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Abstract
Recent gains in energy-efficiency of new-generation NAND flash stor-

age have strengthened the case for in-network storage by data-centric sensor
network applications. This paper argues that a simple file system abstrac-
tion is inadequate for realizing the full benefits of high-capacity low-power
NAND flash storage in data-centric applications. Instead weadvocate a
rich object storage abstraction to support flexible use of the storage system
for a variety of application needs and one that is specifically optimized for
memory and energy-constrained sensor platforms. We propose Capsule, an
energy-optimized log-structured object storage system for flash memories
that enables sensor applications to exploit storage resources in a multitude of
ways. Capsule employs a hardware abstraction layer that hides the vagaries
of flash memories for the application and supports energy-optimized imple-
mentations of commonly used storage objects such as streams, files, arrays,
queues and lists. Further, Capsule supports checkpointingand rollback of
object states to tolerate software faults in sensor applications running on
inexpensive, unreliable hardware. Our experiments demonstrate that Cap-
sule provides platform-independence, greater functionality, more tunability,
and greater energy-efficiency than existing sensor storagesolutions, while
operating even within the memory constraints of the Mica2 Mote. Our ex-
periments not only demonstrate the energy and memory-efficiency of I/O
operations in Capsule but also shows that Capsule consumes less than 15%
of the total energy cost in a typical sensor application.

Categories and Subject Descriptors
D.4.2 [Software ]: Operating Systems Storage Manage-

ment Secondary storage; D.2.13 [Software ]: Software En-
gineering Reusable Software Reusable libraries

General Terms
design, performance, experimentation

Keywords
storage system, flash memory, energy efficiency, objects,

embedded systems, sensor network, file system
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1 Introduction
Storage is an essential ingredient of any data-centric sen-

sor network application. Common uses of storage in sen-
sor applications include archival storage [9], temporary data
storage [6], storage of sensor calibration tables [10], in-
network indexing [20], in-network querying [19] and code
storage for network reprogramming [7], among others. Until
recently, sensor applications and systems were designed un-
der the assumption that computation is significantly cheaper
that both communication and storage, with the latter two in-
curring roughly equal costs. However, the emergence of a
new generation of NAND flash storage has significantly al-
tered this trade-off, with a recent study showing that flash
storage is nowtwo orders of magnitude cheaperthan com-
munication and comparable in cost to computation [11]. This
observation challenges conventional wisdom and argues for
redesigning systems and applications to exploit local storage
and computation whenever possible in order to reduce ex-
pensive communication.

While the case for in-network storage has strengthened
with the emergence of high-capacity energy-efficient NAND
flash memories, existing storage systems built for flash de-
vices (see Table 1) have a number of drawbacks:

Mismatch between storage abstraction and application
needs:Many flash-based storage systems, such as YAFFS,
YAFFS2 [25], Matchbox [5] and ELF [3], provide a file sys-
tem abstraction to the application. While a file-based ab-
straction is useful in many scenarios, it is a poor fit for han-
dling the varied needs of sensor applications. For instance, a
common use of local storage is to store a time series of sen-
sor observations and maintain a index on these readings to
support queries. A data stream abstraction—an append-only
store of time series data—and hash-based index structures,as
proposed in MicroHash [27] are better suited for these needs.
However, even supporting only this abstraction is restrictive,
since it does not enable flash to be used for other purposes
such as for “live” application data storage, calibration tables,
packet queues for radio transmission, hibernation, etc. In-
stead, we argue that the storage substrate should support a
“rich” object storage abstraction with the ability to create,
store and retrieve data objects of various types such as files,
streams, lists, arrays, queues, etc. This will enable sensor
applications to exploit flash storage in a multitude of ways.

Supporting Use as a Backing Store:Current flash-
based storage systems use flash as a persistent data storage



Table 1. Comparison of Capsule to related efforts.
Storage
Devices

Energy
Optimized

Memory
Optimized

Wear
Leveling

Checkpointing Abstraction Usage Models

Matchbox NOR No Yes No No Filesystem File storage; Calibration Tables
MicroHash MMC Yes No Yes No Stream/Index Stream Storage and Indexing
ELF NOR No Yes Yes No Filesystem Same as Matchbox
YAFFS NAND No No Yes No Filesystem Portable devices
Capsule NAND,

NOR
Yes Yes Yes Yes Object Data Storage and Indexing; Packet

Queues; Temporary Arrays

medium. However, memory is often a scarce commodity on
small sensor platforms, with Telos and Mica motes contain-
ing 10KB and 4KB of RAM, respectively. With empirical
studies showing the energy cost of accessing flash approach-
ing that of RAM, it is now possible for applications to use
higher-capacity flash for storing live application data and
manipulating it in an energy efficient manner. For instance,
tasks can exploit flash as a form of backing store to store
large data structures, intermediate results for data processing
tasks, etc. It is also feasible to implement local data process-
ing algorithms that manipulate data sets larger than the size
of RAM. Such use of flash as a backing store also argues for
supporting a richer storage abstraction than the traditional
file abstraction.

Optimizing for Energy and Memory Constraints:Energy
efficiency and the small amount of available memory are key
constraints of tetherless sensor platforms – consequently, the
storage subsystem for sensor platforms must optimize both
constraints. In contrast, traditionally storage systems have
been optimized for bandwidth and access latency. Even in
energy-aware file systems such as BlueFS [14], the target
energy efficiency is far less than the requirement of long-
lived sensor platforms. Among existing approaches designed
specifically for sensor devices, only MicroHash [27] makes
claims about energy-efficiency. However, MicroHash is de-
signed specifically for stream storage and indexing, rather
than as a general-purpose storage system. Further, none
of these systems is explicitly designed for platforms with
scarce memory. In fact, it is currently difficult to use ex-
isting NAND-flash based file systems such as YAFFS [25]
on memory-constrained sensor platforms due to their large
RAM foot-print.

1.1 Research Contributions
In this paper we proposeCapsule, an energy-efficient

flash-based storage substrate for sensor platforms that over-
comes the above drawbacks. The design and implementation
of Capsule has led to the following contributions:

Object-based abstraction:Capsule provides the abstrac-
tion of typed storage objects to applications; supported ob-
ject types include streams, indexes, stacks and queues. A
novel aspect of Capsule is that it allows composition of
objects—for instance, a stream and index object can be com-
posed to construct a sensor database, while a file object
can be composed using buffers and a multi-level index ob-
ject. In addition to allowing reads and writes, objects ex-
pose a data structure-like interface, allowing applications to
easily manipulate them. Capsule also includes a flash ab-
straction layer that uses a log-structured design to hide the
low-level details of flash hardware from applications. Stor-
ing objects on flash enables flexible use of storage resources,

for instance, data-centric indexing using indices, temporary
buffers using arrays, buffering of outgoing network packets
using queues and storing time-series sensor observation us-
ing streams. Furthermore, the supported objects can also be
used by applications to store live data and use flash as an
extension of RAM.

Energy-efficient and memory-efficient design:While tra-
ditional storage systems are optimized for throughput and
latency, Capsule is explicitly designed for energy- and
memory-constrained platforms. Capsule achieves a com-
bination of very high energy-efficiency and a low memory
footprint using three techniques: (a) a log-structured design
along with write caching for efficiency, (b) optimizing the or-
ganization of storage objects to the type of access methods,
and (c) efficient memory compaction techniques for objects.
While its log-structured design makes Capsule easy to sup-
port on virtually any storage media, this paper focuses on
exploiting the energy efficiency of NAND flash memories.

Support for Compaction:A unique aspect of Capsule is
its support for compaction of data when storage resources
are limited in comparison with the storage needs of an appli-
cation. Each object in Capsule supports a compaction proce-
dure that moves data to reclaim space in flash.

Handling Failures using Checkpointing:Sensor devices
are notoriously prone to failures due to software bugs, sys-
tem crashes, as well as hardware faults due to harsh deploy-
ment conditions. Capsule simplifies failure recovery in sen-
sor applications by supporting checkpoints and rollback—it
provides energy-efficient support for checkpointing the state
of storage objects and the ability to rollback to a previous
checkpoint in case of a software fault or a crash.

Implementation and Evaluation:We have augmented the
Mica2 Motes with a custom-built board that allows us to ex-
periment with NAND flash memories. We have implemented
Capsule in TinyOS running on the Mica2 platform with an
option to use either the NOR flash memory on the Mica2 or
our custom NAND flash board. We perform a detailed ex-
perimental evaluation of Capsule to demonstrate its energy-
efficiency. For instance, writing 64 bytes of data to a Stream
object consumes 0.028mJ of energy while reading the same
data consumes 0.043mJ. The compaction of a Stream hold-
ing 128KB of data consumes 48.9mJ energy and takes 3.2
seconds. In comparison, transmitting a 64 byte packet using
the Mica2 CC1000 radio at 1% duty cycling consumes 40mJ
and takes 1.1 seconds. We also show that in a representative
application involving regular light sensing, a large compo-
nent of archival storage and periodic summary transmission,
Capsule consumes less than 15% of the total energy cost. We
compared our file system implementation against Matchbox
and concluded that Capsule provides useful additional fea-



tures with a better overall energy profile and performance
than Matchbox.

The rest of this paper first provides an overview of flash
hardware in Section 2, followed by the design and implemen-
tation of Capsule in Sections 3-6. We present our evaluation
in Section 7, followed by related work and conclusions in
Sections 8 and 9.

2 Flash Memory Characteristics
We present a brief overview of NAND flash hardware,

focusing on the constraints that it imposes on storage system
design and their read and write characteristics.

2.1 Flash Memory Restrictions
Flash chips have emerged as the storage technology of

choice for numerous consumer devices as well as sensor plat-
forms. Their low energy consumption, ultra-low idle current,
and high capacity make them an attractive choice for long-
lived sensor applications.

A key constraint of flash devices is that writes are one-
time – once written, a memory location must be reset or
erasedbefore it may be written again. Erase operations are
relatively slow and expensive and must be performed in gran-
ularity of an erase block. While the erase block is same as
a page in some devices, it can span multiple pages in newer
devices, thereby complicating data management.

While NAND memories impose stringent constraints,
they are also the most energy-efficient storage solution for
sensor devices[11]. The number of non-overlapping writes
allowed between erases to each page on the device are lim-
ited, and often between 1 and 4. Larger page size NAND
memory devices often also require writes within an erase
block to be sequential. The amount of RAM available on
most sensor devices may make working with these devices
difficult. Popular sensor devices have RAM sizes ranging
from 4KB on the Mica2 platform [26] through 10K on the
TelosB [17]. In contrast to this, the size of available flash
devices (upto 2GB) is five orders of magnitude larger illus-
trating the disparity between primary and secondary storage.

2.2 NAND Flash Read/Write Characteristics
Since we are interested in designing an energy-efficient

storage system, in this section we describe a simple model
that captures the energy cost of the read and write operations
on a NAND flash. While the measurements presented here
are specific to the NAND flash, the model is applicable to
both NOR and NAND flash memories.

Table 2 shows both the device and system-level energy
and latency costs involved with the read and write operations
of a Toshiba TC58DVG02A1FT00 1Gb (128 MB) NAND
flash[22] board attached to a Mica2 mote using an add-on
board fabricated by us (discussed in detail in Section 6). We
find that the energy cost of both the storage subsystem and
the entire mote to be a linear function of the number of bytes
read from flash. Much like the seek overhead in magnetic
disks, there is a fixed cost of accessing a page, and then a per-
byte overhead associated with each additional byte written
to (or read from) the page. Unlike disks though, accessing
adjacent pages does not impact the fixed cost. The fixed cost
corresponds to the time during which an address is clocked
in and the flash read or write operation is enabled. Once

Write Read
NAND Flash Energy Cost Fixed cost 13.2µJ 1.073µJ

Cost per-byte 0.0202µJ 0.0322µJ
NAND Flash Latency Fixed cost 238us 32us

Cost per-byte 1.530us 1.761us
NAND Flash + CPU Energy Cost Fixed cost 24.54µJ 4.07µJ

Cost per-byte 0.0962µJ 0.105µJ
NAND Flash + CPU Latency Fixed cost 274us 69us

Cost per-byte 1.577us 1.759us

Table 2. Cost of flash operations
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Figure 1. Object Storage architecture

enabled, the cost of clocking data in/out of the flash chip is
linearly dependent on the size of data being operated upon.
Note that the cost of reading or writingn pages isn times the
cost of reading or writing a single page since each page is
addressed separately.

Based on our measurements, we find that the energy cost
of writing (W(d)) and reading (R(d)) d bytes of data to and
from flash respectively are:

W(d) = 24.54+d ·0.0962µJ (1)

R(d) = 4.07+d ·0.105µJ (2)

The above numbers have significant implications on the
design of the storage system. Of particular importance is
the observation that the fixed energy cost is 13 times greater
for writes than reads, whereas the cost per additional byte is
almost the same for both writes and reads. These results are
at the core of the read and write caching techniques that we
will use in Capsule.

3 Object Storage Architecture
Capsule employs a three layer architecture consisting of a

flash abstraction layer (FAL), an object layer, and an applica-
tion layer (see Figure 1). The FAL hides the low-level flash
hardware details from the rest of the object store. This layer
comprises a low-level device driver that interfaces with the
hardware. The FAL addresses important design decisions
that highlight the energy and memory-optimized nature of
Capsule. To deal with the memory limitations of sensor plat-
forms, the FAL offers a buffered log-based design,i.e. ob-
jects chunks are written in an interleaved append-only man-
ner. The FAL also permits direct access to flash storage via



raw reads and writes to support checkpointing. The FAL is
responsible for performing error detection and correctionfor
flash memories. It supports storage space reclamation where
previously written blocks are cleaned to remove invalid ob-
ject data and create space for new ones. The cleaner in the
FAL layer triggers compaction on objects in the system when
the flash memory usage exceeds a certain threshold. Sec-
tion 4 discusses the FAL in more detail.

The object layer resides above the FAL. This layer pro-
vides native and flash-optimized implementation of basic ob-
jects such as streams, queues, stack and static indices, and
composite objects such as stream-index and file. Each of
these structures is a named, persistent object in the storage
layer. Applications or higher layers of the stack can trans-
parently create, access, and manipulate any supported object
without dealing with the underlying storage device. In this
paper, we describe techniques that can be used to optimize
energy usage of objects based on the access patterns of ap-
plications. Each object in Capsule supports efficient com-
paction methods that are invoked when the FAL triggers a
cleaning task. Finally, checkpointing and rollback are sup-
ported to enable recovery from software faults or crashes.

Applications can use one or more of the objects in Cap-
sule with simple and intuitive interfaces. We discuss and
evaluate three uses of our system— archival storage, index-
ing and querying of stored sensor data and batching packets
in flash to improve communication efficiency.

4 The Flash Abstraction Layer (FAL)
The purpose of the FAL is to hide the vagaries of the flash

device and present a simple storage interface to the upper
layers of the storage stack (Figure 1), while optimizing en-
ergy efficiency and memory use.

We now discuss the log-structured FAL design, followed
by the storage reclamation support that the FAL provides.
We briefly discuss error handling for flash hardware errors
and special block allocation mechanisms for applications
that wish to bypass the FAL and need direct access to flash.

4.1 Log-structured Design
The combination of memory and energy constraints of

sensors, in addition to flash technology constraints, places
several restrictions on the design of a storage system. Exist-
ing NAND flash-based storage systems for portable devices
have a large memory footprint and are not energy efficient.
On the memory front, some systems such as JFFS [24] main-
tain an in-memory logical-to-physical block map to simplify
erase management, while others such as YAFFS [25] main-
tain an in-memory map of the file blocks – neither techniques
use memory efficiently. From an energy perspective, these
systems allocate the flash in granularity of one or more pages
to each file, and data modification requires a re-write of the
allocated page(s) to a new location on flash, resulting in high
energy consumption. Both these reasons make these systems
infeasible for sensor platforms. A log-structured organiza-
tion of the FAL overcomes the memory inefficiency of ex-
isting systems as it requires the maintenance of minimal in-
memory state. Additionally, our design permits fine-grained
selection of the data sizes by the application, which enables
better application-specific energy optimization.

Figure 2. Design of the log-structured FAL.

Log structured file systems were first popularized by the
work of Rosenblum and Osterhout (LFS [21]), and have
since been used in a number of other storage systems. Fig-
ure 2 shows the log-structured organization of the FAL,
which treats the storage device as a “log” – it sequentially
traverses the device from start to the end writing data to
pages. Once data has been written to a segment of the storage
device it cannot be modified, only erased.

A log-structured design provides a number of benefits to
our system. First, it avoids energy- and memory-intensive
block reads and writes, while still working within the hard-
ware constraints imposed by NAND flash memories. Sec-
ond, since the constraints of NAND flashes are a super-set
of the constraints of NOR flashes, a log-structured design
can be easily ported to both these types of flash memories
with minimal modification to the FAL. This enables Cap-
sule to be supported on existing sensor platforms such as
Motes that use NOR flash memories as well as on NAND-
flash based sensor platforms. Third, a log-structured design
enables data from different objects to be batched together
before writing to flash, thereby enabling better write energy
optimization. Our design results in chunks1 being stored in a
non-contiguous manner; writes incur greater fixed costs than
reads (as shown in Equation 1 and 2), making write opti-
mization more critical. Finally, we expect the dominant use
of storage on sensor devices to be for writing sensor data,
which further validates the choice of a write-optimized de-
sign. We now describe how writes, and reads are handled by
the log-structured FAL.

Data Write: Figure 2 shows the write operation of the
FAL. Successive writes are appended to a write buffer, which
is flushed to flash when it becomes full. The size of the
write buffer at the FAL is determined by the NAND flash
constraints and the memory constraints of the device. Thus,
if a NAND flash with page sizep has the limitation that each
page can be written to onlyk times, the buffer size should
be at leastpk . Larger write buffer sizes are beneficial since
writes have high fixed cost as shown in Equation 1 – thus,
we advocate thatthe FAL write buffer should be as large as
possiblegiven the memory constraint of the node.

In our implementation, the FAL adds a small 3 byte

1A chunkdenotes the data written by the FAL, which consists
of object data along with some metadata added by the FAL.



header (2 byte length, and one byte checksum) to each object
chunk that is passed down from the object layer before stor-
ing in the write buffer. Typically the buffer is flushed to flash
when full, but it can also be force-flushed by the application.
After the buffer has been written to flash, the FAL moves the
current write pointer forward to the next write location.

Data Read:Upon receiving a read request, the FAL reads
the bytes corresponding to the requested object chunk from
flash. Our custom driver for the NAND flash allows reading
data using an efficient single-phase read mechanism. As the
header bytes are being clocked in from flash, the FAL pro-
cesses the header to determine the length of the object data in
the chunk. The read operation is terminated after the header
and data bytes have been read.

The FAL does not use read buffering, and read opera-
tions are performed when requested. While batching reads
is cheaper than individual ones, we see from Equation 2 that
the constant cost of performing a read operation is low, hence
the energy savings from batching reads is not significant. In
addition, a particular object’s chunks are likely to be inter-
leaved with other objects as shown in Figure 2 due to the
log-structured design, making batching difficult.
4.2 Memory Reclamation

Since flash memory is limited, the FAL handles storage
space exhaustion by deleting data. One option is to delete the
earliest data written to flash and let the storage objects handle
any failures arising due to non-existent data when trying to
follow valid pointers referring to this section of the flash.If
all the data in the section of flash to be deleted is invalid and
unreferenced, then no issues will arise from erasing this part
of the flash. However, this approach is unsatisfactory from
the perspective of storage objects storinghigh priority data
such as long-term summaries of the sensor data, history of
detected events or calibration tables.

Log-structured file systems employ acleanertask [12, 21]
to reclaim memory, and a multitude of techniques have been
proposed for performing cleaning. Cleaning techniques pro-
posed for disks such as hole-plugging [23] are not feasible
on flash memories that lack in-place modification capabil-
ity. Cleaning in Capsule is based on three design principles.
Firstly, the FAL does not actually perform the cleaning but
only keeps track ofwhenthe cleaning is required. At this
point the FAL will inform each storage object, and each is
responsible for its own cleaning. Secondly, we adopt a de-
sign that pushes the time at which cleaning is performed to
be as late as possible. Cleaning involves data compaction,
which involves reading the current valid data and re-writing
it to the current write frontier, freeing the earlier blocks
for erasing. All these operations are expensive energy-wise
and should be performed only when absolutely necessary.
Thirdly, we choose simple cleaning policies rather than so-
phisticated ones that have been considered in log-structured
file systems due to the resource-constrained and memory-
limited nature of sensor devices.

The cleaner is a part of the FAL, and exposes a com-
paction interface to which objects holding high priority data
are wired at compile time. The FAL continually tracks the
percentage of flash that has been filled and uses this mea-
sure to decide when to trigger the cleaner. Once the certain

pre-determined threshold (default is half the size of flash)is
exceeded, the Cleaner sends a compaction event to the ob-
jects wired to the compaction interface.

Each Capsule object implements thecompactioninterface
(see Appendix A), supporting acompact procedure that tra-
verses and reads all valid data (Figure 2) and re-writes it to
the current write frontier on flash. Once all the wired objects
have performed compaction, the FAL marks the older blocks
for deletion. These blocks are erased only when the rest of
the flash fills – this retains even the low-priority data as long
as possible.

4.3 Error Handling
Flash memory is prone to single-bit errors, and the prob-

ability of errors occurring on NAND flash is substantially
higher than NOR. The FAL provides support for a simple
checksum for each chunk. This checksum enables the FAL
and higher layers to check for errors when reading a chunk.
In addition, the FAL uses a single-error-correction double-
error-detection (SECDED) algorithm to generate codes at
the page level. If the chunk checksum cannot be verified,
the entire page is read into memory, and the error correction
operation can be performed using the SECDED code. In ex-
tremely memory limited sensor platforms or on NOR flashes,
error correction can be turned off since it necessitates allo-
cating an extra page-sized read buffer and our experience has
shown these errors to be rare in practice. Our current imple-
mentation supports the chunk-level checksums, and includ-
ing support for the the page-level error correction is part of
our future plans.

4.4 Block Allocation
The FAL also offers a raw read and write interface that by-

passes the log-structured component and accesses the flash
directly. The FAL designates a part of the flash (a static
group of erase blocks) to special objects or applications that
want direct access to flash. Such a facility is necessary for
root directory management performed by the Checkpoint
component (discussed in Section 5.4), which is used for stor-
ing critical data immediately that needs to be easily located
and should remain persistent across system failures. An-
other component that needs direct flash access is network
re-programming (e.g. Deluge [7]) – to re-program a Mote,
the network re-programmingmodule needs to store new code
contiguously in flash, without the FAL headers.

5 Object Storage Layer
The object layer resides above the FAL and supports ef-

ficient creation and manipulation of a variety of storage ob-
jects (see Figure 1). In this section, we discuss key concepts
behind the design of Capsule objects. First, we provide a
taxonomy of sensor applications and the type of objects that
would be useful to them – this guides the choice of objects
that we support in our system. Second, we describe the four
basic storage objects we support:stack, queue, streamand
a static-index, which form the first-order objects in our sys-
tem. For each object, we describe how they are created, the
access methods that they support and how they can be com-
pacted efficiently. Third, we describe how these basic objects
can be composed into a number of useful composite objects



Application Data Type Storage object
Archival Storage Raw Sensor Data Stream
Archival Storage and Querying Index Stream-Index
Signal Processing or Aggregation Temporary array Index
Network Routing Packet Buffer Queue/Stack
Debugging logs Time-series logs Stream-Index
Calibration Tables File

Table 3. Taxonomy of applications and storage objects

such as afile and anstream-indexobject. Finally, we de-
scribe how checkpointing and rollback is supported in our
system to recover from failures.

5.1 Taxonomy of Storage Objects
In this section, we survey common uses of storage in sen-

sor applications that inform the choice of objects supported
by Capsule (shown in Table 3).

A number of data-centric applications and research efforts
need the capability to perform in-network archival storage,
indexing and querying of stored data. Sensor data is typi-
cally stored as time series streams that are indexed by time-
stamp [9], value [27], or event [20]. Such applications need
to efficiently storedata streamsand maintainindices.

A second class of applications that can take advantage of
efficient storage are those that need to use flash memory as
a backing store to perform memory-intensive computation.
Many data-rich sensing applications such as vehicle moni-
toring, acoustic sensing, or seismic sensing need to use large
arraysto perform sophisticated signal processing operations
such as FFT, wavelet transforms, etc.

A number of system components can also benefit from
efficient storage. The radio stack in TinyOS [8] does not
currently support packet queuing due to memory limitations.
Queueobjects could be used to buffer packets on flash in an
energy-efficient manner. Debugging distributed sensors is
often a necessary aspect of sensor network deployments, and
requires efficient methods for storing debugginglogs [18]
and retrieving these logs. Other uses of the object store in-
clude support for persistent storage of calibrationtablescor-
responding to different sensors on the node. Finally, thereis
a need to support afile systemabstraction to easily migrate
applications that have already been built using existing sen-
sor file systems such as Matchbox.

Based on the taxonomy of flash memory needs of applica-
tions (Table 3), we identify a core set of basic objects (Stack,
Queue, Stream, and Index) that are the first-order objects in
Capsule, and a set of composite objects (Stream-Index, File)
that are composed from multiple basic objects.

5.2 Basic Storage Objects
In this section, we describe the design of basic objects in

Capsule and provide a cost analysis of the access methods
that they support (summarized in Table 4). We also describe
the compaction methods that each object provides that can
be invoked.
5.2.1 Stack Object

The stack object represent the simplest of the storage ob-
jects. The push operation of the stack accepts data passed
by the application, appending an object-level header to the
data. The stack header includes a pointer to the location of
the previously stored element on the flash. The stack object

Object Name Operation Energy Cost
Stack Push 1 chunk write

Pop 1 chunk read
Compaction N header reads, chunk reads

and chunk writes +N
k chunk

reads and writes
Queue Enqueue 1 chunk write

Dequeue N-1 chunk header reads + 1
chunk read

Compaction Same as Stack
Stream Append 1 chunk write

Pointer Seek 0
Seek N-1 chunk header reads
Next Traversal N-1 chunk header reads + 1

chunk read
Previous Traversal 1 chunk read
Compaction Same as Stack

Index Set H chunk write
Get H chunk read

Compaction kH−1
k−1 chunk reads and writes

Table 4. Analysis of energy consumption of storage objects. HereN
= number of elements in the storage object,H is the number of levels
in the Index, and k = number of pointers batched in a chunk for com-
paction or indexing.

then passes the header and the data to FAL, which copies it
to its write buffer. The location of the stored element is then
returned to the stack object, which updates its in-memory
pointer to reference the written element as the last element
stored. Popping data from the stack results in reading the el-
ement pointed to by the current in-memory pointer, and then
updating the pointer to the value of the header of the ele-
ment. When the stack object has been used and is no longer
required, it can be invalidated, and the storage space that it
consumes can be reclaimed by the cleaner.

Stack compaction: Compaction of the stack object in-
volves accessing each object from first to last and re-writing
them to the head of the log. Since flash memory only allows
backward linking, each read will involve traversal through
the entire stack until the next inserted element before read-
ing this element and writing it to the head of the log. To
optimize the compaction cost, we use a two-step scheme as
shown in Figure 3. First, the stack is traversed from head
to tail (last inserted to first inserted element) at costN ·R(h)
(refer Equations 1 and 2), whereN is the number of ele-
ments in the stack andh is the total header size,i.e. the sum
of FAL and stack headers. The pointers for each of these
elements are written into a temporary stack of pointers, per-
haps after batchingk pointers together in each write incur-
ring cost N

k ·W(d), whered is the size of a stack chunk.
Next, the stack of pointers is traversed (at costN

k · R(d))
and each data chunk corresponding to the pointer is now
read and then re-written to the FAL to create the new com-
pacted stack (at costN · (R(d)+W(d))). In the above cost
analysis, we assume that the size of the object chunk,d,
is the same for both stacks. The total cost is, therefore,
(N+ N

k ) · (R(d)+W(d))+N ·R(h) as shown in Table 4.

5.2.2 Queues
The need to support First-In First-Out (FIFO) semantics

makes the implementation of a queue object more complex
than the stack since the flash does not allow forward point-
ing to data. For example, once the first element of the queue
has been written, it cannot be modified to point to the sec-



Data
p t r 0

S t a c kp t r 1p t r 2p t r 3 p t r 3 p t r 2C r e a t e n e wP o i n t e r S t a c kp t r 1 p t r 1 C o m p a c t e d S t a c k
Data

p t r 0p t r 1p t r 2p t r 3
Figure 3. Compaction of the Stack object

ond element of the queue which will be written at a later
point in time. Therefore, our queue implementation uses re-
verse pointers instead of forward pointers,i.e. instead of the
first element of the queue pointing to the second, the sec-
ond points to the first, and so on. This makes the queue or-
ganization inherently Last-In First-Out (LIFO) or that of a
stack. Enqueuing data to this queue does not present a prob-
lem since it is similar to pushing data to the stack. However,
dequeuing requires a complete traversal of the queue from
the tail of the queue to the head to locate the element after
the head. Thus, each dequeue operation requires readingN
headers before reading the first element in the queue. The
compaction procedure for queues is similar to the one that
we described for stacks. An alternate queue implementation
could use the index object, while still providing a queue in-
terface.
5.2.3 Stream

A stream object is similar to the stack and queue objects
but supports a wider set of access methods. Storing data into
a stream object involves a backward-pointer chaining like the
queue. Streams can be traversed in two ways – either last to
first like a stack or first to last like a queue. Due to the log-
structured nature of the FAL, a last-to-first access method is
considerably more energy efficient. The stream can beseek-
ed to any point within it and traversed either backward or
forward from there, making it easy to navigate through it.
Compacting a stream involves exactly the same process as
that for compacting a stack, yielding a similar cost.
5.2.4 Static-sized Index and Array

Our index object permits data to be stored using
(key,opaque data) format, and supports a fixed range ofkey
values that is fixed at compilation time. Since this object
provides an access pattern similar to that of an array, we use
both interchangeably in this paper. Figure 4 shows the struc-
ture of the index object – it is hierarchical and the number
of levels in the hierarchy is static. We do not support dy-
namically growing indices since TinyOS does not currently
support a dynamic memory management scheme, making it
infeasible to dynamically allocate and deallocate buffersfor
the various levels of the index.

Figure 4 shows the construction of a two-level index.
Level zero of the implementation is the actualopaque data
that has been stored. Level one of the index points to the data,
and level 2 of the index aggregates the first level nodes of the
index. Each level of the index has a single buffer that all
nodes at that level share. For example, theset operation on
the index looks up and then loads the appropriate first level

Figure 4. Organization of a Static Index object on flash.

index corresponding to thekey. It then writes thevalue to
FAL and updates the first level of the index with the location
of the writtenvalue. If the nextset or get operation oper-
ates on the same first level index node, then this index gets
updated in memory. But if the next operation requires some
other first level index node, the current page is first flushed
to flash (if it has been modified) and then the second level
index is updated similarly, and finally the relevant first level
page loaded into memory.

Compaction of the index object involves traversing the
object in a depth-first manner, reading the pointers and writ-
ing it to FAL. The cost of the compaction operation is there-
fore the same as the cost of reading the index in a depth-
first manner, and writing the entire index into a new location
in flash. If the index hasH levels, and each index chunk
can storek pointers, the total number of index chunks in the
tree iskH−1

k−1 . Compaction involves reading and writing every

chunk in the index, and has costkH−1
k−1 (R(d)+W(d)).

5.3 Composite Storage Objects
The object store permits the construction of composite

storage objects from the basic set of objects that we de-
scribed. The creation and access methods for the compos-
ite objects are simple extensions of the primary objects, but
compaction is more complex and cannot be achieved by per-
forming compaction on the individual objects. Object com-
position is currently done “by-hand” in Capsule; making
nesting of objects simpler is part of our future plans. We
present two composite storage objects. The first composite
object that we describe is astream-indexobject that can be
used for indexing a stored stream. For instance, an appli-
cation can use a stream-index to store sensed data and tag
segments of the stored stream where events were detected.
Second, we describe our implementation of a file system in
Capsule using afile composite storage object that emulates
the behavior of a regular file. This object facilitates porting
applications that have already been developed for the Match-
box filesystem [5] to Capsule.

5.3.1 Stream-Index
The stream-index object encapsulates a stream and an in-

dex object and offers a powerful interface (see Appendix A)
to the application. The application can directly archive its
data to this object by using theadd method, which saves the
data to the stream. When an event is detected in the sensed
data, it can be tagged using thesetTag method, which stores



Figure 5. Design of a filesystem using Capsule.

the pointer to the stored stream data in the next freekeyin the
index object. This interface can also be trivially modified to
tag ranges of sensor readings instead of a single reading. The
seek method allows the application to seek into the stream
based on a given tag, and thenext andprevious methods
allow the application to traverse data in either direction.

5.3.2 File System
Capsule can be used to construct a simple filesystem with

the help of the index object discussed earlier — Figure 5
shows our design and we provide a brief overview of our im-
plementation. Our file system is composed of two objects –
thefile object is used to perform operations on a single file
and a singletonfile-systemobject that stores the metadata as-
sociated with each file. The file system object is responsible
for assigning each file a uniquefile-id and mapping the file-
name to its associated file-id. Each file-id maps to a unique
file object that is actually a static index storing the contents
of the file in separate fixed sizedfile-blocks, with the index
pointing to the location of each file-block on flash. The ob-
ject also maintains the current length of the file (in bytes)
and any working read/write pointers that the file may have.
Additionally, it maintains two file-block sized buffers, one
used as a read and the other as a write cache. When per-
forming a data write, the data is copied into the write cache
that is flushed when filled. Similarly, data is first read into
the read cache before being returned to the application. Or-
ganizing the file blocks using the index object allows us to
supportrandom accessto each block. We use this feature
to modify previously written data. This is achieved by first
loading the appropriate file-block from flash, modifying the
relevant bytes and then writing the block to a new location
and updating the index accordingly. The previous block is
now automatically de-referenced.

Our implementation supports both reads and writes simul-
taneously to the file. Multiple files can be open and operated
upon at the same time. Our file system takes advantage of the
checkpoint-rollback capability of Capsule to provide consis-
tency guarantees. These features are not supported by ELF
and Matchbox, and demonstrate the flexibility of object com-
position within Capsule. Section 7.3.2 provides a compari-
son of the performance of Capsule and Matchbox.

5.4 Checkpointing and Rollback
Capsule also supports capability for checkpointing and

rollback of objects – checkpointing allows the sensor to cap-
ture the state of the storage objects, while rollback allows
the sensor to go back to a previously checkpointed state.
This not only simplifies data management, it also helps deal

with software bugs, hardware glitches, energy depletion, and
other myriad faults common in unreliable sensor nodes.

The inability of flash to over-write data once written ac-
tually simplifies the implementation of checkpointing. The
internal pointers of an object (e.g., the next pointer for a
stack or a queue) cannot be modified once they are writ-
ten to flash. The in-memory state of a storage object (which
typically points to its written data on flash) becomes suffi-
cient to provide a consistentsnapshotof the object at any
instant. The cumulative state of all active storage objects
provides a snapshot of the system at any given instant. We
implement checkpointing support using a specialcheckpoint
component (see Appendix A), which exposes two operations
– checkpoint androllback. Thecheckpoint operation
captures the snapshot of the system and stores it to flash.
This saved snapshot can be used to revert to a consistent state
in the instance of a system failure, or object corruption.

The Capsule storage objects implement aserialize in-
terface (see Appendix A). The checkpoint component calls
the checkpoint method on this interface when it needs to
take a snapshot. This provides each Capsule object a shared
memory buffer where it stores its in-memory state, which is
then written to flash. The checkpoint component uses a few
erase blocks in flash as theroot directory that it manages
explicitly, bypassing the FAL (Section 4.4). Once the check-
point data has been written to flash, a new entry is made to
the root directory pointing to the created checkpoint.

In the event of node restart or an explicit rollback call
from the application, the root directory is examined to find
the most recent checkpoint, which is used to restore system
state. CRCs are maintained over the checkpoint data and the
root directory entries to prevent corrupt checkpoints (possi-
bly caused by the node crashing while a checkpoint is being
created) from being recovered. The root directory entry pro-
vides a pointer to the saved checkpoint state. The checkpoint
component uses therollback method in the serialize inter-
face to replace the in-memory state of linked objects using
the same shared buffer mechanism ascheckpoint.

6 Implementation
Implementing Capsule2 presented a number of unique

challenges. TinyOS is event-driven and this necessitated
writing Capsule as a state machine using the split-phase
paradigm. The checkpointing component required careful
timing and co-ordination between components for its cor-
rect operation. We went through multiple iterations of Cap-
sule design to maximize code and object reuse even within
our implementation –e.g., the checkpoint component uses a
stack object to store state information, similar to the stream
and stack compaction methods that also use a stack to hold
temporary data during compaction (Section 5.2). Another
major concern was the overall memory foot-print of Capsule.
We optimized the Capsule architecture to minimize buffer-
ing and maximize code reuse; buffers have only been used
at stages where they have a sufficient impact on the energy
efficiency. A test application that does not use checkpoint-
ing/recovery but uses one instance of each of the following

2Capsule source code is available athttp://sensors.cs.
umass.edu/projects/capsule/



objects – index, stream, stream-index, stack and queue, re-
quires only 25.4Kb of ROM and 1.6Kb of RAM. Another
application that uses one each of the stack and stream ob-
jects along with checkpointing support, had a foot-print of
16.6Kb in ROM and 1.4Kb in RAM. While the Capsule code
base is approximately 9000 lines of code, the percentage of
the code used by an application depends largely on the num-
ber and type of objects instantiated and the precise Capsule
features used.

7 Evaluation
In this section, we evaluate the performance of Capsule

on the Mica2 platform. While Capsuleworks on the Mica2
and Mica2dot NOR flash as well as our custom NAND flash
adapter, the energy efficiency of the NAND flash [11] mo-
tivated its use as the primary storage substrate for our ex-
periments. However, the experiment comparing the Capsule
and Matchbox file systems is based on the Mica2 NOR flash
(Section 7.3.2), demonstrating Capsule’s portability.

Our evaluation has four parts – first, we benchmark the
performance of FAL including the impact of read and write
caching. Second, we perform a thorough evaluation of the
performance of different storage objects, including the rela-
tive efficiency of their access methods. We measure the im-
pact of access pattern and chunk size on the performance
of memory compaction as well as checkpointing. Third, we
describe interesting trade-offs that emerge in an application
study that combines the different pieces of our system and
evaluates system performance as a whole. And finally, we
compare the performance of a file system built using Cap-
sule (Section 5.3.2) with Matchbox.

Experimental Setup: We built a NAND flash adapter for
the Mica2 using the Toshiba TC58DVG02A1FT00 1Gb (128
MB) flash [22] for our experiments – it has a page size of 512
bytes, an erase block size of 32 pages and permits a max-
imum of 4 non-overlapping writes within each page. Our
measurements involved measuring the current at the sensor
and flash device power leads, with the help of a 10Ω sense
resistor and a digital oscilloscope. The mote was powered
by an external power supply with a supply voltage of 3.3V;
energy consumption “in the field” with a partially discharged
battery may be somewhat lower.

7.1 FAL Performance
The choices made at the FAL are fundamental to the en-

ergy usage of Capsule. We ask two questions in this section:
How much write buffering should be performed at the FAL
layer? andHow much buffering should be performed by a
higher layer before writing to FAL?To answer these, we vary
write and read buffer sizes and examine the energy consump-
tion of the write and read flash operations. Figure 6 shows
our results, where each point corresponds to the energy con-
sumed by writing or reading one byte of data amortized over
a buffer of that particular size.

Impact of FAL Write Buffer Size: For the particular
flash that we use, given the page size of 512 bytes and a
maximum of 4 writes per page, the minimum write buffer
size is 128 bytes (see Section 4). The per-byte write curve
in Figure 6 shows that write costs reduce significantly for in-
creasing write buffering. A reduction in buffer size from 512
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Figure 6. The amortized energy consumption of the read and write
operations was measured for different data sizes using the Mica2 and
the fabricated Toshiba 128 MB NAND adapter. The figure clearly shows
that the write operation has a high fixed cost involved in comparison to
the read operation.

bytes to 128 bytes saves 9.4% of the available memory on the
Mica2, but the per byte write energy consumption increases
from 0.144µA to 0.314µA, i.e. 118%. Reducing memory
consumption from 512 bytes to 256 bytes results in memory
savings of 6.3% of the available memory on the Mica2 mote,
but at 40% additional energy cost.

Thus, increased write buffering at the FAL has a consid-
erable impact on reducing the energy consumption of flash
write operations – consequently, the FAL write buffer should
be as large as possible.

Higher Layer Buffer size: In our log-structured design,
chunks are passed down from the object layer to FAL and
are not guaranteed to be stored contiguously on flash. As a
result, reads of consecutive chunks need to be performed one
at a time since consecutive object chunks are not necessarily
spatially adjacent on flash. To amortize the read cost, data
buffering needs to be performed at the object or application
layer. We aim to find the appropriate size of the higher layer
buffer through this experiment.

Figure 6 shows how the size of the chunk impacts the cost
of flash reads. Similar to write costs, the per-byte cost of a
read reduces with increasing buffer sizes. The read cost re-
duces sharply by 72% as the buffer size increases from 8
bytes to 64 bytes. However, beyond 64 bytes the per byte
cost decreases more slowly and larger read buffers have rel-
atively less impact. For example, increasing the write buffer
from 128 bytes to 512 bytes results in a gain of 0.17µJ,
whereas the same increase in read buffer size results in a
gain of only 0.024µJ, i.e. only 14% of the write benefit.

Thus, approximately 64 bytes of data buffering at the stor-
age object or application layer is sufficient to obtain good
energy efficiency for flash read operations.

7.2 Performance of Basic Storage Objects
In this section, we first evaluate the energy efficiency of

each access method supported by the core Capsule objects.
Then, we present some important trade-offs that arise in the
choice of chunk size based on the access pattern of an object,
using the Index object as a case study. Finally, we measure
the performance of compaction and checkpointing.



Figure 7. Breakdown of energy consumed by the operations sup-
ported by core Capsule storage objects storing 64 bytes of data. The
operations resulting in writes to FAL consume substantially less energy
than the read operations.

7.2.1 Energy consumption of Object operations
Table 4 shows an analysis of the energy consumption of

the access methods supported by the core objects. In this ex-
periment, we benchmark the energy consumption of methods
on different objects for a specific choice of operating param-
eters. For the Stack, Queue, and Stream objects, we assume
that there are 5 elements stored in the object (N = 5), each
of size 64 bytes (d = 64). The Index object is assumed to
have a two-level index where the second level is cached in
memory, and the first-level is read from and written to flash
as discussed in Section 5.2.4. We assume that each node
of the index structure can hold 5 pointers (k = 5) to the next
lower level. In addition to this, the FAL uses a 512 byte write
buffer. Our micro-benchmarks are specific to this set ofN, d
andk parameters.

Figure 7 provides a breakdown of the energy consumption
of individual methods supported by Capsule objects. The
energy cost of thepush operation supported by the Stack is
34% lower than thatpop, as thepush is buffered in FAL
while thepop results in a read to flash. Theenqueue op-
eration on the Queue object has the same cost as thepush
operation as both of them effectively add a new element to
the front of the list. These operations are all independent of
N. The firstdequeue(1) operation corresponds to removing
one element from the Queue and is 3.7 times more expensive
thanenqueue, since it results in additional pointer traversal
upto the start of the list (Section 5.2.2). However, the costof
the fifth dequeue,dequeue(5) is the same as that of a stack
pop, showing the dependence ofdequeue cost onN.

The Stream object combines traversal methods of both
the Stack and the Queue – theappend operation maps to a
push, previous operation maps to apop and thenext to the
dequeue. The cost exhibited by the Stream in Figure 7 con-
firm this. Theget operation supported by the Index object
turns out to be 52% more expensive than theset method and
independent ofN – again, this is due to write-buffering being
performed by FAL for theset. Our measurements verify the
cost analysis presented in Table 4.

7.2.2 Impact of Access Pattern and Chunk Size
The access pattern of an object has considerable impact

on the energy consumed for object creation and lookup, and
we evaluate this in the context of the Index object (refer Sec-

tion 5.2.4). We consider four different access patterns in this
study: sequential and random insert, and sequential and ran-
dom lookup. Our evaluation has two parts. First, we ana-
lytically determine the energy cost for each access pattern.
Second, we quantify the cost for different combinations of
insertion and lookup to identify the best choice of chunk size
in each case. This study only considers the cost of index-
ing, and does not include the cost of storing or accessing the
opaque datapointed to by the index.

Cost Analysis: We use the following terms for our anal-
ysis: the size of each index node isd, the number of pointers
in each index node isk, and the height of the tree isH. The
cost of writingd bytes of data isW(d) and reading isR(d)
as per Equations 1 and 2 respectively.

Insertion into the Index object has two steps — first,H
index chunks (root to leaf) are read from flash to memory,
then insertion results inH index writes from the leaf up the
root as we described in Section 5.2.4. Index lookup opera-
tions need to read in theH index chunks corresponding to
each level of the tree before retrieving the stored data.

Sequential Insert:If data is inserted in sequence, nodes of
the index tree can be cached and are written only when the
next element crosses the range supported by the node — this
reduces the number of re-writes. Since one chunk write and
chunk read is performed for each of theH levels for every
k elements, the amortized cost associated with inserting an
element sequentially is:Hk · (W(d)+R(d)).

Random Insert:If data is inserted randomly, each write
results in a read followed by write of an index chunk at each
level of the index. The cost of is:H · (W(d)+R(d)).

Sequential Lookup:Similar to writes, sequential reads
can take advantage of index node caching and prove to
be cheaper – the amortized cost of sequential lookup is:
H
k ·R(d).

Random Lookup:Random reads force each level of the
index to be loaded afresh for each lookup operation, increas-
ing the lookup cost toH ·R(d).

Measurement-driven Analysis: Figure 8 quantifies the
index insertion and lookup costs for varying chunk sizes for
an index of heightH = 2, based on our cost analysis and
index measurements. In this experiment, we fix the number
of elements inserted into the index at 32768 (i.e. N= 32768)
and vary the size of each index noded, and thus the number
of pointers,k, in each index node. We now discuss how to
choose chunk sizes to suit the insert and lookup pattern.

Random Insert - Random Lookup:This scenario corre-
sponds to a value-based index, where elements are inserted
randomly and the lookup is for a specific value. For this case,
Figure 8 shows us that the optimal size of each index node is
the smallest possible – in this case 64 bytes or 15 elements
per node, where each pointer is 4 bytes long.

Random Insert - Sequential Lookup:This scenario will
arise when the time-series data is stored in a value-based in-
dex and the entire index is read sequentially to build, say, a
probability distribution of the data. The choice of index node
size depends on number of inserts as well as the number of
lookups in this case – the insert is optimal at 64 bytes while
the lookup become more efficient after 256 bytes. Small
number of lookups in comparison with inserts mean that we
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Figure 8. Energy consumption of the index for varying insertion and
lookup operational patterns, varying index node sizes – these are as-
sume no associated data. Sequential insert and lookup are substantially
more energy efficient than their random counterparts.

should optimize the insert, while greater number of lookups
indicate that the lookup should be optimized.

Sequential Insert - Sequential Lookup:An index main-
taining time series data would store and later access the data
sequentially. Larger chunk sizes result in better energy opti-
mization, however, a buffer size of 256 bytes is sufficient as
both insert and lookup costs are close to their lowest value.

Sequential Insert - Random Lookup:An index maintain-
ing time-series data would store data sequentially, but tem-
poral queries on past data can result in random lookups. The
optimal size again depends on the number of inserts and
lookups – the insert is optimal at 64 bytes while the lookup
become more efficient after 256 bytes. The ratio of the num-
ber of lookups to inserts would determine the choice of index
size (similar to the random insert-sequential lookup case).

Our experiments show that smaller index chunk sizes are
favorable for random insertion and lookup operations since
smaller sizes lead to lower cost of flash operations. Larger
chunk sizes are better for sequential operations, since they
utilize buffering better, resulting in greater in-memory up-
dates and fewer flash operations.

7.2.3 Memory Reclamation Performance
Memory reclamation (Section 4.2) is triggered using the

compaction interface (see Appendix A) when the flash fills
upto a pre-defined threshold. Our current implementation
uses a simple compaction scheme where the storage objects
read all their valid data and re-write it to the current write
frontier on the flash. We select the stream and index objects
for this experiment. The compaction procedure and costs
for the stack and queue objects are identical to those of the
stream object (Table 4).

In our experimental setup, we trigger compaction when
128 KB of object data has been written to flash; our goal is
to find the worst case time taken for compaction. In the case
of the Stream object, an intermediate stack is used to main-
tain ordering of the elements post-compaction, as discussed
in Section 5.2.3. For the 2 level Index object (discussed in
Section 5.2.4), we set the second level of the index to hold
100 pointers to level 1 index nodes (k1 = 100) and each level
1 node holds pointers to 50 data blobs (k2 = 50). In the ex-
periments, we vary the size of the data being stored in each
object chunk from 32 bytes to 256 bytes, in order to measure
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Figure 9. The energy consumed by compaction not only depends on
the amount of data, but also on the size of each data chunk of the object.
The energy consumed by an Index and a Stream object holding 128KB
of data is shown here for varying chunk data sizes. Larger object-level
buffering requires fewer number of chunks to be read and written – the
compaction costs more than double when changing buffering strategy
from 32 bytes to 256 bytes.

the range of compaction costs. We first perform a measure-
ment of the energy consumption of the compaction process
followed by a measurement of the time taken.

Energy consumption:Figure 9 shows the energy cost of
compaction in comparison to the cost of sequential data in-
sertion. We first consider the write and compaction costs
for the Stream object – we observe that increasing chunk
size reduces the cost of writing and compacting. The re-
duction in write costs is attributed to reduced header over-
head of writing fewer chunks. The reduction in the stream
compaction cost is considerably greater. As the size of data
chunks increase, the number of elements in the stream de-
creases, which results in fewer pointer reads and writes to
the intermediate stack during the compaction phase. Addi-
tionally, the efficiency of both read and write operations im-
proves as the data size increases (refer Section 7.1). The
compaction overhead can be reduced considerably by in-
creasing the chunk size from 32 to 128 bytes – in fact, the
savings equal about three times the cost of writing the orig-
inal data. Further increase in chunk size results in smaller
improvements in compaction performance.

The write and compaction costs for the Index object fol-
low a similar overall trend. Interestingly, the write cost for
the Index object is greater than that of the Stream object
whereas the compaction cost of the Stream object is consid-
erably higher than that for the Index object. This is because
creating an Index object is more expensive due to the writing
and reading of the level 1 index nodes. The compaction of
the Index is less expensive than Stream compaction because
Index compaction requires only a depth-first traversal of the
index, while Stream compaction requires the creation and
traversal of the intermediate pointer stack, which requires
additional energy. If the fraction of discarded data isf for
either the stream or the index, then the cost of compaction
will be (1− f ) times the corresponding point in Figure 9.

Latency: Figure 10 shows the latency of the compaction
operation. This is also an important measure of compaction
as no operation can be performed on the object while the ob-
ject is being compacted. We find that in all cases the entire
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Figure 10. The compaction time of the storage object is linked to both
the amount of data the object holds and the size of each data chunk. The
time taken to compact an Index and a Stream object holding 128KB of
data is shown here for different data chunk sizes.

Operation Latency (µs) Energy consumption (µJ)
Checkpoint 996 82.5
Rollback 284 42.1
Restore 460 50.87

Table 5. Energy consumption and latency of performing checkpoint-
ing operations on a Stream and Index object.

compaction operation executes in less than 5 seconds. This
can be improved to 2.5 seconds for the Stream and to 2 sec-
onds for the Index by increasing the data size to 128 bytes.
This shows us that even while compacting 128K of object
data, the storage object will be unavailable only for a short
duration and this can be dealt with easily by providing some
minimal application-level buffering.

The energy and latency results of compaction show that
these operations can be performed efficiently on a small sen-
sor platform. We find that a buffer size of 128 bytes provides
a good balance between the memory needs of compaction
and the energy consumption/latency of the process.
7.2.4 Checkpointing

Capsule supports checkpointing with the help of the spe-
cial Checkpoint component that permits three operations:
checkpoint, rollback andrestore. For our experiment,
we consider a Stream and an Index object and link these to a
single Checkpoint component. We then perform each of the
operations permitted on the Checkpoint component and mea-
sure the latency of the operation and the energy consumed
by the device – Table 5 presents our results. We see that the
latency of all the operations is less than 1 ms. The energy
consumption of thecheckpoint operation is approximately
3 times that of a stackpush operation or only 2 times that
of a pop operation with 64 bytes of data. The energy con-
sumed by therestore operation is a little more than that
of performing apop, and the cost ofrollback is equiva-
lent to the cost of performing apop operation on the stack.
These measurements indicate that checkpointing support in
Capsule is extremely low-cost and energy-efficient, allowing
Capsule to support data consistency and crash recovery with
minimal additional overhead.

7.3 Experimental Evaluation
Having discussed the performance of the basic objects

provided in Capsule, we evaluate how these objects can be
used by applications and system components. In particular,

Figure 11. Component level breakdown of a Mica2 application using
the light sensor (MicaSB - MTS 300) and storing 12000 sensor readings
in a Stream-Index object in batches of 60 readings each. It also stores
batches of 1200 readings in an Index object and performs a computa-
tion on this stored data, batching 10 of these results and transmitting
them (1% duty cycling). The measurements shown are per cycle.

we highlight how the choice of appropriate object parame-
ters can impact the overall energy consumption. We discuss
an archival storage and indexing application that performs
sensing, storage and communication. Our second experi-
ment performs an empirical comparison between our Cap-
sule file system implementation and Matchbox.

7.3.1 Archival Storage and Indexing
Sensors are commonly used for archival storage and in-

dexing and this experiment focuses on the energy consump-
tion of Capsule in comparison to the storage, communica-
tion and sensing sub-systems. Our Mica2 application uses
the photo sensor on the MicaSB [2] to measure the light in-
tensity once every second; 60 sensor readings are batched
in-memory, and then stored in the stream-index object. This
batch is also stored in a separate index object and every 1200
sensor readings, we access the stored readings performing
a simple averaging operation requiring sequential traversal
of the data stored in this index. The result is stored as a
summary along with a tag indicating the relevant part of the
stored data stream in the stream-index object. When 10 sum-
maries accumulate, they are then transmitted together in a
single 20 byte packet to the base-station using the CC1000
radio on the Mica2 [26], using BMAC [16] and set to 1%
duty cycling. We neglect the effects of sleep, wakeup and
packet loss, which in fact would adversely impact the sens-
ing and radio measurements.

Figure 11 shows the results of our experiment – a
component-level breakdown of the energy consumption of
the storage, communication and sensing sub-systems for this
application per cycle. We observe that Capsule consumes
only 14.5% of the total energy consumption, having written
48000 bytes of sensed data and subsequently reading 24000
bytes. The communication subsystem comes in second, con-
suming 20.1% of the total energy to transmit only 20 bytes
of data, with the sensing occupying the remaining 65.4% and
capturing 12000 sensor readings.

This demonstrates that using Capsule in sensor applica-
tions is feasible and extremely energy-efficient, while permit-
ting the application to process large datasets.

7.3.2 Comparison with Matchbox
We now compare our implementation of a file system

based on Capsule (Section 5.3.2) with Matchbox[5]. Our



Capsule Matchbox
Energy
(mJ)

Latency
(ms)

Energy
(mJ)

Latency
(ms)

Create 1.79 19.16 1.03 14.16
Write (80b x 10) 8.83 85.6 10.57 91.60
Open 0.0093 0.184 0.093 1.384
Read (80b x 10) 1.20 18.440 1.12 16.520
Total (c+w,o+r) 11.83 123.4 12.82 123.7
Write Bandwidth 18.0kbps 11.3kbps
Read Bandwidth 54.2kbps 60.4kbps
Memory Foot-print 1.5K RAM, 18.7K ROM 0.9Kb RAM, 20.1K ROM

Table 6. Energy consumption and latency of Matchbox and Capsule
operations.

implementation also provides the following additional fea-
tures: the ability to work with multiple files simultaneously,
random access to a block in the file, modifying previously
written data, and file consistency guarantees even in the event
of system failure in the middle of a write operation.

Our experiment was performed on the Mica2 [26], using
the platform’s Atmel NOR flash. On both file systems, we
created a new file and wrote 80 bytes of data in each of 10
consecutive operations (a total of 800 bytes). We then closed
the file, re-opened it and read the 800 bytes similarly in 10
consecutive read operations of 80 bytes each. Table 6 shows
the performance of the Capsule file system in comparison
to Matchbox. The memory foot-print of both file systems
is comparable; providing support for checkpointing as well
as buffering at FAL, file and the index objects are the rea-
son for the higher RAM foot-print of Capsule. The individ-
ual energy consumption of file system operations on both is
comparable. The write bandwidth provided by the Capsule
file system is 59% more than Matchbox while the read band-
width lags by 10%. Considering the net energy consumption
of the experiment, the Capsule file system turns out to be 8%
more energy-efficient than Matchbox while taking approx-
imately the same amount of time.Thus, our Capsule file
system implementation provides rich additional features at
an energy cost equivalent or less than that of Matchbox.

8 Related Work
There have been four other efforts at building a sensor

storage system that we are aware of: Matchbox [5], ELF
[3], MicroHash [27] and TFFS [4]. Other filesystems like
YAFFS2 [25] and JFFS2 [24] are targeted at portable de-
vices such as laptops and PDAs and do not have sensor-
specific implementations. A direct head-to-head compar-
ison between Capsule and Matchbox is provided in Sec-
tion 7.3.2, where we show that Capsule provides additional
features at a lower or comparable cost. One of the difficulties
that we faced in performing a direct quantitative compari-
son against MicroHash was that it had been implemented on
a custom node (the RISE platform [13]) which has signifi-
cantly greater memory than available on the Motes that we
use. Thus, our discussion of the relative merits and demerits
of these approaches is restricted to a qualitative one.

Energy Efficiency:Of the systems that we compare, only
MicroHash and Capsule make claims about energy effi-
ciency. MicroHash is, in essense, an implementation of Cap-
sule’s Stream-Index object for SD-cards with greater empha-
sis on the indexing and lookup techniques than in our paper.

A fundamental difference between the two systems is that
MicroHash uses a page buffer for reads as well as writes, and
does not provide the ability to tune the chunk size to the ac-
cess pattern. This is unlike our system, which can adapt the
choice of the chunk sizes to the insert and lookup patterns,
thereby better optimizing energy-efficiency (Section 7.2.2).

Portability: Embedded platform design is an area of con-
siderable churn, as evident from the plethora of sensor plat-
forms that are being developed and used by research groups.
Storage subsystems for these platforms differ in the type of
flash (NAND or NOR), page size (256b to 4096b), erase
block size (256b to 64KB), bus speeds (SPI or parallel), and
energy consumption. It is therefore essential to design a gen-
eral purpose storage system that can be easily ported to a new
platform with a new storage subsystem, while being suffi-
ciently flexible to enable developers to take advantage of new
architectures. We believe Capsule achieves these dual goals
– it currently works on the Mica2, Mica2dot (both NOR) and
our custom NAND board; the Telos port is work in progress.

Functionality: In comparison to the research effort that
has gone into the design of the radio stack on sensors, there
have been relatively few efforts at building the sensor stor-
age system. As storage becomes a more important part of
sensor network design, increased attention is needed to ad-
dress questions of storage capacity, failure handling, long-
term use, and energy consumption that are not addressed by
existing efforts. Capsule attempts to fill this gap by building
up a functionally complete storage system for sensors.

Other Efforts: There have been a number of object and
file systems developed for disks that relate to our work, such
as LFS, a log-structured file system [21], and Vagabond [15]
a temporal log-structured object database. However, Capsule
is designed specifically for sensor platforms using NAND
or NOR flash memory based storage and for energy effi-
ciency, rather than for goals of disk-based read-write op-
timization, security and network sharing. The differences
in hardware and optimization metrics also makes the com-
paction techniques that we use in Capsule significantly dif-
ferent from storage reclamation techniques for disks such as
hole-plugging [23] and heuristic cleaning [1].

9 Conclusions
Storage is an essential component of data-centric sen-

sor applications. Recent gains in energy-efficiency of new-
generation NAND flash storage strengthen the case for in-
network storage by data-centric sensor network applications.
In this paper, we argue that a simple file system abstraction
is inadequate for realizing the full benefits of flash storagein
data-centric applications. Instead, we advocate a rich object
storage abstraction to support flexible use of the storage sys-
tem for a variety of application needs and one that is specif-
ically optimized for memory and energy-constrained sensor
platforms. We proposedCapsule, an energy-optimized log-
structured object storage system for flash memories that en-
ables sensor applications to exploit storage resources in a
multitude of ways. Capsule employs a hardware abstraction
layer that hides the vagaries of flash memories from the ap-
plication and supports highly energy-optimized implemen-
tations of commonly used storage objects such as streams,



files, arrays, queues and lists. Further, Capsule supports
checkpointing and rollback to tolerate software faults in sen-
sor applications running on inexpensive, unreliable hard-
ware. Our Capsule implementation is portable and currently
supports the Mica2 and Mica2Dot NOR flash as well as our
custom-built NAND flash memory board. Our experiments
demonstrated that our system provides greater functionality,
more tunability, and greater energy-efficiency than existing
sensor storage solutions, while operating within the resource
constraints of the Mica2.

Future Work: We plan to examine the platform-specific
design of Capsule in light of more resource-rich platforms
such as the iMote2. For example, a memory-rich platform
would allow Capsule to use a per-object log-segment alloca-
tion strategy that would place each object’s data chunks con-
tiguously, permitting FAL to do read-buffering. We are also
working on fabricating an SPI based NAND flash daughter
board for the Telos.
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Appendix A Capsule Interfaces
interface FAL {
command result_t write(ObjectPtr optr, bool chksum,

FlashPtr fptr);
event void writeDone(result_t res);
command result_t read(ObjectPtr optr, bool chksum);
event void readDone(ObjectPtr optr, result_t res);
command result_t rawWrite(DataPtr optr, bool chksum,

FlashPtr fptr);
event void rawWriteDone(result_t res);
command result_t rawRead(DataPtr optr, bool chksum);
event void rawReadDone(DataPtr optr, result_t res);
command result_t flush();
event void flushDone(result_t res);

}

interface Compaction {
command result_t compact();
event void compactionDone(result_t res);

}

interface Stream-Index {
command result_t init(bool ecc);
command result_t add(StreamIndexPtr data, datalen_t len);
event void addDone(result_t res);
command result_t setTag();
event void setTagDone(result_t res, uint tag);
command result_t getTag(uint tag, StreamIndexPtr data,

datalen_t *len);
event void getTagDone(result_t res);
command result_t seek(uint skipBackNodes);
event void seekDone(result_t res);
command result_t next();
command result_t previous();
event void traversalDone(result_t res);
command result_t invalidate();

}

interface Serialize {
command result_t checkpoint(uint8_t *buffer, datalen_t *len);
command result_t restore(uint8_t *buffer, datalen_t *len);

}

interface Checkpoint {
command result_t init(bool priority);
command result_t checkpoint();
event void checkpointDone(result_t result);
command result_t rollback();
event void rollbackDone(result_t result);

}


