointingSensor devices
claims about energy-efficiency. However, MicroHash is de- 4re notoriously prone to failures due to software bugs, sys-
signed specifically for stream storage and indexing, rather o crashes, as well as hardware faults due to harsh deploy-
than as a general-purpose storage system. Further, nong,ent conditions. Capsule simplifies failure recovery in-sen
of these systems is explicitly designed for platforms with ¢, applications by supporting checkpoints and rollbadk—i

scarce memory. In fact, it is currently difficult to use ex- royides energy-efficient support for checkpointing thzeest
isting NAND-flash based file systems such as YAFFS [25] ot storage objects and the ability to rollback to a previous
on memory-constrained sensor platforms due to their |argecheckpoint in case of a software fault or a crash.

RAM foot-print. o Implementation and EvaluatioWe have augmented the
1.1 Research Contributions Mica2 Motes with a custom-built board that allows us to ex-
In this paper we propos€apsule an energy-efficient perimentwith NAND flash memories. We have implemented
flash-based storage substrate for sensor platforms that ove Capsule in TinyOS running on the Mica2 platform with an
comes the above drawbacks. The design and implementatioroption to use either the NOR flash memory on the Mica2 or
of Capsule has led to the following contributions: our custom NAND flash board. We perform a detailed ex-
Object-based abstractionCapsule provides the abstrac- perimental evaluation of Capsule to demonstrate its energy
tion of typed storage objects to applications; supported ob efficiency. For instance, writing 64 bytes of data to a Stream
ject types include streams, indexes, stacks and queues. Aobject consumes 0.028mJ of energy while reading the same
novel aspect of Capsule is that it allows composition of data consumes 0.043mJ. The compaction of a Stream hold-
objects—for instance, a stream and index object can be com-ing 128KB of data consumes 48.9mJ energy and takes 3.2
posed to construct a sensor database, while a file objectseconds. In comparison, transmitting a 64 byte packet using
can be composed using buffers and a multi-level index ob- the Mica2 CC1000 radio at 1% duty cycling consumes 40mJ
ject. In addition to allowing reads and writes, objects ex- and takes 1.1 seconds. We also show that in a representative
pose a data structure-like interface, allowing applicaito application involving regular light sensing, a large compo
easily manipulate them. Capsule also includes a flash ab-nent of archival storage and periodic summary transmission
straction layer that uses a log-structured design to hide th Capsule consumes less than 15% of the total energy cost. We
low-level details of flash hardware from applications. Stor compared our file system implementation against Matchbox
ing objects on flash enables flexible use of storage resqurcesand concluded that Capsule provides useful additional fea-

Write Read

tures with a better overall energy profile and performance

NAND Flash Energy Cost Fixed cost 13.24] 1.073J
than Matchbox. _ _ _ _ Cost per-byte | 0.02070 | 0.0327J
The rest of this paper first provides an overview of flash | NAND Flash Latency (F:ixed cosg i3583u§ i27u§1

. . B : _ ost per-byte .530us .761us
ha_rdware in Sectu_)n 2, fol_lowed by the design and |mpleme_n NAND Flash ¥ CPU Ensigy Cos{ Fixed cost 21540 2070
tation of Capsule in Sections 3-6. We present our evaluation Cost per-byte | 0.09670 | 0.1050

in Section 7, followed by related work and conclusions in | NAND Flash + CPU Latency Fixedcost | 274us 69us

Sections 8 and 9 Cost per-byte| 1.577us 1.759us
) .. Table 2. Cost of flash operations

2 Flash Memory Characteristics

We present a brief overview of NAND flash hardware, __
focusing on the constraints that it imposes on storagersyste i P/ cations
design and their read and write characteristics. @U Calbration

. . Processing
2.1 Flash Memory Restrictions Sensor 03 | (Dobugaing /
Flash chips have emerged as the storage technology of —

\ I
choice for numerous consumer devices as well as sensor plat- J’ S‘r\rxaam*—Indéﬁ Py
forms. Their low energy consumption, ultra-low idle cuttsen Stack Queue”™. Index 4 File || Check
a_md high capacity mgke them an attractive choice for long- Y-..._Cbject Stbrage Liyer peit
lived sensor applications. T v
A key constraint of flash devices is that writes are one- Log-structured
time — once written, a memory location must be reset or Flash Abstraction Layer

erasedbefore it may be written again. Erase operations are
relatively slow and expensive and must be performed in gran-
ularity of an erase block. While the erase block is same as
a page in some devices, it can span multiple pages in newer
devices, thereby complicating data management.

While NAND memories impose stringent constraints, .
they are also the most energy-efficient storage solution for Figure 1. Object Storage architecture
sensor devices[11]. The number of non-overlapping writes

allowed between erases to each page on the device are lim- . . o
ited, and often between 1 and 4. Larger page size NAND enabled, the cost of clocking data in/out of the flash chip is

memory devices often also require writes within an erase /In€arly dependent on the size of data being operated upon.
block to be sequential. The amount of RAM available on 'NOte thatthe cost of reading or writimgpages is1times the
most sensor devices may make working with these devicesCOSt of reading or writing a single page since each page is
difficult. Popular sensor devices have RAM sizes ranging 2ddressed separately. ,

from 4KB on the Mica2 platform [26] through 10K on the Based on our measurements, we find that the energy cost
TelosB [17]. In contrast to this, the size of available flash ©f Writing (W(d)) and readingR(d)) d bytes of data to and
devices (upto 2GB) is five orders of magnitude larger illus- Tom flash respectively are:

trating the disparity between primary and secondary storag W(d) = 2454+d-0.0962uJ (1)

2.2 NAND Flash Read/Write Characteristics R(d) = 4.07+d-0.1054)
Since we are interested in designing an energy-efficient N T

storage system, in this section we describe a simple model , The above numbers have significant implications on the

that captures the energy cost of the read and write opegation d€sign of the storage system. Of particular importance is

on a NAND flash. While the measurements presented herethe observation that the fixed energy cost is 13 times greater
are specific to the NAND flash, the model is applicable to for writes than reads, whereas the cost per additional byte i
both NOR and NAND flash memories. almost the same for both writes and reads. These results are

Table 2 shows both the device and system-level energyat. the core of the read and write caching techniques that we
and latency costs involved with the read and write operation” Will use in Capsule. _
of a Toshiba TC58DVG02A1FT00 1Gb (128 MB) NAND 3 Object Storage Architecture
flash[22] board attached to a Mica2 mote using an add-on Capsule employs a three layer architecture consisting of a
board fabricated by us (discussed in detail in Section 6). We flash abstraction layer (FAL), an object layer, and an applic
find that the energy cost of both the storage subsystem andion layer (see Figure 1). The FAL hides the low-level flash
the entire mote to be a linear function of the number of bytes hardware details from the rest of the object store. Thisrlaye
read from flash. Much like the seek overhead in magnetic comprises a low-level device driver that interfaces witéa th
disks, there is a fixed cost of accessing a page, and then a pehardware. The FAL addresses important design decisions
byte overhead associated with each additional byte writtenthat highlight the energy and memory-optimized nature of
to (or read from) the page. Unlike disks though, accessing Capsule. To deal with the memory limitations of sensor plat-
adjacent pages does not impact the fixed cost. The fixed cosforms, the FAL offers a buffered log-based desige, ob-
corresponds to the time during which an address is clockedjects chunks are written in an interleaved append-only man-
in and the flash read or write operation is enabled. Oncener. The FAL also permits direct access to flash storage via

NOR
Flash

NAND flash ~ NAND SD Card

Flash storage devices

raw reads and writes to support checkpointing. The FAL is |

responsible for performing error detection and corredkion

flash memories. It supports storage space reclamation where IL Flush when full

previously written blocks are cleaned to remove invalid ob-

ject data and create space for new ones. The cleaner in the Page —_ Stagk 1]

FAL layer triggers compaction on objects in the system when Stack T | Stack 1 | Stack\]

the flash memory usage exceeds a certain threshold. Sec-

tion 4 discusses the FAL in more detail. Log-structured) | | stack] Stack 1
The object layer resides above the FAL. This layer pro- Write order (] valid chunk

vides native and flash-optimized implementation of basic ob

jects such as streams, queues, stack and static indices, and Flash R deleted chunk

composite objects such as stream-index and file. Each of . (dereferenced)

these structures is a named, persistent object in the storag Figure 2. Design of the log-structured FAL.

layer. Applications or higher layers of the stack can trans-

parently create, access, and manipulate any supportect obje

without dealing with the underlying storage device. In this Log structured file systems were first popularized by the

paper, we describe techniques that can be used to optimizevork of Rosenblum and Osterhout (LFS [21]), and have

energy usage of objects based on the access patterns of aince been used in a number of other storage systems. Fig-

plications. Each object in Capsule supports efficient com- ure 2 shows the log-structured organization of the FAL,

paction methods that are invoked when the FAL triggers a which treats the storage device as a “log” — it sequentially

cleaning task. Finally, checkpointing and rollback are-sup traverses the device from start to the end writing data to

ported to enable recovery from software faults or crashes. pages. Once data has been written to a segment of the storage
Applications can use one or more of the objects in Cap- device it cannot be modified, only erased.

sule with simple and intuitive interfaces. We discuss and A log-structured design provides a number of benefits to

evaluate three uses of our system— archival storage, index-our system. First, it avoids energy- and memory-intensive

ing and querying of stored sensor data and batching packet$lock reads and writes, while still working within the hard-

in flash to improve communication efficiency. ware constraints imposed by NAND flash memories. Sec-

: ond, since the constraints of NAND flashes are a super-set

4 The Flash AbStraCt.lon I__ayer (FAL)_ of the constraints of NOR flashes, a log-structured design

The purpose of the FAL is to hide the vagaries of the flash ¢4 pe easily ported to both these types of flash memories
device and present a simple storage interface to the uppetyiin minimal modification to the FAL. This enables Cap-
layers of the storage stack (Figure 1), while optimizing en- gje 1o be supported on existing sensor platforms such as
ergy efficiency and memory use. , Motes that use NOR flash memories as well as on NAND-

We now discuss the log-structured FAL design, followed 551 pased sensor platforms. Third, a log-structured desig
by the storage reclamation support that the FAL provides. gnaples data from different objects to be batched together
We briefly discuss error handling for flash hardware errors pefore writing to flash, thereby enabling better write egerg
and s_peC|aI block allocation mechanlsms for applications optimization. Our design resuits in chukeing stored in a
that wish to bypass the FAL and need direct access to flash. non-contiguous manner; writes incur greater fixed costs tha
4.1 Log-structured Design reads (as shown in Equation 1 and 2), making write opti-

The combination of memory and energy constraints of Mization more critical. Finally, we expect the dominant use
sensors, in addition to flash technology constraints, glace Of storage on sensor devices to be for writing sensor data,
several restrictions on the design of a storage systemt-Exis Which further validates the choice of a write-optimized de-
ing NAND flash-based storage systems for portable devicessign. We now describe how writes, and reads are handled by
have a large memory footprint and are not energy efficient. the log-structured FAL.
On the memory front, some systems such as JFFS [24] main- Data Write: Figure 2 shows the write operation of the
tain an in-memory logical-to-physical block map to simplif ~ FAL. Successive writes are appended to a write buffer, which
erase management, while others such as YAFFS [25] main-is flushed to flash when it becomes full. The size of the
tain an in-memory map of the file blocks — neither techniques write buffer at the FAL is determined by the NAND flash
use memory efficiently. From an energy perspective, theseconstraints and the memory constraints of the device. Thus,
systems allocate the flash in granularity of one or more pagesif a NAND flash with page siz@ has the limitation that each
to each file, and data modification requires a re-write of the page can be written to only times, the buffer size should
allocated page(s) to a new location on flash, resulting ih hig be at IeastE. Larger write buffer sizes are beneficial since
energy consumption. Both these reasons make these systemarites have high fixed cost as shown in Equation 1 — thus,
infeasible for sensor platforms. A log-structured organiz we advocate thathe FAL write buffer should be as large as
tion of the FAL overcomes the memory inefficiency of ex- possiblegiven the memory constraint of the node.
isting systems as it requires the maintenance of minimal in- In our implementation, the FAL adds a small 3 byte
memory state. Additionally, our design permits fine-grdine
selection of the data sizes by the application, which esable 1A chunkdenotes the data written by the FAL, which consists
better application-specific energy optimization. of object data along with some metadata added by the FAL.

Write Buffer

header (2 byte length, and one byte checksum) to each objecpre-determined threshold (default is half the size of flash)

chunk that is passed down from the object layer before stor-exceeded, the Cleaner sends a compaction event to the ob-

ing in the write buffer. Typically the buffer is flushed to flas jects wired to the compaction interface.

when full, but it can also be force-flushed by the application Each Capsule object implements ttmmpactioninterface

After the buffer has been written to flash, the FAL moves the (see Appendix A), supporting@npact procedure that tra-

current write pointer forward to the next write location. verses and reads all valid data (Figure 2) and re-writes it to
Data Read: Upon receiving a read request, the FAL reads the current write frontier on flash. Once all the wired olgect

the bytes corresponding to the requested object chunk fromhave performed compaction, the FAL marks the older blocks

flash. Our custom driver for the NAND flash allows reading for deletion. These blocks are erased only when the rest of

data using an efficient single-phase read mechanism. As thethe flash fills — this retains even the low-priority data aglon

header bytes are being clocked in from flash, the FAL pro- as possible.

cesses the header to determine the length of the objectdata i .

the chunk. The read operation is terminated after the headerA"3 Error Han_dllng) _

and data bytes have been read. .F_Iash memory is prone to single-bit errors, and the .prob-
The FAL does not use read buffering, and read opera- ab|llty of errors occurring on NAI_\ID flash is substan.ually

tions are performed when requested. While batching readshigher than NOR. The FAL provides support for a simple

is cheaper than individual ones, we see from Equation 2 thatchecksum for each chunk. This checksum enables the FAL

the constant cost of performing a read operation is low, aenc and higher layers to check for errors when reading a chunk.

the energy savings from batching reads is not significant. In In addition, the FAL uses a single-error-correction double

addition, a particular object's chunks are likely to be inte ~ €rror-detection (SECDED) algorithm to generate codes at

leaved with other objects as shown in Figure 2 due to the the page level. If the chunk checksum cannot be verified,
log-structured design, making batching difficult. the entire page is read into memory, and the error correction

4.2 Memory Reclamation operation can be performed using the SECDED code. In ex-
.Since flash memory is limited, the FAL handles storage tremely memory limited sensor platforms or on NOR flashes,

space exhaustion by deleting data. One option is to delete th error correction can be tlarneddogf fsflnce 'é necessitates a”h

earliest data written to flash and let the storage objectdlban Cﬁt'ng aﬂ extra page-5|tz)e reagd butter an C(;ur expener;x:el a
any failures arising due to non-existent data when trying to S'OWN these errors to be rare in practice. Our current imple-
follow valid pointers referring to this section of the fladh. mentation supports the chunk-level checksums, and includ-

all the data in the section of flash to be deleted is invalid and Ic?ugr ?Stﬂ?grtgr:sthe the page-level error correction is part o
unreferenced, then no issues will arise from erasing this pa P '
of the flash. However, this approach is unsatisfactory from 4.4 Block Allocation

the perspective of storage objects storinigh priority data The FAL also offers a raw read and write interface that by-
such as long-term summaries of the sensor data, history ofpasses the log-structured component and accesses the flash
detected events or calibration tables. directly. The FAL designates a part of the flash (a static

Log-structured file systems emplogkeanertask [12,21] group of erase blocks) to special objects or applicatioas th
to reclaim memory, and a multitude of techniques have beenwant direct access to flash. Such a facility is necessary for
proposed for performing cleaning. Cleaning techniques pro root directory management performed by the Checkpoint
posed for disks such as hole-plugging [23] are not feasible component (discussed in Section 5.4), which is used for stor
on flash memories that lack in-place modification capabil- ing critical data immediately that needs to be easily lotate
ity. Cleaning in Capsule is based on three design principles and should remain persistent across system failures. An-
Firstly, the FAL does not actually perform the cleaning but other component that needs direct flash access is network
only keeps track ofvhenthe cleaning is required. At this re-programmingé€.g. Deluge [7]) — to re-program a Mote,
point the FAL will inform each storage object, and each is the network re-programming module needs to store new code

responsible for its own cleaning. Secondly, we adopt a de- contiguously in flash, without the FAL headers.
sign that pushes the time at which cleaning is performed to

be as late as possible. Cleaning involves data compaction® Object Storage Layer
which involves reading the current valid data and re-wgitin The object layer resides above the FAL and supports ef-
it to the current write frontier, freeing the earlier blocks ficient creation and manipulation of a variety of storage ob-
for erasing. All these operations are expensive energg-wis jects (see Figure 1). In this section, we discuss key coscept
and should be performed only when absolutely necessary.behind the design of Capsule objects. First, we provide a
Thirdly, we choose simple cleaning policies rather than so- taxonomy of sensor applications and the type of objects that
phisticated ones that have been considered in log-stedttur would be useful to them — this guides the choice of objects
file systems due to the resource-constrained and memory-+that we support in our system. Second, we describe the four
limited nature of sensor devices. basic storage objects we suppostack queue streamand

The cleaneris a part of the FAL, and exposes a com- a static-index which form the first-order objects in our sys-
paction interface to which objects holding high prioritt@a tem. For each object, we describe how they are created, the
are wired at compile time. The FAL continually tracks the access methods that they support and how they can be com-
percentage of flash that has been filled and uses this meapacted efficiently. Third, we describe how these basic abjec
sure to decide when to trigger the cleaner. Once the certaincan be composed into a number of useful composite objects

Application Data Type Storage object Object Name | Operation Energy Cost
Archival Storage Raw Sensor Data] Stream Stack Push 1 chunk write
Archival Storage and Querying | Index Stream-Index Pop T chunkread
Signal Processing or Aggregatioh Temporary array | Index Compaction N header reads, chunk reads
Network Routing Packet Buffer Queue/Stack and chunk writes +} chunk
Debugging logs Time-series logs | Stream-Index reads and writes
Calibration Tables File Queue Enqueue 1 chunk write
Table 3. Taxonomy of applications and storage objects Dequeue 'C\lmlmﬁhr:glé header reads +
Compaction Same as Stack
Stream Append 1 chunk write
: ; : : Pointer Seek 0
such as dile and anstream-indexobject. Finally, we de- el o SRRk Feadereats
scribe how checkpointing and rollback is supported in our Next Traversal N-I chunk header reads +
system to recover from failures. chunk read
) Previous Traversal| 1 chunk read
5.1 Taxonomy of Storage Objects - Compacton Sarms 25 Siack
: : H ndex et chunk write
In thl$ septlon, we §urvey commo_n uses Of storage In sen- Get Hchunkread
sor applications that inform the choice of objects suppbrte Compaction 1 chunk reads and writes
by Capsule (shown in Table 3). Table 4. Analysis of energy consumption of storage objects. Heri

A number of c!a_lta-centric app!ications and res.earCh efforts = number of elements in the storage objectH is the number of levels
need the capability to perform in-network archival storage iy the Index, and k = number of pointers batched in a chunk for com-
indexing and querying of stored data. Sensor data is typi- paction or indexing.
cally stored as time series streams that are indexed by time-
stamp [9], value [27], or event [20]. Such applications need
to efficiently storedata streamsind maintairindices then passes the header and the data to FAL, which copies it

A second class of applications that can take advantage ofto its write buffer. The location of the stored element isthe
efficient storage are those that need to use flash memory aseturned to the stack object, which updates its in-memory
a backing store to perform memory-intensive computation. pointer to reference the written element as the last element
Many data-rich sensing applications such as vehicle moni- stored. Popping data from the stack results in reading the el
toring, acoustic sensing, or seismic sensing need to uge lar ement pointed to by the current in-memory pointer, and then
arraysto perform sophisticated signal processing operations updating the pointer to the value of the header of the ele-
such as FFT, wavelet transforms, etc. ment. When the stack object has been used and is no longer

A number of system components can also benefit from required, it can be invalidated, and the storage spacetthat i
efficient storage. The radio stack in TinyOS [8] does not consumes can be reclaimed by the cleaner.
currently support packet queuing due to memory limitations Stack compaction: Compaction of the stack object in-
Queueobjects could be used to buffer packets on flash in an volves accessing each object from first to last and re-vgritin
energy-efficient manner. Debugging distributed sensors isthem to the head of the log. Since flash memory only allows
often a necessary aspect of sensor network deployments, anackward linking, each read will involve traversal through

requires efficient methods for storing debugglngs [18] the entire stack until the next inserted element before-read
and retrieving these logs. Other uses of the object store in-ing this element and writing it to the head of the log. To
clude support for persistent storage of calibratwmilescor- optimize the compaction cost, we use a two-step scheme as

responding to different sensors on the node. Finally, tleere shown in Figure 3. First, the stack is traversed from head
a need to support file systemabstraction to easily migrate to tail (last inserted to first inserted element) at ddsR(h)
applications that have already been built using existimg se (refer Equations 1 and 2), whehl is the number of ele-
sor file systems such as Matchbox. ments in the stack arulis the total header sizég. the sum
Based on the taxonomy of flash memory needs of applica- of FAL and stack headers. The pointers for each of these
tions (Table 3), we identify a core set of basic objects (§tac elements are written into a temporary stack of pointers, per
Queue, Stream, and Index) that are the first-order objects inhaps after batching pointers together in each write incur-
Capsule, and a set of composite objects (Stream-Indey, File ring cost% -W(d), whered is the size of a stack chunk.

that are composed from multiple basic objects. Next, the stack of pointers is traversed (at c§stR(d))
5.2 Basic Storage Objects and each data chunk corresponding to the pointer is now
In this section, we describe the design of basic objects in read and then re-written to the FAL to create the new com-
Capsule and provide a cost analysis of the access methodpacted stack (at codt- (R(d) +W(d))). In the above cost
that they support (summarized in Table 4). We also describeanalysis, we assume that the size of the object chdnk,
the compaction methods that each object provides that cans the same for both stacks. The total cost is, therefore,
be invoked. (N+ %) -(R(d) +W(d)) + N-R(h) as shown in Table 4.
5.2.1 Stack Object 5.2.2 Queues
The stack object represent the simplest of the storage ob- The need to support First-In First-Out (FIFO) semantics
jects. The push operation of the stack accepts data passethakes the implementation of a queue object more complex
by the application, appending an object-level header to thethan the stack since the flash does not allow forward point-
data. The stack header includes a pointer to the location ofing to data. For example, once the first element of the queue
the previously stored element on the flash. The stack objecthas been written, it cannot be modified to point to the sec-

Level 1: 1120 Leve\1:1-10‘ . | ata10 | Data 11| Level2 Level]:QHOO‘
- | o3 p1r2| pt.r1 FAL Write Buffer
> > v
E 2| | iz
- Create new -
Stack Pointer Stack Compacted Stack 2 ‘ ‘ 10 ‘ ‘ 1. ‘ 91 | 92 H ‘100‘ Level 1

L]
Figure 3. Compaction of the Stack object Level0

Figure 4. Organization of a Static Index object on flash.

ond element of the queue which will be written at a later

point in time. Therefore, our queue implementation uses re- } .

verse pointers instead of forward pointers, instead of the ~ index corresponding to thieey. It then writes thevalueto
first element of the queue pointing to the second, the sec-FAL and updates the first level of the index with the location
ond points to the first, and so on. This makes the queue or-Of the writtenvalue If the nextset or get operation oper-
ganization inherently Last-In First-Out (LIFO) or that of a ates on the same first level index node, then this index gets
stack. Enqueuing data to this queue does not present a probUPdated in memory. But if the next operation requires some
lem since it is similar to pushing data to the stack. However, Other first level index node, the current page is first flushed
dequeuing requires a complete traversal of the queue fromto flash (if it has been modified) and then the second level
the tail of the queue to the head to locate the element afterindex is updated similarly, and finally the relevant firstdev
the head. Thus, each dequeue operation requires rebiding Page loaded into memory. o .
headers before reading the first element in the queue. The Compaction of the index object involves traversing the
compaction procedure for queues is similar to the one thatObjectin a depth-first manner, reading the pointers and writ
we described for stacks. An alternate queue implementationing it to FAL. The cost of the compaction operation is there-

could use the index object, while still providing a queue in- fore the same as the cost of reading the index in a depth-
terface. first manner, and writing the entire index into a new location

523 Stream in flash. If the index hasi levels, and .each index chunk
A stream object is similar to the stack and queue objects can storek pointers, the total number of index chunks in the

but supports a wider set of access methods. Storing data intdree isk<*. Compaction involves reading and writing every

a stream object involves a backward-pointer chaining it chynk in the index, and has ¢ Hjll(R(d) FW(d)).

gueue. Streams can be traversed in two ways — either last to . :

first like a stack or first to last like a queue. Due to the log- 2-3 Composite Storage Objects

structured nature of the FAL, a last-to-first access meteodi ~ The object store permits the construction of composite

considerably more energy efficient. The stream casem storage objects from the basic set of objects that we de-

ed to any point within it and traversed either backward or scribed. The creation and access methods for the compos-

forward from there, making it easy to navigate through it. ite objects are simple extensions of the primary objects, bu

Compacting a stream involves exactly the same process agompaction is more complex and cannot be achieved by per-

that for compacting a stack, yielding a similar cost. forming compaction on the individual objects. Object com-

5.2.4 Static-sized Index and Array posi;ion is cu_rrently_ done _“by-hand” in Capsule; making
Our index object permits data to be stored using nesting of objects S|mpler is part _of our futur_e plans. We

(keyopaque dataformat, and supports a fixed rangekaly present two composite storage objects. The first composite

values that is fixed at compilation time. Since this object OPJect that we describe issiream-indesobject that can be

provides an access pattern similar to that of an array, we use/S€d for indexing a stored stream. For instance, an appli-

both interchangeably in this paper. Figure 4 shows the struc Cation can use a stream-index to store sensed data and tag
ture of the index object — it is hierarchical and the number segments of the stored stream where events were detected.

of levels in the hierarchy is static. We do not support dy- S€cond, we describe our implementation of a file system in
namically growing indices since TinyOS does not currently Capsule using éle composite storage object that emulates
support a dynamic memory management scheme, making ithe behawor of a regular file. This object facilitates pagti
infeasible to dynamically allocate and deallocate buffers applications that have already been developed for the Match
the various levels of the index. box filesystem [5] to Capsule.

Figure 4 shows the construction of a two-level index. 5.3.1 Stream-Index
Level zero of the implementation is the actoglaque data The stream-index object encapsulates a stream and an in-
that has been stored. Level one of the index points to the datadex object and offers a powerful interface (see Appendix A)
and level 2 of the index aggregates the first level nodes of theto the application. The application can directly archie it
index. Each level of the index has a single buffer that all data to this object by using ttaeld method, which saves the
nodes at that level share. For example,sbie operation on data to the stream. When an event is detected in the sensed
the index looks up and then loads the appropriate first level data, it can be tagged using thet Tag method, which stores

File Object with software bugs, hardware glitches, energy depletind, a
‘ 1-10 ‘11-20‘ ‘91-100‘ other myriad faults common in unreliable sensor nodes.
/ \ The inability of flash to over-write data once written ac-
‘ 1 ‘ 5 ‘ ‘ 10 ‘ ‘ 11 D tually simplifies the implementation of checkpointing. The
internal pointers of an objece(g, the next pointer for a
¥ : stack or a queue) cannot be modified once they are writ-
$ $ ten to flash. The in-memory state of a storage object (which
_ typically points to its written data on flash) becomes suffi-
Figure 5. Design of a filesystem using Capsule. cient to provide a consisteshapshotof the object at any

instant. The cumulative state of all active storage objects

provides a shapshot of the system at any given instant. We
the pointer to the stored stream data in the nextkesgn the implement checkpointing support using a spechackpoint
index object. This interface can also be trivially modified t component (see Appendix A), which exposes two operations
tag ranges of sensor readings instead of a single readimeg. Th— checkpoi nt andr ol | back. Thecheckpoint operation
seek method allows the application to seek into the stream captures the snapshot of the system and stores it to flash.
based on a given tag, and thext andpr evi ous methods This saved snapshot can be used to revert to a consistent stat
allow the application to traverse data in either direction. in the instance of a system failure, or object corruption.
5.3.2 File System The Capsule storage objects implemestai al i ze in-

Capsule can be used to construct a simple filesystem Withterface (seg Appendix A). Thg c_:heckpomt component calls
the help of the index object discussed earlier — Figure 5 the checkpoi nt method on_th|s interface when it needs to
shows our design and we provide a brief overview of our im- take a snapshot. Thls_prOV|de§ e"%Ch Capsule object a.sha.\red
plementation. Our file system is composed of two objects — MeMOrY buffer where it stores its in-memory state, which is
the file object is used to perform operations on a single file 11N wgltterllto_ flaflls,h.hThe;;nhe(ik(g)_0|ntt cor?hpc;n_f[ant uses a few
and a singletofile-systenobject that stores the metadata as- era?e_tl og S n 'asthaSFAI?OS |;_ec 04“21 aOI mt?]nag;:s K
sociated with each file. The file system object is responsible explicitly, bypassing the (Section 4.4). Once he chec
for assigning each file a uniquite-id and mapping the file- point data has been written to flash, a new entry is made to

name to its associated file-id. Each file-id maps to a uniquethe root directory pointing to the created checkpoint.

file object that is actually a static index storing the coteen In ttrr]]e e"elr.“ ct)f no?ﬁ rest?rc;_or ?n explicit rqllbgik]Ealclj
of the file in separate fixed sizdie-blocks with the index oM 1€ application, e root directory 1S examined 1o fin

pointing to the location of each file-block on flash. The ob- tfgetmcglt?rct:acent chelclip.om(tj, Wh'c?h's uhsedkto rets(tjorte sysdt(irr]n
ject also maintains the current length of the file (in bytes) St&t€: S are maintained over the checkpoint data and the

and any working read/write pointers that the file may have. 00t directory entries to prevent corrupt checkpoints ¢pos
Additionally, it maintains two file-block sized buffers, en bly caused by the node crashing while a checkpoint is being

used as a read and the other as a write cache. When per(_:reated) from being recovered. The root directory entry pro

forming a data write, the data is copied into the write cache €S @ pointer to the saved checkpoint state. The checkpoin
that is flushed when filled. Similarly, data is first read into component uses thel | back method in the serialize inter-

the read cache before being returned to the application. Or-face to replace the in-memory state of linked objects using
ganizing the file blocks using the index object allows us to the same shared bLfffEf mechanisneaackpoi nt .
supportrandom acces$o each block. We use this feature 6 Implementation
to modify previously written data. This is achieved by first Implementing Capsufepresented a number of unique
loading the appropriate file-block from flash, modifying the challenges. TinyOS is event-driven and this necessitated
relevant bytes and then writing the block to a new location writing Capsule as a state machine using the split-phase
and updating the index accordingly. The previous block is paradigm. The checkpointing component required careful
now automatically de-referenced. timing and co-ordination between components for its cor-
Our implementation supports both reads and writes simul- rect operation. We went through multiple iterations of Cap-
taneously to the file. Multiple files can be open and operated sule design to maximize code and object reuse even within
upon at the same time. Our file system takes advantage of theour implementation -e.g, the checkpoint component uses a
checkpoint-rollback capability of Capsule to provide dens stack object to store state information, similar to theastre
tency guarantees. These features are not supported by ELRnd stack compaction methods that also use a stack to hold
and Matchbox, and demonstrate the flexibility of object com- temporary data during compaction (Section 5.2). Another
position within Capsule. Section 7.3.2 provides a compari- major concern was the overall memory foot-print of Capsule.
son of the performance of Capsule and Matchbox. We optimized the Capsule architecture to minimize buffer-
oL ing and maximize code reuse; buffers have only been used
5.4 Checkpointing and Rollback at stages where they have a sufficient impact on the energy
efficiency. A test application that does not use checkpoint-
ing/recovery but uses one instance of each of the following

Capsule also supports capability for checkpointing and
rollback of objects — checkpointing allows the sensor to cap
ture the state of the storage objects, while rollback allows
the sensor to go back to a previously checkpointed state. 2Capsule source code is available htt p: // sensors. cs.
This not only simplifies data management, it also helps deal uness. edu/ pr oj ect s/ capsul e/

10

objects — index, stream, stream-index, stack and queue, re-
quires only 25.4Kb of ROM and 1.6Kb of RAM. Another
application that uses one each of the stack and stream ob-
jects along with checkpointing support, had a foot-print of
16.6Kbin ROM and 1.4Kb in RAM. While the Capsule code
base is approximately 9000 lines of code, the percentage of
the code used by an application depends largely on the num-
ber and type of objects instantiated and the precise Capsule
features used.

Per byte write —+—
Per byte read -

. 0 100 200 300 400 500 600
7 Evaluation Access size (bytes)

In this section, we evaluate the performance of Capsule Figure 6. The amortized energy consumption of the read and write
on the Mica2 platform. While Capsuleworks on the Mica2 operations was measured for different data sizes using the Ma2 and
and Mica2dot NOR flash as well as our custom NAND flash the fabricated Toshiba 128 MB NAND adapter. The figure cleary shows
adapter, the energy efficiency of the NAND flash [11] mo- that the write operation has a high fixed cost involved in comprison to
tivated its use as the primary storage substrate for our ex-the read operation.
periments. However, the experiment comparing the Capsule
and Matchbox file systems is based on the Mica2 NOR flash

(Section 7.3.2), demonstrating Capsule’s portability. bytes to 128 bytes saves 9.4% of the available memory on the
Our evaluation has four parts — first, we benchmark the \jica2, but the per byte write energy consumption increases

performance of FAL including the impact of read and write from 0.144A to 0.314uA, i.e. 118%. Reducing memory

caching. Second, we perform a thorough evaluation of the ¢consumption from 512 bytes to 256 bytes results in memory

performance of different storage objects, including tha-re sayings of 6.3% of the available memory on the Mica2 mote,
tive efficiency of their access methods. We measure the im-pyt at 40% additional energy cost.

pact of access pattern and chunk size on the performance
of memory compaction as well as checkpointing. Third, we
describe interesting trade-offs that emerge in an apjsicat
study that combines the different pieces of our system and
evaluates system performance as a whole. And finally, we) i)
compare the performance of a file system built using Cap- _ Higher Layer Buffer size: In our log-structured design,
sule (Section 5.3.2) with Matchbox. chunks are passed down from the opject layer to FAL and
Experimental Setup: We built a NAND flash adapter for ~ &€ not guaranteed to bg stored contiguously on flash. As a
the Mica2 using the Toshiba TC58DVG02A1FTO00 1Gb (128 result, reads of consecutive chunks need to be performed one

MB) flash [22] for our experiments — it has a page size of 512 ata Fime sinpe consecutive object chu.nks are not necassaril
bytes, an erase block size of 32 pages and permits a maxSPatially adjacent on flash. To amortize the read cost, data

imum of 4 non-overlapping writes within each page. Our buffering needs to be performed_at th(_a object or ?‘Pp"ca“on

measurements involved measuring the current at the sensof2Yer- We aim to find the appropriate size of the higher layer

and flash device power leads, with the help of &1d&nse uffer through this experiment.

resistor and a digital oscilloscope. The mote was powered Figure 6 shows how the size of the chunk impacts the cost
by an external power supply with a supply voltage of 3.3V; of flash reads. Similar to write costs, the per-byte cost of a

energy consumption “in the field” with a partially dischadge ~ read reduces with increasing buffer sizes. The read cost re-
battery may be somewhat lower. duces sharply by 72% as the buffer size increases from 8
7.1 FAL Performance bytes to 64 bytes. However, beyond 64 bytes the per byte

. cost decreases more slowly and larger read buffers have rel-
The choices made at the FAL are fundamental to the en- y g

. e - " atively less impact. For example, increasing the write dquff
ergy usage of.CapsuIe.. We ask two questions in this sectionig. o 128 bytes to 512 bytes results in a gain of @17
How much write buffering ShOUId be performed at the FAL whereas the same increase in read buffer size results in a
'ﬂ!yef'-’ andHow much _buffenng should be performed by a gain of only 0.0244J, i.e. only 14% of the write benefit.
higher layer before writing to FALPo answer these, we vary

write and read buffer sizes and examine the energy consump- _ | 1US, approximately 64 bytes of data buffering at the stor-
tion of the write and read flash operations. Figure 6 shows age object or application layer is sufficient to obtain good

our results, where each point corresponds to the energy con€neray efficiency for flash read operations.

sumed by writing or reading one byte of data amortized over . .
a buffer of that particu|ar size. 7.2 Performance Of Basic Storage ObJeCtS

Impact of FAL Write Buffer Size: For the particular In this section, we first evaluate the energy efficiency of
flash that we use, given the page size of 512 bytes and aeach access method supported by the core Capsule objects.
maximum of 4 writes per page, the minimum write buffer Then, we present some important trade-offs that arise in the
size is 128 bytes (see Section 4). The per-byte write curvechoice of chunk size based on the access pattern of an object,
in Figure 6 shows that write costs reduce significantly fer in using the Index object as a case study. Finally, we measure
creasing write buffering. A reduction in buffer size from%1 the performance of compaction and checkpointing.

Energy consumption (uJ)

0.1

Thus, increased write buffering at the FAL has a consid-
erable impact on reducing the energy consumption of flash
write operations — consequently, the FAL write buffer sdoul
be as large as possible.

tion 5.2.4). We consider four different access patternhis t

100 . . .

study: sequential and random insert, and sequential and ran
80 dom lookup. Our evaluation has two parts. First, we ana-

lytically determine the energy cost for each access pattern
60 Second, we quantify the cost for different combinations of
20 insertion and lookup to identify the best choice of chunk siz

in each case. This study only considers the cost of index-
2 ing, and does not include the cost of storing or accessing the

‘ ‘ opaque datgointed to by the index.

o

o

Stack Queue Stream Index Cost Analysis: We use the following terms for our anal-
Figure 7. Breakdown of energy consumed by the operations sup- _yS'S: thQ size of eac_h index nodedl_,sthe number of pointers
ported by core Capsule storage objects storing 64 bytes of tta The in each '”‘,j_ex node ik, and the.helght of the trge H” The
operations resulting in writes to FAL consume substantia¥ less energy cost of wr|t|n_gd bytes of data 'W_(d) and reading 'SR(d)
than the read operations. as per Equations 1 and 2 respectively.

Insertion into the Index object has two steps — fikdt,
index chunks (root to leaf) are read from flash to memory,

7.2.1 Energy consumption of Object operations then insertion results ikl index writes from the leaf up the
Table 4 shows an analysis of the energy consumption of root as we described in Section 5.2.4. Index lookup opera-

the access methods supported by the core objects. In this extionS need to read in thie index chunks corresponding to

periment, we benchmark the energy consumption of methods®2¢h 1evel of the tree before retrieving the stored data.
Sequential Inserttf data is inserted in sequence, nodes of

on different objects for a specific choice of operating param

eters. For the Stack, Queue, and Stream objects, we assumi€ index tree can be cached and are written only when the
that there are 5 elements stored in the objact(5), each next element crosses the range supported by the nod(_a—th|s
of size 64 bytesd — 64). The Index object is assumed to reduces the number of re-writes. Since one chunk write and

have a two-level index where the second level is cached in Chunk read is performed for each of thelevels for every
memory, and the first-level is read from and written to flash K €léments, the amortized cost associated with inserting an
as discussed in Section 5.2.4. We assume that each nod&€ment sequenna.llly isy - (W(d) + R(d)). _

of the index structure can hold 5 pointeks< 5) to the next Random Insertlf data is inserted randomly, each write
lower level. In addition to this, the FAL uses a 512 byte write '€Sults in a read followed by write of an index chunk at each
buffer. Our micro-benchmarks are specific to this st o level of the index. The cost of is1 - (W(d) +R(d)).

andk parameters. Sequential Lookup:Similar to writes, sequential reads

Figure 7 provides a breakdown of the energy consumption can take advantage of index node caching and prove to

of individual methods supported by Capsule objects. The P& lg?(%apef — the amortized cost of sequential lookup is:

. o W
energy cost of theush operation supported by the Stack is Random LookupRandom reads force each level of the

34% lower than thapop, as thepush is buffered in FAL . S
while the pop results in a read to flash. Thaqueue op- index to be loaded afresh for each lookup operation, inereas
' ing the lookup cost t&d - R(d).

eration on the Queue object has the same cost agutte ; N -
operation as both of them effectively add a new element to . Measurement-driven Analysis: Figure 8 quantifies the
the front of the list. These operations are all independent o indeX insertion and lookup costs for varying chunk sizes for
N. The firstdequeue(1) operation corresponds to removing & index of heighH = 2, based on our cost analysis and
one element from the Queue and is 3.7 times more expensivddex measurements. In this experiment, we fix the number
thanenqueue, since it results in additional pointer traversal of elements m_serted into t_he index at 32768.(N = 32768)
upto the start of the list (Section 5.2.2). However, the opst ~ ad vary the size of each index nadieand thus the number
the fifth dequeuedequeue(5) is the same as that of a stack ©f Pointersk, in each index node. We now discuss how to
pop, showing the dependencedetjueue cost onN. choose chunk sizes to suit the insert an_d Iookup_pattern.

The Stream object combines traversal methods of both _andom Insert - Random Lookufhis scenario corre-
the Stack and the Queue — thgpend operation maps to a sponds to a value-basedl index, Wherg elements are inserted
push, pr evi ous operation maps toop and thenext to the ra}ndomly and the lookup is for.a speqﬂc value. I_:orthls case,
dequeue. The cost exhibited by the Stream in Figure 7 con- Figure 8 shows us that the optimal size of each index node is

firm this. Theget operation supported by the Index object the smaelllesthpossible;]— ir) tthis_cisg ?4 l?ytes or 15 elements
turns out to be 52% more expensive thandbe method and pe:qno de’ W | ere eacS pointer IISL {eshc_)ng. 0 will
independent okl — again, this is due to write-buffering being andom Insert - Sequential Lookuphis scenario wi

performed by FAL for theet . Our measurements verify the arise when the time-series data is stored in a value-based in
cost analysis presented in 'fable 4 dex and the entire index is read sequentially to build, say, a

probability distribution of the data. The choice of indexdeo
7.2.2 Impact of Access Pattern and Chunk Size size depends on number of inserts as well as the number of
The access pattern of an object has considerable impactookups in this case — the insert is optimal at 64 bytes while
on the energy consumed for object creation and lookup, andthe lookup become more efficient after 256 bytes. Small
we evaluate this in the context of the Index object (referSec number of lookups in comparison with inserts mean that we

300

=))
3 Sequential insert —+— e % Stream creation —+—
= 10000 Random insert - = a0l Stream compaction -
s Sequential Lookup % c Index creation %
= Random Lookup & g Index compaction &
Q. 1000 + I o 200 g %
E T B i} 1S
> x B 7 180 [
c 100 ¢ c T T — X
8 S 100} .
o (&) *
< 10 Ko K * S 50 | Ty *
S
Q Q
c c
i} 1 : : : ; ; m 0 : : : : :
0 100 200 300 400 500 600 0 50 100 150 200 250 300
Size of index node (bytes) Chunk Data Size (bytes)
Figure 8. Energy consumption of the index for varying insertion and Figure 9. The energy consumed by compaction not only depends on
lookup operational patterns, varying index node sizes — thee are as- the amount of data, but also on the size of each data chunk of &object.
sume no associated data. Sequential insert and lookup arelsstantially The energy consumed by an Index and a Stream object holding 8KB
more energy efficient than their random counterparts. of data is shown here for varying chunk data sizes. Larger olgct-level

buffering requires fewer number of chunks to be read and writen —the
compaction costs more than double when changing bufferingtsategy
should optimize the insert, while greater number of lookups from 32 bytes to 256 bytes.
indicate that the lookup should be optimized.
Sequential Insert - Sequential Lookupn index main-

taining time series data would store and later access tlae datthe range of compaction costs. We first perform a measure-
sequentially. Larger chunk sizes result in better enerdgly op ment of the energy consumption of the compaction process
mization, however, a buffer size of 256 bytes is sufficient as followed by a measurement of the time taken.
both insert qnd lookup costs are close to .thelr Iowgst \{alue. Energy consumption: Figure 9 shows the energy cost of
~ Sequential Insert - Random Lookufin index maintain- compaction in comparison to the cost of sequential data in-
ing time-series data would store data sequentially, but tem sertion. We first consider the write and compaction costs
poral queries on past data can result in random lookups. Thefor the Stream object — we observe that increasing chunk
optimal size again depends on the number of inserts andsijze reduces the cost of writing and compacting. The re-
lookups — the insert is optimal at 64 bytes while the lookup duction in write costs is attributed to reduced header over-
become more efficient after 256 bytes. The ratio of the num- head of writing fewer chunks. The reduction in the stream
ber of IOOkUpS to inserts would determine the choice of index Compaction cost is Considerab|y greater_ As the size of data
size (similar to the random insert-sequential lookup case) chunks increase, the number of elements in the stream de-
Our experiments show that smaller index chunk sizes arecreases, which results in fewer pointer reads and writes to
favorable for random insertion and lookup operations since the intermediate stack during the compaction phase. Addi-
smaller sizes lead to lower cost of flash operations. Larger tionally, the efficiency of both read and write operations im
chunk sizes are better for sequential operations, sincg the proves as the data size increases (refer Section 7.1). The
utilize buffering better, resulting in greater in-memorg-u compaction overhead can be reduced considerably by in-
dates and fewer flash operations. creasing the chunk size from 32 to 128 bytes — in fact, the
7.2.3 Memory Reclamation Performance savings equal about three times the cost of writing the orig-
Memory reclamation (Section 42) is triggered using the !nal da.ta. Further increase in Chunk Size I‘eSU|tS in Sma”er
compaction interface (see Appendix A) when the flash fills improvements in compaction performance.
upto a pre-defined threshold. Our current implementation The write and compaction costs for the Index object fol-
uses a simple compaction scheme where the storage objectow a similar overall trend. Interestingly, the write cost f
read all their valid data and re-write it to the current write the Index object is greater than that of the Stream object
frontier on the flash. We select the stream and index objectswhereas the compaction cost of the Stream object is consid-
for this experiment. The compaction procedure and costserably higher than that for the Index object. This is because
for the stack and queue objects are identical to those of thecreating an Index object is more expensive due to the writing
stream object (Table 4). and reading of the level 1 index nodes. The compaction of
In our experimental setup, we trigger compaction when the Index is less expensive than Stream compaction because
128 KB of object data has been written to flash; our goal is Index compaction requires only a depth-first traversal ef th
to find the worst case time taken for compaction. In the caseindex, while Stream compaction requires the creation and
of the Stream object, an intermediate stack is used to main-traversal of the intermediate pointer stack, which reguire
tain ordering of the elements post-compaction, as disdusse additional energy. If the fraction of discarded datd ifor
in Section 5.2.3. For the 2 level Index object (discussed in either the stream or the index, then the cost of compaction
Section 5.2.4), we set the second level of the index to hold will be (1 — f) times the corresponding point in Figure 9.
100 pointers to level 1 index noddg & 100) and each level Latency: Figure 10 shows the latency of the compaction
1 node holds pointers to 50 data bloks € 50). In the ex- operation. This is also an important measure of compaction
periments, we vary the size of the data being stored in eachas no operation can be performed on the object while the ob-
object chunk from 32 bytes to 256 bytes, in order to measure ject is being compacted. We find that in all cases the entire

160.77

Stream compaction —+— 2 150
45 | Index compaction - =
_— < 125
8 2
L Qo
g 4 g 100
g 357 g " 495
o [SIY - 35.85
2 3t 3
Q D
E 25¢ 5 o = .
= Communication Storage Sensing
2 L
15 : ‘ ; ‘ ; Figure 11. Component level breakdown of a Mica2 application usin
0 50 100 150 200 250 300 g p PP 9

the light sensor (MicaSB - MTS 300) and storing 12000 sensoeadings
in a Stream-Index object in batches of 60 readings each. It ab stores
batches of 1200 readings in an Index object and performs a coputa-

tion on this stored data, batching 10 of these results and trasmitting

them (1% duty cycling). The measurements shown are per cycle

Chunk Data size (bytes)
Figure 10. The compaction time of the storage object is linked to both
the amount of data the object holds and the size of each data ahk. The
time taken to compact an Index and a Stream object holding 128B of
data is shown here for different data chunk sizes.

Operation Latency (1s) | Energy consumptiorud))] . . .
Checkpoint | 996 82.5 we highlight how the choice of appropriate object parame-
Eg!‘;’;ﬁ}k o e ters can impact the overall energy consumption. We discuss

an archival storage and indexing application that performs
sensing, storage and communication. Our second experi-
ment performs an empirical comparison between our Cap-
sule file system implementation and Matchbox.

compaction operation executes in less than 5 seconds. This.3.1 Archival Storage and Indexing
can be improved to 2.5 seconds for the Stream and to 2 sec- Sensors are commonly used for archival storage and in-
onds for the Index by increasing the data size to 128 byteS.dexing and this experiment focuses on the energy consump-
This shows us that even while compacting 128K of object tion of Capsule in comparison to the storage, communica-
data, the storage object will be unavailable only for a short tion and sensing sub-systems. Our Mica2 application uses
duration and this can be dealt with easily by providing some the photo sensor on the MicaSB [2] to measure the light in-
minimal application-level buffering. tensity once every second; 60 sensor readings are batched
The energy and latency results of compaction show thatin-memory, and then stored in the stream-index object. This
these operations can be performed efficiently on a small sen-batch is also stored in a separate index object and every 1200
sor platform. We find that a buffer size of 128 bytes provides sensor readings, we access the stored readings performing
a good balance between the memory needs of compactiora simple averaging operation requiring sequential traers
and the energy consumption/latency of the process. of the data stored in this index. The result is stored as a
7.2.4 Checkpointing summary along with a tag indicating the relevant part of the
Capsule supports checkpointing with the help of the spe- stored data stream in the stream-index object. When 10 sum-
cial Checkpoint component that permits three operations: maries accumulate, they are then transmitted together in a
checkpoi nt, rol | back andrest ore. For our experiment, ~ single 20 byte packet to the base-station using the CC1000
we consider a Stream and an Index object and link these to aadio on the Mica2 [26], using BMAC [16] and set to 1%
single Checkpoint component. We then perform each of the duty cycling. We neglect the effects of sleep, wakeup and
operations permitted on the Checkpoint component and meaJacket loss, which in fact would adversely impact the sens-
sure the latency of the operation and the energy consumedng and radio measurements.
by the device — Table 5 presents our results. We see thatthe Figure 11 shows the results of our experiment — a
latency of all the operations is less than 1 ms. The energycomponent-level breakdown of the energy consumption of

Table 5. Energy consumption and latency of performing checkpoint-
ing operations on a Stream and Index object.

consumption of theheckpoi nt operation is approximately
3 times that of a stackush operation or only 2 times that

the storage, communication and sensing sub-systems $or thi
application per cycle. We observe that Capsule consumes

of a pop operation with 64 bytes of data. The energy con- only 14.5% of the total energy consumption, having written

sumed by the est ore operation is a little more than that
of performing apop, and the cost of ol | back is equiva-
lent to the cost of performing pop operation on the stack.

48000 bytes of sensed data and subsequently reading 24000
bytes. The communication subsystem comes in second, con-
suming 20.1% of the total energy to transmit only 20 bytes

These measurements indicate that checkpointing support inof data, with the sensing occupying the remaining 65.4% and

Capsule is extremely low-cost and energy-efficient, altavi

capturing 12000 sensor readings.

Capsule to support data consistency and crash recovery with This demonstrates that using Capsule in sensor applica-

minimal additional overhead.
7.3 Experimental Evaluation

tions is feasible and extremely energy-efficient, whilerper
ting the application to process large datasets.

Having discussed the performance of the basic objects7.3.2 Comparison with Matchbox
provided in Capsule, we evaluate how these objects can be We now compare our implementation of a file system
used by applications and system components. In particular,based on Capsule (Section 5.3.2) with Matchbox[5]. Our

Capsule Matchbox A fundamental difference between the two systems is that
Energy Latency Energy Latency . .
(mJ) (ms) (mJ) (ms) MicroHash uses a page buffer for reads as well as writes, and
Create 179 19.16 1.03 14.16 does not provide the ability to tune the chunk size to the ac-
\(’;’;g‘; Gx10) | 88 | % Lk R cess pattern. This is unlike our system, which can adapt the
Read (80b X 10) 170 18.440 117 16520 choice of the chunk sizes to the insert and lookup patterns,
Total (C+w,0+7) 11.83 1234 12.82 1237 thereby better optimizing energy-efficiency (Section2)2.
Jurme Bancwicth 18.0kbps 11.3kbps Portability: Embedded platform design is an area of con-
ead Bandwidth 54.2kbps 60.4kbps . .
Memory Foot-print | L.5K RAM, 18.7K ROM | 0.9Kb RAM, 20.1K ROM siderable churn, as evident from the plethora of sensor plat
Table 6. Energy consumption and latency of Matchbox and Capsule forms that are being developed and used by research groups.
operations. Storage subsystems for these platforms differ in the type of

flash (NAND or NOR), page size (256b to 4096b), erase

block size (256b to 64KB), bus speeds (SPI or parallel), and
implementation also provides the following additional-fea €nergy consumption. Itis therefore essential to desigma ge
tures: the ability to work with multiple files simultaneoysl eral purpose storage system that can be easily ported to a new
random access to a block in the file, modifying previously platform with a new storage subsystem, while being suffi-
written data, and file consistency guarantees evenin tiiteve ciently flexible to enable developers to take advantagewf ne
of system failure in the middle of a write operation. architectures. We believe Capsule achieves these dua goal

Our experiment was performed on the Mica2 [26], using — it currently works on the Mica2, Mica2dot (both NOR) and

the platform’s Atmel NOR flash. On both file systems, we our custom NAND board; the Telos port is work in progress.
created a new file and wrote 80 bytes of data in each of 10 Functionality: In comparison to the research effort that
consecutive operations (a total of 800 bytes). We then dlose has gone into the design of the radio stack on sensors, there
the file, re-opened it and read the 800 bytes similarly in 10 have been relatively few efforts at building the sensor-stor
consecutive read operations of 80 bytes each. Table 6 show#ge system. As storage becomes a more important part of
the performance of the Capsule file system in comparisonsensor network design, increased attention is needed to ad-
to Matchbox. The memory foot-print of both file systems dress questions of storage capacity, failure handlingg-lon
is comparable; providing support for checkpointing as well term use, and energy consumption that are not addressed by
as buffering at FAL, file and the index objects are the rea- existing efforts. Capsule attempts to fill this gap by buritgi
son for the higher RAM foot-print of Capsule. The individ- up a functionally complete storage system for sensors.
ual energy consumption of file system operations on both is Other Efforts: There have been a number of object and
comparable. The write bandwidth provided by the Capsule file systems developed for disks that relate to our work, such
file system is 59% more than Matchbox while the read band- as LFS, a log-structured file system [21], and Vagabond [15]
width lags by 10%. Considering the net energy consumption a temporal log-structured object database. However, Gapsu
of the experiment, the Capsule file system turns out to be 8%is designed specifically for sensor platforms using NAND
more energy-efficient than Matchbox while taking approx- or NOR flash memory based storage and for energy effi-
imately the same amount of timeThus, our Capsule file ciency, rather than for goals of disk-based read-write op-
system implementation provides rich additional features a timization, security and network sharing. The differences
an energy cost equivalent or less than that of Matchbox. in hardware and optimization metrics also makes the com-
8 Related Work paction techniques that we use in Capsule significantly dif

ferent from storage reclamation techniques for disks ssch a
There have been four other efforts at building a sensor hole-plugging [23] and heuristic cleaning [1].

storage system that we are aware of: Matchbox [5], ELF)
[3], MicroHash [27] and TFFS [4]. Other filesystems like 9 Conclusions
YAFFS2 [25] and JFFS2 [24] are targeted at portable de- Storage is an essential component of data-centric sen-
vices such as laptops and PDAs and do not have sensorsor applications. Recent gains in energy-efficiency of new-
specific implementations. A direct head-to-head compar- generation NAND flash storage strengthen the case for in-
ison between Capsule and Matchbox is provided in Sec- network storage by data-centric sensor network applioatio
tion 7.3.2, where we show that Capsule provides additional In this paper, we argue that a simple file system abstraction
features at a lower or comparable cost. One of the difficultie is inadequate for realizing the full benefits of flash storiage
that we faced in performing a direct quantitative compari- data-centric applications. Instead, we advocate a riceabbj
son against MicroHash was that it had been implemented onstorage abstraction to support flexible use of the storage sy
a custom node (the RISE platform [13]) which has signifi- tem for a variety of application needs and one that is specif-
cantly greater memory than available on the Motes that we ically optimized for memory and energy-constrained sensor
use. Thus, our discussion of the relative merits and desnerit platforms. We propose@apsulg an energy-optimized log-
of these approaches is restricted to a qualitative one. structured object storage system for flash memories that en-
Energy EfficiencyOf the systems that we compare, only ables sensor applications to exploit storage resources in a
MicroHash and Capsule make claims about energy effi- multitude of ways. Capsule employs a hardware abstraction
ciency. MicroHash is, in essense, an implementation of Cap-layer that hides the vagaries of flash memories from the ap-
sule’s Stream-Index object for SD-cards with greater empha plication and supports highly energy-optimized implemen-
sis on the indexing and lookup techniques than in our paper.tations of commonly used storage objects such as streams,

files, arrays, queues and lists. Further, Capsule supportgi9]
checkpointing and rollback to tolerate software faultseén-s

sor applications running on inexpensive, unreliable hard- [20]
ware. Our Capsule implementation is portable and currently
supports the Mica2 and Mica2Dot NOR flash as well as our [21]
custom-built NAND flash memory board. Our experiments
demonstrated that our system provides greater functignali
more tunability, and greater energy-efficiency than exgsti
sensor storage solutions, while operating within the recsou
constraints of the Mica2.

Future Work: We plan to examine the platform-specific
design of Capsule in light of more resource-rich platforms |5
such as the iMote2. For example, a memory-rich platform [26]
would allow Capsule to use a per-object log-segment alloca-
tion strategy that would place each object’s data chunks con 27
tiguously, permitting FAL to do read-buffering. We are also
working on fabricating an SPI based NAND flash daughter
board for the Telos.

Acknowledgements: We thank our anonymous review-
ers and our shepherd Philippe Bonnet for their valuable-feed
back and comments. This research is supported in part by
NSF grants EEC-0313747, CNS-0626873, CNS-0546177,
CNS-052072, CNS-0325868, and EIA-0080119.

10 References

(22]

(23]

(24]

S. Ratnasamy, D. Estrin, R. Govindan, B. Karp, L. Y. Seder, and F. Yu.
Data-centric storage in sensornetsHotNets 2001.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govamd and S. Shenker.
GHT - A Geographic Hash-table for Data-centric storage/M8NA 2002.

M. Rosenblum and J. K. Ousterhout. The design and imefeation of a Log-
structured File systenACM TOCS$10(1):26-52, 1992.

Toshiba America Electronic Components, Inc. (TAE@ww. t oshi ba. conl
taec. Datasheet: TC58DVG02A1FTQ0an 2003.

J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. ThE MutoRAID Hierarchi-
cal Storage systenACM TOCS 14(1):108-136, 1996.

D. Woodhouse. Journalling Flash File Systéntnt p: / / sour ces. r edhat . conl
jffs2/jffs2. pdf.

Aleph One. Yet Another Flash File Systemw. al ephl. co. uk/ yaffs.

Xbow. Mica2 Data sheetht t p: / / www. xbow. cont Pr oduct s/ Product _pdf _
files/ Wrel ess_pdf/6020- 0042- 09%6_A M CA2. pdf .

D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunolms, and W. Najjar. Mi-
croHash: An efficient Index structure for Flash-based setsdices. INJSENIX
FAST, SF CA, Dec 2005.

Appendix A Capsule Interfaces

interface FAL {
commend result_t wite(ObjectPtr optr, bool chksum

FlashPtr fptr);

event void witeDone(result_t res);

command result_t read(ObjectPtr optr, bool chksum;
event void readDone(OhjectPtr optr, result_t res);
commend result_t rawwite(DataPtr optr, bool chksum

FlashPtr fptr);

(1]

(2]
(3]

4]

(5]

(7]
8l
9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

T. Blackwell, J. Harris, , and M. Seltzer. Heuristic aférag algorithms in Log-
structured File Systems. WSENIX Winter Confpages 277-288. Jan 1995.

MicaSB Sensor board MTS 300wmw. xbow. com
H. Dai, M. Neufeld, and R. Han. ELF: An efficient Log-sttuced Flash file

system for micro sensor nodes. $enSyspages 176-187, New York NY, 2004.

E. Gal and S. Toledo. A transactional flash file system faratontrollers. In
USENIX, pages 89-104, Anaheim CA, Apr 2005.

D. Gay. Design of Matchbox: The simple Filing system footds. In TinyOS
1.x distributionww. t i nyos. net , Aug 2003.

J. Hellerstein, W. Hong, S. Madden, and K. Stanek. BeyAmerage: Towards
sophisticated sensing with Queries.IRSN Palo Alto CA, 2003.

J. W. Hui and D. Culler. The Dynamic behavior of a Data disénation protocol
for Network programming at Scale. BenSysNov 2004.

P. Levis, S. Madden, J. Polastre, et al. TinyOS: An OpegaBystem for wireless
Sensor networks. IAmbient IntelligenceSpringer-Verlag, 2005.

M. Li, D. Ganesan, and P. Shenoy. PRESTO: Feedback+ubata management
in Sensor networks. INSD|, May 2006.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong.yDx8: An Acqusitional
Query Processing system for Sensor networksA@M TODS 2005.

G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoya-lditv Power Data
Storage for sensor networks. IRSN/SPOTNashville N, Apr 2006.

J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang,ch E. Anderson. Im-
proving the Performance of Log-structured file systems witlaptive methods.
In SOSR pages 238-251, 1997.

A. Mitra, A. Banerjee, W. Najjar, D. Zeinalipour-YaztD. Gunopulos, and
V. Kalogeraki. High-Performance, Low-Power sensor platfe featuring Gi-
gabyte scale Storage. 8enMetricsSan Diego CA, Jul 2005.

E. B. Nightingale and J. Flinn. Energy-efficiency andrage Flexibility in the
Blue file system. IfOSDI, San Francisco CA, Dec 2004.

K. Nrvag. Vagabond: The design and analysis of a Tenigobgect database
management system. PhD thesis — Norwegian University @n8eiand Tech-
nology, 2000.

J. Polastre, J. Hill, and D. Culler. Versatile Low powéedia Access for wireless
sensor networks. 18enSysNov 2004.

J. Polastre, R. Szewczyk, and D. Culler. Telos: Enapliftra-low Power wire-
less research. IPSN/SPOTSApr 2005.

N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohlex! ®. Estrin. Sym-
pathy for the Sensor network Debugger.SenSysNov 2005.

event void rawWiteDone(result_t res);

command result_t rawRead(DataPtr optr, bool chksum;
event void rawReadDone(DataPtr optr, result_t res);
command result_t flush();

event void flushDone(result_t res);

interface Conpaction {
commend result _t compact();
event void conpactionDone(result_t res);

}

interface Stream ! ndex {

commend result_t init(bool ecc);

command result_t add(Stream ndexPtr data, datalen_t len);

event void addDone(result_t res);

command result_t setTag();

event void set TagDone(result_t res, uint tag);

command resul t _t getTag(uint tag, Stream ndexPtr data,
datal en_t *len);

event void get TagDone(result_t res);

command result_t seek(uint skipBackNodes);

event void seekDone(result_t res);

command result_t next();

command result_t previous();

event void traversal Done(result_t res);

commend result_t invalidate();

}

interface Serialize {
command result_t checkpoint(uint8_t *buffer, datalen_t *len);
command result_t restore(uint8_t *buffer, datalen_t *len);

}

interface Checkpoint {
command result_t init(bool priority);
commeand resul t _t checkpoint();
event void checkpoi nt Done(result_t result);
command result_t rollback();
event void rol | backDone(result_t result);

