
An Analytical Model for Multi-tier Internet Services
and Its Applications∗

Bhuvan Urgaonkar, Giovanni Pacifici†, Prashant Shenoy, Mike Spreitzer†, and Asser Tantawi†

Dept. of Computer Science, † Service Management Middleware Dept.,
University of Massachusetts, IBM T. J. Watson Research Center,

Amherst, MA 01003 Hawthorne, NY 10532
{bhuvan,shenoy}@cs.umass.edu {giovanni,mspreitz,tantawi}@us.ibm.com

ABSTRACT
Since many Internet applications employ a multi-tier architecture,
in this paper, we focus on the problem of analytically modeling the
behavior of such applications. We present a model based on a net-
work of queues, where the queues represent different tiers of the
application. Our model is sufficiently general to capture (i) the be-
havior of tiers with significantly different performance characteris-
tics and (ii) application idiosyncrasies such as session-based work-
loads, concurrency limits, and caching at intermediate tiers. We
validate our model using real multi-tier applications running on a
Linux server cluster. Our experiments indicate that our model faith-
fully captures the performance of these applications for a number
of workloads and configurations. For a variety of scenarios, includ-
ing those with caching at one of the application tiers, the average
response times predicted by our model were within the 95% confi-
dence intervals of the observed average response times. Our exper-
iments also demonstrate the utility of the model for dynamic capac-
ity provisioning, performance prediction, bottleneck identification,
and session policing. In one scenario, where the request arrival
rate increased from less than 1500 to nearly 4200 requests/min, a
dynamic provisioning technique employing our model was able to
maintain response time targets by increasing the capacity of two of
the application tiers by factors of 2 and 3.5, respectively.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Measurement, Performance, Experimentation

∗Portions of this research were done when Bhuvan Urgaonkar was
a summer intern at IBM T. J. Watson Research Center. This re-
search was supported in part by NSF grants CCR-9984030, CNS-
0323597, and EIA-0080119.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’05, June 6–10, 2005, Banff, Alberta, Canada.
Copyright 2005 ACM 1-59593-022-1/05/0006 ...$5.00.

Keywords
Queuing model, MVA algorithm, Internet application

1. INTRODUCTION

1.1 Motivation
Internet applications such as online news, retail, and financial

sites have become commonplace in recent years. Modern Internet
applications are complex software systems that employ a multi-tier
architecture and are replicated or distributed on a cluster of servers.
Each tier provides a certain functionality to its preceding tier and
makes use of the functionality provided by its successor to carry
out its part of the overall request processing. For instance, a typical
e-commerce application consists of three tiers—a front-end Web
tier that is responsible for HTTP processing, a middle tier Java en-
terprise server that implements core application functionality, and
a backend database that stores product catalogs and user orders. In
this example, incoming requests undergo HTTP processing, pro-
cessing by Java application server, and trigger queries or transac-
tions at the database.

This paper focuses on analytically modeling the behavior of multi-
tier Internet applications. Such a model is important for the follow-
ing reasons: (i) capacity provisioning, which enables a server farm
to determine how much capacity to allocate to an application in or-
der for it to service its peak workload; (ii) performance prediction,
which enables the response time of the application to be determined
for a given workload and a given hardware and software configura-
tion, (iii) application configuration, which enables various config-
uration parameters of the application to be determined for a certain
performance goal, (iv) bottleneck identification and tuning, which
enables system bottlenecks to be identified for purposes of tuning,
and (v) request policing, which enables the application to turn away
excess requests during transient overloads.

Modeling of single-tier applications such as vanilla Web servers
(e.g., Apache) is well studied [4, 12, 17]. In contrast, modeling of
multi-tier applications is less well studied, even though this flexible
architecture is widely used for constructing Internet applications
and services. Extending single-tier models to multi-tier scenarios is
non-trivial due to the following reasons. First, various application
tiers such as Web, Java, and database servers have vastly different
performance characteristics and collectively modeling their behav-
ior is a difficult task. Further, in a multi-tier application, (i) there
may be concurrency limits at one or more tiers, and (iii) caching
may be employed at intermediate tiers—all of which complicate
the performance modeling. Finally, modern Internet workloads
are session-based, where each session comprises a sequence of re-

quests with think-times in between. For instance, a session at an
online retailer comprises the sequence of user requests to browse
the product catalog and to make a purchase. Sessions are stateful
from the perspective of the application, an aspect that must be in-
corporated into the model. The design of an analytical model that
can capture the impact of these factors is the focus of this paper.

1.2 Research Contributions
This paper presents a model of a multi-tier Internet application

based on a network of queues, where the queues represent different
tiers of the application. Our model can handle applications with
an arbitrary number of tiers and those with significantly different
performance characteristics. A key contribution of our work is that
the complex task of modeling a multi-tier application is reduced to
the modeling of request processing at individual tiers and the flow
of requests across tiers. Our model is inherently designed to handle
session-based workloads and can account for application idiosyn-
crasies such as caching effects and concurrency limits at each tier.

We validate the model using two open-source multi-tier applica-
tions running on a Linux-based server cluster. We demonstrate the
ability of our model to accurately capture the effects of a num-
ber of commonly used techniques such as query caching at the
database tier and class-based service differentiation. For a vari-
ety of scenarios, including an online auction application employ-
ing query caching at its database tier, the average response times
predicted by our model were within the 95% confidence intervals
of the observed average response times. We conduct a detailed ex-
perimental study using our prototype to demonstrate the utility of
our model for the purposes of dynamic provisioning, response time
prediction, application configuration, and request policing. Our ex-
periments demonstrate the ability of our model to correctly iden-
tify bottlenecks in the system and the shifting of bottlenecks due
to variations in the Internet workload. In one scenario, where the
arrival rate to an application increased from 1500 to nearly 4200 re-
quests/min, our model was able to continue meeting response time
targets by successfully identifying the two bottleneck tiers and in-
creasing their capacity by factors of 2 and 3.5, respectively.

The remainder of this paper is structured as follows. Section
2 provides an overview of multi-tier applications and related work.
We describe our model in Sections 3 and 4. Sections 6 and 7 present
experimental validation of the model and an illustration of its ap-
plications respectively. Finally, Section 8 presents our conclusions.

2. BACKGROUND AND RELATED WORK
This section provides an overview of multi-tier applications and

the underlying server platform assumed in our work. We also dis-
cuss related work in the area.

2.1 Internet Application Architecture
Modern Internet applications are designed using multiple tiers

(the terms Internet application and service are used interchange-
ably in this paper). A multi-tier architecture provides a flexible,
modular approach for designing such applications. Each applica-
tion tier provides certain functionality to its preceding tier and uses
the functionality provided by its successor to carry out its part of
the overall request processing. The various tiers participate in the
processing of each incoming request during its lifetime in the sys-
tem. Depending on the processing demand, a tier may be replicated
using clustering techniques. In such an event, a dispatcher is used at
each replicated tier to distribute requests among the replicas for the
purpose of load balancing. Figure 1 depicts a three-tier application
where the first two tiers are replicated, while the third one is not.
Such an architecture is commonly employed by e-commerce appli-

Tier 1 (non−replicated)Sentry

Drop sessions
(if needed)

Policing Balancer
Load

Tier 1

Tier 2

Tier 3

Tier 2
dispatcherdispatcher

Individual server

Figure 1: A three-tier application.

cations where a clustered Web server and a clustered Java applica-
tion server constitute the first two tiers, and the third tier consists
of a non-replicable database.1

The workload of an Internet application is assumed to be session-
based, where a session consists of a succession of requests issued
by a client with think times in between. If a session is stateful,
which is often the case, successive requests will need to be serviced
by the same server at each tier, and the dispatcher will need account
for this server state when redirecting requests.

As shown in Figure 1, each application employs a sentry that po-
lices incoming sessions to an application’s server pool—incoming
sessions are subjected to admission control at the sentry to ensure
that the contracted performance guarantees are met; excess sessions
are turned away during overloads.

We assume that Internet applications typically run on a server
cluster that is commonly referred to as a data center. In this work,
we assume that each tier of an application (or each replica of a tier)
runs on a separate server. This is referred to as dedicated hosting,
where each application runs on a subset of the servers and a server
is allocated to at most one application tier at any given time. Un-
like shared hosting where multiple small applications share each
server, dedicated hosting is used for running large clustered ap-
plications where server sharing is infeasible due to the workload
demand imposed on each individual application.

Given an Internet application, we assume that it specifies its de-
sired performance requirement in the form of a service-level agree-
ment (SLA). The SLA assumed in this work is a bound on the av-
erage response time that is acceptable to the application. For in-
stance, the application SLA may specify that the average response
time should not exceed one second regardless of the workload.

2.2 Request Processing in Multi-tier
Applications

Consider a multi-tier application consisting of M tiers denoted
by T1, T2 through TM . In the simplest case, each request is pro-
cessed exactly once by tier Ti and then forwarded to tier Ti+1 for
further processing. Once the result is computed by the final tier
TM , it is sent back to TM−1, which processes this result and sends
it to TM−2 and so on. Thus, the result is processed by each tier
in the reverse order until it reaches T1, which then sends it to the
client. Figure 2 illustrates the steps involved in processing a “bid”
request at a three-tier online auction site. The figure shows how
the request trickles downstream and how the result propagates up-
stream through the various tiers.

More complex processing at the tiers is also possible. In such
scenarios, each request can visit a tier multiple times. As an ex-

1Traditionally database servers have employed a shared-nothing
architecture that does not support replication. However, certain
new databases employ a shared-everything architecture [13] that
supports clustering and replication but with certain constraints.

ample, consider a keyword search at an online superstore, which
triggers a query on the music catalog, a query on the book catalog
and so on. These queries can be issued to the database tier sequen-
tially, where each query is issued after the result of the previous
query has been received, or in parallel. Thus, in the general case,
each request at tier Ti can trigger multiple requests to tier Ti+1. In
the sequential case, each of these requests is issued to Ti+1 once
the result of the previous request has finished. In the parallel case,
all requests are issued to Ti+1 at once. In both cases, all results are
merged and then sent back to the upstream tier Ti−1.

2.3 Related Work
Modeling of single-tier Internet applications, of which HTTP

servers are the most common example, has been studied exten-
sively. A queuing model of a Web server serving static content was
proposed in [17]. The model employs a network of four queues—
two modeling the Web server itself, and the other two modeling
the Internet communication network. A queuing model for perfor-
mance prediction of single-tier Web servers with static content was
proposed in [4]. This approach (i) explicitly models CPU, mem-
ory, and disk bandwidth in the Web server, (ii) utilizes knowledge
of file size and popularity distributions, and (iii) relates average re-
sponse time to available resources. A GPS-based queuing model of
a single resource, such as the CPU, at a Web server was proposed
in [3]. The model is parameterized by online measurements and is
used to determine the resource allocation needed to meet desired
average response time targets. A G/G/1 queuing model for repli-
cated single-tier applications (e.g., clustered Web servers) has been
proposed in [18]. The architecture and prototype implementation
of a performance management system for cluster-based Web ser-
vices was proposed in [11]. The work employs an M/M/1 queuing
model to compute responses times of Web requests. A model of a
Web server for the purpose of performance control using classical
feedback control theory was studied in [1]; an implementation and
evaluation using the Apache Web server was also presented in the
work. A combination of a Markov chain model and a queuing net-
work model to capture the operation of a Web server was presented
in [12]—the former model represents the software architecture em-
ployed by the Web server (e.g. process-based versus thread-based)
while the latter computes the Web server’s throughput.

Since these efforts focus primarily on single-tier Web servers,
they are not directly applicable to applications employing multiple
tiers, or to components such as Java enterprise servers or database
servers employed by multi-tier applications. Further, many of the
above efforts assume static Web content, while multi-tier applica-
tions, by their very nature, serve dynamic Web content.

A few recent efforts have focused on the modeling of multi-tier
applications. However, many of these efforts either make simpli-
fying assumptions or are based on simple extensions of single-tier
models. A number of papers have taken the approach of model-
ing only the most constrained or the most bottlenecked tier of the
application. For instance, [20] considers the problem of provision-
ing servers for only the Java application tier; it uses an M/G/1/PS
model for each server in this tier. Similarly, the Java application
tier of an e-commerce application with N servers is modeled as a
G/G/N queuing system in [14]. Other efforts have modeled the en-
tire multi-tier application using a single queue—an example is [7],
that uses a M/GI/1/PS model for an e-commerce application. While
these approaches are useful for specific scenarios, they have many
limitations. For instance, modeling only a single bottlenecked tier
of a multi-tier application will fail to capture caching effects at
other tiers. Such a model can not be used for capacity provision-
ing of other tiers. Finally, as we show in our experiments, system

Client

1. Client

2. HTTP
3. J2EE
4. J2EE
5. J2EE
6. HTTP

Database (EJB issues queries, database responds)

HTTP (response sent to HTTP server)
Client (response sent to client)

 (EJB constructs response)

J2EE (servlet invokes EJB)

1 2
3

56

HTTP server J2EE server

4

Database server

HTTP (place bid on some item)

Figure 2: Request processing in an online auction application.

bottlenecks can shift from one tier to another with changes in work-
load characteristics. Under these scenarios, there is no single tier
that is the “most constrained”. In this paper, we present a model
of a multi-tier application that overcomes these drawbacks. Our
model explicitly accounts for the presence of all tiers and also cap-
tures application artifacts such as session-based workloads, caching
effects, and concurrency limits.

3. A MODEL FOR A MULTI-TIER
INTERNET APPLICATION

In this section, we present a baseline queuing model for a multi-
tier Internet application, followed by enhancements to the model to
capture certain application idiosyncrasies.

3.1 The Basic Queuing Model
Consider an application with M tiers denoted by T1, · · · , TM .

To begin with we assume that no tier is replicated—each tier is as-
sumed to run on exactly one server. In Section 5 we describe a
simple enhancement to our model to capture the presence of repli-
cated tiers.

Modeling Multiple Tiers: We model the application using a
network of of M queues, Q1, · · · ,QM (see Figure 3). Each queue
represents an application tier and the underlying server that it runs
on. We assume a processor sharing (PS) discipline at each queue,
since it closely approximates the scheduling policies employed by
most commodity operating systems (e.g., Linux CPU time-sharing).

When a request arrives at tier Ti it triggers one or more requests
at its subsequent tier Ti+1; recall the example of a keyword search
that triggers multiple queries at different product catalogs. In our
queuing model, we can capture this phenomenon by allowing a re-
quest to make multiple visits to each of the queues during its overall
execution. This is achieved by introducing a transition from each
queue to its predecessor, as shown in Figure 3. A request, after
some processing at queue Qi, either returns to Qi−1 with a cer-
tain probability pi or proceeds to Qi+1 with probability (1 − pi).
The only exceptions are the last tier queue QM , where all requests
return to the previous queue, and the first queue Q1, where a transi-
tion to the preceding queue denotes request completion. As argued
in Section 3.2, our model can handle multiple visits to a tier regard-
less of whether they occur sequentially or in parallel.

Observe that caching effects are naturally captured by this model.
If caching is employed at tier Ti, a cache hit causes the request to
immediately return to the previous queue Qi−1 without triggering
any work in queues Qi+1 or later. Thus, the impact of cache hits
and misses can be incorporated by appropriately determining the
transition probability pi and the service time of a request at Qi.

Modeling Sessions: Recall from Section 2 that Internet work-
loads are session-based. A session issues one or more requests dur-

...

...

Q2 QMQ1

1 2

Q

Tier 1 Tier 2 Tier M

p

p
2

p
3

M

M
p

1

1 1−p
2

1−p1−p
M−1

Sessions

...
0

S S S

Z

Z

Z

Figure 3: Modeling a multi-tier application using a network of
queues.

ing its lifetime, one after another, with think times in between (we
refer to this duration as the user think time). Typical sessions in
an Internet application may last several minutes. Thus, our model
needs to capture the relatively long-lived nature of sessions as well
as the response times of individual requests within a session.

We do so by augmenting our queuing network with a subsystem
modeling the active sessions of the application. We model sessions
using an infinite server queuing system, Q0, that feeds our network
of queues and forms the closed-queuing system shown in Figure 3.
The servers in Q0 capture the session-based nature of the workload
as follows. Each active session is assumed to “occupy” one server
in Q0. As shown in Figure 3, a request issued by a session emanates
from a server in Q0 and enters the application at Q1. It then moves
through the queues Q1, · · · ,QM , possibly visiting some queues
multiple times (as captured by the transitions from each tier to its
preceding tier) and getting processed at the visited queues. Eventu-
ally, its processing completes, and it returns to a server in Q0. The
time spent at this server models the think time of the user; the next
request of the session is issued subsequently. The infinite server
system also enables the model to capture the independence of the
user think times from the request service times at the application.

Let Si denote the service time of a request at Qi (1 ≤ i ≤ M).
Also, pi denotes the probability of a request making a transition
from Qi to Qi−1 (note that pM = 1); p1 denotes the probability
of transition from Q1 to Q0. Finally, let Z denote the service time
at any server in Q0 (which is essentially the user think time). Our
model requires these parameters as inputs in order to compute the
average end-to-end response time of a request.

Our discussion thus far has implicitly assumed that sessions never
terminate. In practice, the number of sessions being serviced will
vary as existing sessions terminate and new sessions arrive. Our
model can compute the mean response time for a given number of
concurrent sessions N . This property can be used for admission
control at the application sentry, as discussed in Section 7.2.

3.2 Deriving Response Times From the Model
The Mean-Value Analysis (MVA) algorithm [15] for closed-queuing

networks can be used to compute the mean response time experi-
enced by a request in our network of queues. The MVA algorithm
is based on the following key queuing theory result: In product-
form closed queuing networks2, when a request moves from queue

2The term product-form applies to any queuing network in which
the expression for the equilibrium probability has the form of
P (n1, · · · , nM) = 1

G(N)
πM

i=1fi(ni) where fi(n1) is some func-

tion of the number of jobs at the ith queue, G(N) is a normalizing
constant. Product form solutions are known to exist for a broad

Qi to another queue Qj , it sees, at the time of its arrival at Qj ,
a system with the same statistics as a system with one less cus-
tomer. Consider a product-form closed-queuing network with N
customers. Let Ām(N) denote the average number of customers
in queue Qm seen by an arriving customer. Let L̄m(N) denote the
average length of queue Qm in such a system. Then, the above
result implies

Ām(N) = L̄m(N − 1) (1)

Given this result, the MVA algorithm iteratively computes the
average response time of a request. The MVA algorithm uses Equa-
tion 1 to introduce customers into the queuing network, one by
one, and determines the resulting average delays at various queues
at each step. It terminates when all N customers have been in-
troduced, and yields the average response time experienced by N
concurrent customers. Note that a session in our model corresponds
to a customer in the result described by Equation 1. The MVA al-
gorithm for an M -tier Internet application servicing N sessions
simultaneously is presented in Algorithm 1 and the associated no-
tation is in Table 1.

The algorithm uses the notion of a visit ratio for each queue Q1,
· · · , QM . The visit ratio Vm for queue Qm (1 ≤ m ≤ M) is
defined as the average number of visits made by a request to Qm

during its processing (that is, from when it emanates from Q0 and
when it returns to it). Visit ratios are easy to compute from the
transition probabilities p1, · · · , pM and provide an alternate repre-
sentation of the queuing network. The use of visit ratios in lieu
of transition probabilities enables the model to capture multiple
visits to a tier regardless of whether they occur sequentially or in
parallel—the visit ratio is only concerned with the mean number of
visits made by a request to a queue and not when or in what order
these visits occur.

Thus, given the average service times and visit ratios for the
queues, the average think time of a session, and the number of con-
current sessions, the algorithm computes the average response time
R̄ of a request.

3.3 Estimating the Model Parameters
In order to compute the response time, the model requires sev-

eral parameters as inputs. In practice, these parameters can be es-
timated by monitoring the application as it services its workload.
To do so, we assume that the underlying operating system and ap-
plication software components (such as the Apache Web server)
provide monitoring hooks to enable accurate estimation of these
parameters. Our experience with the Linux-based multi-tier appli-
cations used in our experiments is that such functionality is either
already available or can be implemented at a modest cost. The rest
of this section describes how the various model parameters can be
estimated in practice.

Estimating visit ratios: The visit ratio for any tier of a multi-
tier application is the average number of times that tier is invoked
during a request’s lifetime. Let λreq denote the number of requests
serviced by the entire application over a duration t. Then the visit
ratio for tier Ti can be simply estimated as

Vi ≈
λi

λreq

where λi is the number of requests serviced by that tier in that
duration. By choosing a suitably large duration t, a good estimate
for Vi can be obtained. We note that the visit ratios are easy to
estimate in an online fashion. The number of requests serviced

class of networks, including ones where the scheduling discipline
at each queue is processor sharing (PS).

input : N, S̄m, Vm, 1 ≤ m ≤ M ; Z̄
output : R̄m (avg. delay at Qm), R̄ (avg. resp. time)

initialization:

R̄0 = D̄0 = Z̄; L̄0 = 0;

for m = 1 to M do
L̄m = 0;
D̄m = VmS̄m /* service demand at each queue */;

end
/* introduce N customers, one by one */

for n = 1 to N do
for m = 1 to M do

R̄m = D̄m(1 + L̄m) /* avg. delay at each que.*/;
end

τ =

(

n

R̄0 +
∑M

m=1 R̄m

)

/* throughput */;

for m = 1 to M do
L̄m = τ · R̄m /* update queue lengths (little’s law) */;

end
L̄0 = τ · R̄0;

end

R̄ =
∑m=M

m=1 R̄m /* response time */;

Algorithm 1: Mean-value analysis algorithm for an M -tier ap-
plication.

by the application λreq can be monitored at the application sentry.
For each tier, the number of serviced requests can be determined
by real-time processing of the tier logs. In the database tier, for
instance, the number of queries and transactions processed over a
duration t can be determined by processing the database log using
a script.

Estimating service times: Application components such as Web,
Java, and database servers all support extensive logging facilities
and can log a variety of useful information about each serviced re-
quest. In particular, these components can log the residence time
of individual requests as observed at that tier—the residence time
includes the time spent by the request at this tier and all the sub-
sequent tiers that processed this request. This logging facility can
be used to estimate per-tier service times. Let X̄i denote the av-
erage per-request residence time at tier Ti. We start by estimating
the mean service time at the last tier. Since this tier does not in-
voke services from any other tiers, the request execution time at
this tier under lightly loaded conditions is an excellent estimate of
the service time. Thus, we have,

S̄M ≈ X̄M

Let Si, Xi, and ni be random variables denoting the service time
of a request at a tier Ti, residence time of a request at tier Ti, and
the number of times Ti requests service from Ti+1 as part of the
overall request processing, respectively. Then, under lightly loaded
conditions,

Si = Xi − ni · Xi+1, 1 ≤ i < M.

Taking averages on both sides, we get,

S̄i = X̄i − E [ni · Xi+1]

Since ni and Xi+1 are independent, this gives us,

S̄i = X̄i − n̄i · X̄i+1 = X̄i −

(

Vi+1

Vi

)

· X̄i+1

Symbol Meaning

M Number of application tiers
N Number of sessions
Qm Queue representing tier Tm (1 ≤ m ≤ M)
Q0 Inf. server system to capture sessions
Z̄ User think time
S̄m Avg. per-request service time at Qm

L̄m Avg. length of Qm

τ Throughput
R̄m Avg. per-request delay at Qm

R̄ Avg. per-request response time
D̄m Avg. per-request service demand at Qm

Vm Visit ratio for Qm

Ām Avg. num. customers in Qm

seen by an arriving customer

Table 1: Notation used in describing the MVA algorithm.

Thus, the service times at tiers T1, · · · , TM−1 can be estimated.
Estimating think times: The average user think time, Z̄, can

be obtained by recording the arrival and finish times of individual
requests at the sentry. Z̄ is estimated as the average time elapsed
between when a request finishes and when the next request (belong-
ing to the same session) arrives at the sentry. By using a sufficient
number of observations, we can obtain a good estimate of Z̄.

Increased Service Times During Overloads: Our estimation
of the tier-specific service times assumed lightly loaded conditions.
As the load on a tier grows, software overheads such as waiting on
locks, virtual memory paging, and context switch overheads, that
are not captured by our model, can become significant components
of the request processing time.

Incorporating the impact of increased context switching over-
head or contention for memory or locks into our model is non-
trivial. Rather than explicitly modeling these effects, we implicitly
account for their impact by associating increased service times with
requests under heavy loads. We use the Utilization Law [10] for a
queuing system which states that S = ρ/τ , where ρ and τ are the
queue utilization and throughput, respectively3. Consequently, we
can improve our estimate of the average service time at tier Ti as

S̄′
i = max

(

S̄i,
ρi

τi

)

where ρi is the utilization of the busiest resource (e.g. CPU, disk,
or network interface) and τi is the tier throughput. Since all mod-
ern operating systems support facilities for monitoring system per-
formance (e.g., the sysstat package in Linux [16]), the utilizations
of various resources are easy to obtain online. Similarly, the tier
throughput τi can be determined at the dispatcher (or from logs) by
counting the number of completed requests in a duration t.

4. HANDLING CONCURRENCY LIMITS
AT TIERS

The software components of an Internet application have limits
on the amount of concurrency they can handle. For instance, the
Apache Web server uses a configurable parameter to limit the num-
ber of concurrent threads or processes that are spawned to service
requests. This limit prevents the resident memory size of Apache
3It should be noted that ρ and τ are measured values of utiliza-
tion and throughput respectively, and not values obtained using the
MVA algorithm.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500

A
vg

. r
es

p.
 ti

m
e

(m
se

c)

Num. simult. sessions

Observed
Basic Model

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500

A
vg

. r
es

p.
 ti

m
e

(m
se

c)

Num. simult. sessions

Observed
Enhanced Model

(a) Baseline model (b) Enhanced model

Figure 4: Response time of Rubis with 95% confidence inter-
vals. A concurrency limit of 150 for Apache and 75 for the Java
servlet tier is used. Figure (a) depicts the deviation of the base-
line model from observed behavior when concurrency limit is
reached. Figure (b) depicts the ability of the enhanced model to
capture this effect.

from exceeding the available RAM and prevents thrashing. Con-
nections are turned away when this limit is reached. Other tiers
impose similar limits. This section proposes an enhancement to
our baseline model to capture the effect of such limits.

Our baseline model assumes that each tier can service an un-
bounded number of simultaneous requests and fails to capture the
behavior of the application when the concurrency limit is reached at
any tier. This is depicted in Figure 4(a), which shows the response
time of a three-tier application called Rubis that is configured with
a concurrency limit of 150 for the Apache Web server and a limit
of 75 for the middle Java tier (details of the application appear in
Section 6.1). As shown, the response times predicted by the model
match the observed response times until the concurrency limit is
reached. Beyond this point, the model continues to assume an in-
creasing number of simultaneous requests being serviced and pre-
dicts an increase in response time, while the actual response time of
successful requests shows a flat trend due to an increasing number
of dropped requests.

In general, when the concurrency limit is reached at tier Ti, one
of two actions are possible: (1) the tier can silently drop additional
requests and rely upon a timeout mechanism in tier Ti−1 to de-
tect these drops, or (2) the tier can explicitly notify tier Ti−1 of its
inability to serve the request (by returning an error message). In ei-
ther case, tier Ti−1 may reissue the request some number of times
before abandoning its attempts. It will then either drop the request
or explicitly notify its preceding tier. Finally, tier T1 can notify the
client of the failure.

Rather than distinguishing these possibilities, we employ a gen-
eral approach for capturing these effects. Let Ki denote the con-
currency limit at Qi. To capture requests that are dropped at tier
Ti when its concurrency limit is reached, we add additional transi-
tions, one for each queue representing a tier, to the basic model that
we presented in Figure 3. At the entrance of Qi, we add a transi-
tion into an infinite server queuing subsystem Qdrop

i . Let pdrop
i de-

note the probability of a request transiting from Qi−1 to Qdrop
i as

shown in Figure 5. Qdrop
i has a mean service time of Xdrop

i . This
enhancement allows us to distinguish between the processing of
requests that get dropped due to concurrency limits and those that
are processed successfully. Requests that are processed success-
fully are modeled exactly as in the basic model. Requests that are
dropped at tier Ti experience some delay in the subsystem Qdrop

i

before returning to Q0—this models the delay between when a re-
quest is dropped at tier Ti and when this information gets propa-
gated to the client that initiated the request.

...

...

...

...

Sessions Tier 1 Tier 2 Tier M

Q Q Q
1 M2

1 2 M

1
p

p
2

p p
M3

drop
QM2Q

drop
Q

drop

1

S S S

... ...
Q

0

p
2

drop
p
M
droppdrop

1

Figure 5: Multi-tier application model enhanced to handle con-
currency limits.

Like in the baseline model, we can use the MVA algorithm to
compute the response time of a request. The algorithm computes
the fraction of requests that finish successfully and those that en-
counter failures, as well as the delays experienced by both types of
requests. To do so, we need to estimate the additional parameters
that we have added to our basic model, namely, pdrop

i and Xdrop
i

for each tier Ti.
Estimating pdrop

i : Our approach to estimate pdrop
i consists of

the following two steps.

Step 1 : Estimate throughput of the queuing network if there were
no concurrency limits: Solve the queuing network shown in
Figure 5 using the MVA algorithm using pdrop

i = 0 (i.e.,
assuming that the queues have no concurrency limits). Let
λ denote the throughput computed by the MVA algorithm in
this step.

Step 2 : Estimate pdrop
i : Treat Qi as an open, finite-buffer M/M/1/Ki

queue with arrival rate λVi (using the λ computed in Step 1).
Estimate pdrop

i as the probability of buffer overflow in this
M/M/1/Ki queue [8].

Estimating Xdrop
i : An estimate of Xdrop

i is application-specific
and depends on the manner in which information about dropped
requests is conveyed to the client, and how the client responds to
it. In our current model we make the simplifying assumption that
upon detecting a failed request, the client reissues the request. This
is captured by the transitions from Qdrop

i back to Q0 in Figure
5. Our approach for estimating Xdrop

i is to subject the application
to an offline workload that causes the limit to be exceeded only
at tier Ti (this can be achieved by setting a low concurrency limit
at that tier and sufficiently high limits at all the other tiers), and
then record the response times of the requests that do not finish
successfully. Xdrop

i is then estimated as the difference between
the average response time of these unsuccessful requests and the
sum of the service times at tiers T1, · · · , Ti−1 multiplied by the
respective visit ratios.

In Figure 4(b) we plot the response times for Rubis as predicted
by our enhanced model. We find that this enhancement enables
us to capture the behavior of the Rubis application even when its
concurrency limit is reached.

5. OTHER ENHANCEMENTS AND SALIENT
FEATURES

Our closed queuing model has several desirable features and can
also be enhanced in other ways.

• Replication and load imbalances: Recall that our baseline
model assumes a single server (queue) per tier and conse-
quently does not support the notion of replication at a tier.
We now enhance our model to handle this scenario. Due to
lack of space, we present the details in [19]. Let ri denote
the number of replicas at tier Ti. Our approach to capture
replication at tier Ti is to replace the single queue Qi with ri

queues, Q1
i , · · · , Qri

i , one for each replica. A request in any
queue can now make a transition to any of the ri−1 queues
of the previous tier or to any of the ri+1 queues of the next
tier. In general, whenever a tier is replicated, a dispatcher is
necessary to distribute requests to replicas. The dispatcher
determines which request to forward to which replica and
directly influences the transitions made by a request. The
dispatcher is also responsible for balancing load across repli-
cas. We make the simplifying assumption of perfect load
balancing. In a perfectly load balanced system, each replica
processes 1

ri

fraction of the total workload of that tier. This
implies that the visit ratios of the various replicas at tier Ti

can be chosen as

V j
i = Vi/ri

In general, however, load imbalances may arise due to factors
like an affinity of sessions for particular replicas. We are
currently refining our enhancement to take such effects into
account.

• Handling Multiple Session Classes: Internet applications typ-
ically classify incoming sessions into multiple classes. To il-
lustrate, an online brokerage Web site may define three classes
and may map financial transactions to the Gold class, cus-
tomer requests such as balance inquiries to the Silver class,
and casual browsing requests from non-customers to the Bronze
class. Typically such classification helps the application sen-
try to preferentially admit requests from more important classes
during overloads and drop requests from less important classes.
We can extend our baseline model to account for the pres-
ence of different session classes and to compute the response
time of requests within each class. Consider an Internet ap-
plication with L session classes: C1, C2, . . . , CL. Assume
that the sentry implements a classification algorithm to map
each incoming session to one of these classes. We can use a
straightforward extension of the MVA algorithm to deal with
multiple session classes. We note that this algorithm requires
the visit ratios, service times, and think time to be measured
on a per-class basis. Given a L-tuple (N1, · · · , NL) of ses-
sions belonging to the L classes that are simultaneously ser-
viced by the application, the algorithm can compute the av-
erage delays incurred at each queue and the end-to-end re-
sponse time on a per-class basis. In Section 7.2 we discuss
how this algorithm can be used to flexibly implement ses-
sion policing policies in an Internet application. Our model
currently does not handle the presence of multiple session
classes when concurrency limits exist at the tiers of an appli-
cation. Dealing with multiple session classes in the presence
of concurrency limits is part of ongoing work.

• Simplicity: For an M -tier application with N concurrent ses-
sions, the MVA algorithm has a time complexity of O(MN).

The algorithm is simple to implement, and as argued earlier,
the model parameters are easy to measure online.

• Generality: Our model can handle an application with arbi-
trary number of tiers. Further, when the scheduling disci-
pline is processor sharing (PS), the MVA algorithm works
without making any assumptions about the service time dis-
tributions of the customers [10]. This feature is highly de-
sirable for two reasons: (1) it is representative of scheduling
policies in commodity operating systems (e.g., Linux’s CPU
time-sharing), and (2) it implies that our model is sufficiently
general to handle workloads with an arbitrary service time
requirements.4

While our model is able to capture a number of application id-
iosyncrasies, certain scenarios are not explicitly captured.

• Multiple resources: We model each server occupied by a tier
using a single queue. In reality, the server contains various
resources such as the CPU, disk, memory, and the network
interface. Our model currently does not capture the utiliza-
tion of various server resources by a request at a tier. An
enhancement to the model where various resources within a
server are modeled as a network of queues is the subject of
future work.

• Resources held simultaneously at multiple tiers: Our model
essentially captures the passage of a request through the tiers
of an application as a juxtaposition of periods, during each
of which the request utilizes the resources at exactly one tier.
Although this is a reasonable assumption for a large class
of Internet applications, it does not apply to certain Internet
applications such as streaming video servers. A video server
that is constructed as a pipeline of processing modules will
have all of its modules or “tiers” active as it continuously
processes and streams a video to a client. Our model does
not apply to such applications.

6. MODEL VALIDATION
In this section we present our experimental setup followed by

our experimental validation of the model.

6.1 Experimental Setup
Applications: We use two open-source multi-tier applications in

our experimental study. Rubis implements the core functionality of
an eBay like auction site: selling, browsing, and bidding. It imple-
ments three types of user sessions, has nine tables in the database
and defines 26 interactions that can be accessed from the clients’
Web browsers. Rubbos is a bulletin-board application modeled af-
ter an online news forum like Slashdot. Users have two different
levels of access: regular user and moderator. The main tables in
the database are the users, stories, comments, and submissions ta-
bles. Rubbos provides 24 Web interactions. Both applications were
developed by the DynaServer group at Rice University [5]. Each
application contains a Java-based client that generates a session-
oriented workload. We modified these clients to generate the work-
loads and take the measurements needed by our experiments. We
chose an average duration of 5 min for the sessions of both Rubis

4The applicability of the MVA algorithm is more restricted with
some other scheduling disciplines. E.g., in the presence of a FIFO
scheduling discipline at a queue, the service time at a queue needs
to be exponentially distributed for the MVA algorithm to be appli-
cable.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 20 40 60 80 100

A
vg

. r
es

p.
 ti

m
e

(m
se

c)

Num. simult. sessions

Observed
Model

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 20 40 60 80 100

A
vg

. r
es

id
en

ce
 ti

m
e

(m
se

c)

Num. simult. sessions

Obs. at Apache
Obs. at Tomcat

Model at Apache
Model at Tomcat

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 20 40 60 80 100

A
vg

. C
P

U
 u

sa
ge

 (
%

)

Num. simult. sessions

Apache
Tomcat

Mysql

(a) Response time (b) Residence times (c) CPU utilizations

Figure 7: Rubis based on Java servlets: bottleneck at CPU of database tier. The concurrency limits for the Apache Web server and
the Java servlets container were set to be 150 and 75, respectively.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500

A
vg

. r
es

id
en

ce
 ti

m
e

(m
se

c)

Num. simult. sessions

Apache, Obs.
Tomcat, Obs.

Apache, Basic
Tomcat, Basic
Apache, Enh.
Tomcat, Enh.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500

A
vg

. C
P

U
 u

sa
ge

 (
%

)

Num. simult. sessions

Apache
Tomcat

Mysql

(a) Residence times (b) CPU utilizations

Figure 6: Rubis based on Java servlets: bottleneck at CPU of
middle tier. The concurrency limits for the Apache Web server
and the Java servlets container were set to be 150 and 75, re-
spectively.

and Rubbos. For both applications, the think time was chosen from
an exponential distribution with a mean of 1 sec.

We used 3-tier versions of these applications. The front tier
was based on Apache 2.0.48 Web server. We experimented with
two implementations of the middle tier for Rubis—(i) based on
Java servlets, and (ii) based on Sun’s J2EE Enterprise Java Beans
(EJBs). The middle tier for Rubbos was based on Java servlets. We
employed Tomcat 4.1.29 as the servlets container and JBoss 3.2.2
as the EJB container. We used Kernel TCP Virtual Server (ktcpvs)
version 0.0.14 [9] to implement the application sentry. ktcpvs is an
open-source, Layer-7 request dispatcher implemented as a Linux
kernel module. Request dispatching for the middle tier was per-
formed by an Apache module called mod jk. Finally, the database
tier was based on the Mysql 4.0.18 database server.

Hosting environment: We conducted experiments with the ap-
plications hosted on two different kinds of machines. The first host-
ing environment consisted of IBM servers (model 6565-3BU) with
662 MHz processors and 256MB RAM connected by 100Mbps eth-
ernet. The second setting, used for experiments reported in Section
7, had Dell servers with 2.8GHz processors and 512MB RAM in-
terconnected using gigabit ethernet. This served to verify that our
model was flexible enough to capture applications running on dif-
ferent types of machines. Finally, the workload generators were
run on machines with Pentium-III processors with speeds 450MHz-
1GHz and RAM sizes in the range 128-512MB. The workload gen-
erators were always assigned enough machines so as not to be a
bottleneck. All the machines ran the Linux 2.4.20 kernel.

6.2 Performance Prediction
We conduct a set of experiments with the purpose of ascertaining

the ability of our model to predict the response time of multi-tier
applications. We experiment with (i) two kinds of applications (Ru-
bis and Rubbos), (ii) two different implementations of Rubis (based
on Java servlets and EJBs), and (iii) different workloads for Rubis.
Each of the three application tiers are assigned one server. We vary
the number of concurrent sessions seen by the application and mea-
sure the average response times of successfully finished requests
over 30 sec intervals. Each experiment lasts 30 min. We compute
the average response time and the 95% confidence intervals from
these observations.

Our first experiment uses Rubis with a Java servlets-based mid-
dle tier. We use two different workloads—W1: CPU-intensive on
the Java servlets tier, and W2: CPU-intensive on the database tier.
These were created by modifying the Rubis client so that it gener-
ated an increased fraction of requests that stressed the desired tier.
Earlier, in Figure 4(b) we had presented the average response time
and 95% confidence intervals for the workload W1. Also plot-
ted were the average response times predicted by our basic model
and our model enhanced to handle concurrency limits. Addition-
ally, we present the observed and predicted residence times in Fig-
ure 6(a). Figure 6(b) shows that the CPU on the Java servlets tier
becomes saturated beyond 100 sessions for this workload. As al-
ready explained in Section 4, the basic model fails to capture the
response times for workloads higher than about 100 sessions due
to an increase in the fraction of requests that arrive at the Apache
and servlets tiers only to be dropped because of the tiers operating
at their concurrency limits. We find that our enhanced model is
able to capture the effect of dropped requests at these high work-
loads and continues to predict response times well for the entire
workload range.

Figure 7 plots the response times, the residence times, and the
server CPU utilizations for servlets-based Rubis subjected to the
workload W2 with varying number of sessions. As shown in Fig-
ure 7(c), the CPU on the database server is the bottleneck resource
for this workload. We find that our basic model captures response
times well. The predicted response times are within the 95% confi-
dence interval of the observed average response time for the entire
workload range.

Next, we repeat the experiment described above with Rubis based
on an EJB-based middle tier. Our results are presented in Figure 8.
Again, our basic model captures the response time well until the
concurrency limits at Apache and JBoss are reached. As the num-
ber of sessions grows beyond this point, increasingly large fractions
of requests are dropped, the request throughput saturates, and the
response time of requests that finish successfully shows a flat trend.
Our enhancement to the model is found to capture this effect well.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500

A
vg

. r
es

p.
 ti

m
e

(m
se

c)

Num. simult. sessions

Observed
Basic Model

Enhanced Model

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500

A
vg

. C
P

U
 u

sa
ge

 (
%

)

Num. simult. sessions

Apache
JBoss
Mysql

(a) Response time (b) CPU utilizations

Figure 8: Rubis based on EJB: bottleneck at CPU of middle
tier. The concurrency limits for the Apache Web server and the
Java servlets container were set to be 150 and 75, respectively.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500

A
vg

. r
es

p.
 ti

m
e

(m
se

c)

Num. simult. sessions

Observed
Basic Model

Enhanced Model

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500

A
vg

. C
P

U
 u

sa
ge

 (
%

)

Num. simult. sessions

Apache
Tomcat

Mysql

(a) Response time (b) CPU utilizations

Figure 9: Rubbos based on Java servlets: bottleneck at CPU of
middle tier. The concurrency limits for the Apache Web server
and the Java servlets container were set to be 150 and 75, re-
spectively.

Finally, we repeat the above experiment with the Rubbos appli-
cation. We use a Java servlets based middle tier for Rubbos and
subject the application to the workload W1 that is CPU-intensive
on the servlets tier. Figure 9 presents the observed and predicted
response times as well as the server CPU utilizations. We find that
our enhanced model predicts response times well over the chosen
workload range for Rubbos.

6.3 Query Caching at the Database
Recent versions of the Mysql server feature a query cache. When

in use, the query cache stores the text of a SELECT query to-
gether with the corresponding result that was sent to the client. If
the identical query is received later, the server retrieves the results
from the query cache rather than parsing and executing the query
again. Query caching at the database has the effect of reducing the
average service time at the database tier. We conduct an experi-
ment to determine how well our model can capture the impact of
query caching on response time. We subject Rubbos to a workload
consisting of 50 simultaneous sessions. To simulate different de-
grees of query caching at Mysql, we use a feature of Mysql queries
that allows the issuer of a query to specify that the database server
not use its cache for servicing this query5. We modified the Rub-
bos servlets to make them request different fractions of the queries
with this option. For each degree of caching we plot the average
response time with 95% confidence intervals in Figure 10. As ex-
pected, the observed response time decreases steadily as the degree
of query caching increases—the average response time is nearly
1400 msec without query caching and reduces to about 100 msec
when all the queries are cached. In Figure 10 we also plot the av-

5Specifically, replacing a SELECT with SELECT
SQL NO CACHE ensures that Mysql does not cache this query.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

A
vg

. r
es

p.
 ti

m
e

(m
se

c)

Degree of query caching

Observed
Model

Figure 10: Caching at the database tier of Rubbos.

erage response time predicted by our model for different degrees
of caching. We find that our model is able to capture well the im-
pact of the reduced query processing time with increasing degrees
of caching on average response time. The predicted response times
are found to be within the 95% confidence interval of the observed
response times for the entire range of query caching.

6.4 Multiple Session Classes
We created two classes of Rubis sessions using the workloads

W1 and W2 respectively. Recall that the requests in these classes
have different service time requirements at different tiers—W1 is
CPU-intensive on the Java servlets tier while W2 is CPU intensive
on the database tier. We conduct two sets of experiments, each of
which involves keeping the number of sessions of one class fixed at
10 and varying the number of sessions of the other class. We then
compute the per-class average response time predicted by the multi-
class version of our model (Section 5). We plot the observed and
predicted response times for the two classes in Figure 11. While
the predicted response times closely match the observed values for
the first experiment, in the second experiment (Figure 11(b)), we
observe that our model underestimates the response time for class
1 for 50 sessions—we attribute this to an inaccurate estimation of
the service time of class 1 requests at the servlets tier at this load.

7. APPLICATIONS OF THE MODEL
In this section we demonstrate some applications of our model

for managing resources in a data center.

7.1 Dynamic Capacity Provisioning
Dynamic capacity provisioning is a useful technique for han-

dling the multi-time-scale variations seen in Internet workloads.
The goal of dynamic provisioning is to dynamically allocate suf-
ficient capacity to the tiers of an application so that its response
time needs can be met even in the presence of the peak workload.
Two key components of a dynamic provisioning technique are: (i)
predicting the workload of an application, and (ii) determining the
capacity needed to serve this predicted workload. The former prob-
lem has been addressed in papers such as [6]. The workload esti-
mates made by such predictors can be used by our model to address
the issue of how much capacity to provision. Observe that the in-
puts to our model-based provisioning technique are the workload
characteristics, number of sessions to be serviced simultaneously,
and the response time target, and the desired output is a capacity
assignment for the application. We start with an initial assignment
of one server to each tier. We use the MVA algorithm to determine
the resulting average response time as described in Sections 3, 4,

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35 40 45 50

A
vg

. r
es

p.
 ti

m
e

(m
se

c)

Num. class 2 sessions

Observed for class 1
Observed for class 2
Predicted for class 1
Predicted for class 2

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

A
vg

. r
es

p.
 ti

m
e

(m
se

c)

Num. class 1 sessions

Observed for class 1
Observed for class 2
Predicted for class 1
Predicted for class 2

(a) Ten class-1 sessions (b) Ten class-2 sessions

Figure 11: Rubis serving sessions of two classes. Sessions of class 1 were generated using workload W1 while those of class 2 were
generated using workload W2.

and 5. In case this is worse than the target, we use the MVA algo-
rithm to determine, for each replicable tier, the response time re-
sulting from the addition of one more server to it. We add a server
to the tier that results in the most improvement in response time.
We repeat this till we have an assignment for which the predicted
response time is below the target—this assignment yields the ca-
pacity to be assigned to the application’s tiers6. The above provi-
sioning procedure has a time complexity of O(kMN), where k is
the number of servers that the application is eventually assigned, M
is the the number of tiers, and N is the number of sessions. Since
provisioning decisions are typically made over periods of tens of
minutes or hours, this overhead is practically feasible.

We conduct an experiment to demonstrate the application of our
model to dynamically provision Rubis configured using Java servlets
at its middle tier. We assume an idealized workload predictor that
can accurately forecast the workload for the near future. We gen-
erated a 1-hour long session arrival process based on a Web trace
from the 1998 Soccer World Cup site [2]; this is shown in Figure
12(a). Sessions are generated according to this arrival process using
workload W1.

We implemented a provisioning unit that invokes the model-
based procedure described above every 10 min to determine the
capacity required to handle the workload during the next interval.
Our goal was to maintain an average response time of 1 sec for
Rubis requests. Since our model requires the number of simultane-
ous sessions as input, the provisioning unit converted the peak rate
during the next interval into an estimate of the number of simul-
taneous sessions for which to allocate capacity using Little’s Law
[8] as N = Λ · d, where Λ is the peak session arrival rate during
the next interval as given by the predictor and d is the average ses-
sion duration. The provisioning unit ran on a separate server. It
implemented scripts that remotely log on to the application sentry
and the dispatchers for the affected tiers after every re-computation
to enforce the newly computed allocations. The concurrency limits
of the Apache Web server and the Tomcat servlets container were
both set to 100. We present the working of our provisioning unit
and the performance of Rubis in Figure 12(b). The provisioning
unit is successful in changing the capacity of the servlets tier to

6Note that our current discussion assumes that it is always possible
to meet the response time target by adding enough servers. Some-
times this may not be possible (e.g., due to the workload exceeding
the entire available capacity, or a non-replicable tier becoming sat-
urated) and we may have to employ admission control in addition
to provisioning. This is discussed in Section 7.2.

match the workload—recall that workload W1 is CPU intensive
on this tier. The session arrival rate goes up from about 10 sess/min
at t = 20 min to nearly 30 sess/min at t = 40 min. Correspond-
ingly, the request arrival rate increases from about 1500 req/min to
about 4200 req/min. The provisioning unit increases the number
of Tomcat replicas from 2 to a maximum of 7 during the experi-
ment. Further, at t = 30 min, the number of simultaneous ses-
sions during the upcoming 10 min interval is predicted to be higher
than the concurrency limit of the Apache tier. To prevent new ses-
sions being dropped due to the connection limit being reached at
Apache, a second Apache server is added to the application. Thus,
our model-based provisioning is able to identify potential bottle-
necks at different tiers (connections at Apache and CPU at Tomcat)
and maintain response time targets by adding capacity appropri-
ately. We note that the single-tier models described in Section 2.3
will only be able to add capacity to one tier and will fail to capture
such changing bottlenecks.

7.2 Session Policing and Class-based
Differentiation

Internet applications are known to experience unexpected surges
in their workload, known as flash crowds [21]. Therefore an im-
portant component of any such application is a sentry that polices
incoming sessions to an application’s server pool—incoming ses-
sions are subjected to admission control at the sentry to ensure that
the contracted performance guarantees are met; excess sessions are
turned away during overloads. In an application supporting mul-
tiple classes of sessions, with possibly different response time re-
quirements and revenue schemes for different classes, it is desirable
to design a sentry that, during a flash crowd, can determine a subset
of sessions admitting which would optimize a meaningful metric.
An example of such a metric could be the overall expected revenue
generated by the admitted sessions while meeting their response
time targets (this constraint on response times will be assumed to
hold in the rest of our discussion without being stated). Formally,
given L session classes, C1, · · · , CL, with up to Ni sessions of
class Ci and using overall revenue as the metric to be optimized,
the goal of the sentry is to determine an L-tuple (Nadmit

1 , · · · ,
Nadmit

L) such that

∀ni ≤ Ni(1 ≤ i ≤ L),
∑

i

revi(N
admit
i) ≥

∑

i

revi(ni)

where revi(ni) denotes the revenue generated by ni admitted ses-
sions of Ci.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60

ar
riv

al
s

pe
r

m
in

Time (min)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60
 0

 2

 4

 6

 8

 10

 12

 14

 16

A
vg

 re
sp

 ti
m

e
(m

se
c)

N
um

be
r o

f s
er

ve
rs

Time (min)

Resp. time
Num. Apache
Num. Tomcat

(a) Arrivals (b) Server allocs. and resp. time

Figure 12: Model-based dynamic provisioning of servers for Rubis.

Our multi-class model described in Section 5 provides a flexible
procedure for realizing this. First observe that the inputs to this
procedure are the workload characteristics of various classes and
the capacity assigned to the application tiers, and the desired out-
put is the number of sessions of each class to admit. In theory, we
could use the multi-class MVA algorithm to determine the revenue
yielded by every admissible L-tuple. Clearly this would be com-
putationally prohibitive. Instead, we use a heuristic that considers
the session classes in a non-increasing order of their revenue-per-
session. For the class under consideration, it adds sessions till ei-
ther all available sessions are exhausted, or adding another session
would cause the response time of at least one class, as predicted by
the model, to violate its target. The outcome of this procedure is an
L-tuple of the number of sessions that can be used by the policer to
make admission control decisions.

We now describe our experiments to demonstrate the working of
the session policer for Rubis. We configured the servlets version
of Rubis with 2 replicas of the servlets tier. Similar to Section 6.4,
we chose W1 and W2 to construct two session classes C1 and C2

respectively. The response time targets for the two classes were
chosen to be 1 sec and 2 sec; the revenue yielded by each admitted
session was assumed to be $0.1 and $1 respectively. We assume
session durations of exactly 10 min for illustrative purposes. We
create the following flash crowd scenarios. We assume that 150
sessions of C1 and 10 sessions of C2 arrive at t = 0; 50 sessions
each of C1 and C2 are assumed to arrive at t = 10 min. Figure
13(a) presents the working of our model-based policer. At t = 0,
based on the procedure described above, the policer first admits all
10 sessions of the class with higher revenue-per-session, namely
C2; it then proceeds to admit as many sessions of C1 as it can (90)
while keeping the average response times under target. At t = 10
min, the policer first admits as many sessions of C2 as it can (21);
it then admits 5 sessions of C1—admitting more would, according
to the model, cause the response time of C2 to be violated. We
find from Figure 13(a) that the response time requirements of both
the classes are met during the experiment. We make two additional
observations: (i) during [0, 10] min, the response time of C2 is
well below its target of 2 sec—this is because there are only 10
sessions of this class, less than the capacity of the database tier for
the desired response time target; since the 90 sessions of C1 stress
mainly the servlets tier (recall the nature of W1 and W2), they have
minimal impact on the response time of C2 sessions, which mainly
exercise the database tier, and (ii) during (10, 20] min, the response
time of C1 is well below its target of 1 sec—this is because the
policer admits only 5 C1 sessions; the servlets tier is lightly loaded

since the C2 sessions do not stress it, and therefore the C1 sessions
experience low response times.

Figure 13(b) demonstrates the impact of admitting more sessions
on application response time. At t = 0, the policer admits excess
C1 sessions—it admits 140 and 10 sessions respectively. We find
that sessions of C1 experience degraded response times (in excess
of 2 sec as opposed to the desired 1 sec). Similarly, at t = 10 min,
it admits excess C2 sessions—it admits 5 and 31 sessions respec-
tively. Now sessions of C2 experience response time violations.
Observe that admitting excess sessions of one class does not cause
a perceptible degradation in the performance of the other class be-
cause they exercise different tiers of the application.

8. CONCLUSIONS
In this paper we presented an analytical model for multi-tier In-

ternet applications. Our model is based on using a network of
queues to represent how the tiers in a multi-tier application co-
operate to process requests. Our model is (i) general enough to
capture Internet applications with an arbitrary number of hetero-
geneous tiers, (ii) is inherently designed to handle session-based
workloads, and (iii) can account for application idiosyncrasies such
as caching effects, the presence of multiple classes of sessions, and
limits on the amount of concurrency at each tier. The model pa-
rameters are easy to measure and update. We validated the model
using two open-source multi-tier applications running on a Linux-
based server cluster. Our experiments demonstrated that our model
faithfully captures the performance of these applications for a va-
riety of workloads and configurations. We demonstrated the utility
of our model in managing resources for Internet applications un-
der varying workloads and shifting bottlenecks. As part of future
work, we plan to investigate the suitability of our model for cap-
turing more diverse workloads (e.g., IO-intensive at certain tiers)
and to design enhancements to handle these. Another direction is
to extend our model to handle other kinds of scheduling disciplines
(such as proportional-share scheduling) at the application servers.
Finally, our model does not capture multiple session classes in the
presence of concurrency limits. We plan to enhance our model to
capture the simultaneous presence of these two artifacts.

9. REFERENCES
[1] T. Abdelzaher, K. G. Shin, and N. Bhatti. Performance

Guarantees for Web Server End-Systems: A
Control-Theoretical Approach. IEEE Transactions on
Parallel and Distributed Systems, 13(1), Jan. 2002.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 5 10 15 20

A
vg

. r
es

p.
 ti

m
e

(m
se

c)

Time (min)

Resp. time C1
Resp. time C2

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 5 10 15 20

A
vg

. r
es

p.
 ti

m
e

(m
se

c)

Time (min)

Resp. time C1
Resp. time C2

(a) Model-based policing (b) Policer admits more than capacity

Figure 13: Maximizing revenue via differentiated session policing in Rubis. The application serves two classes of sessions.

[2] M. Arlitt and T. Jin. Workload Characterization of the 1998
World Cup Web Site. Technical Report HPL-1999-35R1, HP
Labs, 1999.

[3] A. Chandra, W. Gong, and P. Shenoy. Dynamic Resource
Allocation for Shared Data Centers Using Online
Measurements. In Proceedings of Eleventh International
Workshop on Quality of Service (IWQoS 2003), June 2003.

[4] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat.
Model-Based Resource Provisioning in a Web Service
Utility. In Proceedings of the 4th USITS, Mar. 2003.

[5] Dynaserver project. http://compsci.rice.edu/CS/
Systems/DynaServer/.

[6] J. Hellerstein, F. Zhang, and P. Shahabuddin. An Approach
to Predictive Detection for Service Management. In
Proceedings of the IEEE Intl. Conf. on Systems and Network
Management, 1999.

[7] A. Kamra, V. Misra, and E. Nahum. Yaksha: A Controller
for Managing the Performance of 3-Tiered Websites. In
Proceedings of the 12th IWQoS, 2004.

[8] L. Kleinrock. Queueing Systems, Volume 1: Theory. John
Wiley and Sons, Inc., 1975.

[9] Kernel TCP Virtual Server.
http://www.linuxvirtualserver.org/
software/ktcpvs/ktcpvs.html.

[10] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik.
Quantitative System Performance. Prentice–Hall, 1984.

[11] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer,
A. Tantawi, and A. Youssef. Performance Management for
Cluster Based Web Services. In IFIP/IEEE Eighth
International Symposium on Integrated Network
Management, volume 246, pages 247–261, 2003.

[12] D. Menasce. Web Server Software Architectures. In IEEE
Internet Computing, volume 7, November/December 2003.

[13] Oracle9i. http://www.oracle.com/technology/
products/oracle9i.

[14] S. Ranjan, J. Rolia, H. Fu, and E. Knightly. Qos-driven
Server Migration for Internet Data Centers. In Proceedings
of the Tenth International Workshop on Quality of Service
(IWQoS 2002), May 2002.

[15] M. Reiser and S. Lavenberg. Mean-Value Analysis of Closed
Multichain Queuing Networks. In Journal of the Association
for Computing Machinery, volume 27, pages 313–322, 1980.

[16] Sysstat package.
http://freshmeat.net/projects/sysstat.

[17] L. Slothouber. A Model of Web Server Performance. In
Proceedings of the 5th International World Wide Web
Conference, 1996.

[18] B. Urgaonkar and P. Shenoy. Cataclysm: Handling Extreme
Overloads in Internet Services. In Proceedings of the 23rd
Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), July 2004.

[19] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An Analytical Model for Multi-tier Internet
Services and its Applications. Technical report TR04-99,
Department of Computer Science, University of
Massachusetts, October 2004.

[20] D. Villela, P. Pradhan, and D. Rubenstein. Provisioning
Servers in the Application Tier for E-commerce Systems. In
Proceedings of the 12th IWQoS, June 2004.

[21] M. Welsh and D. Culler. Adaptive Overload Control for Busy
Internet Servers. In Proceedings of the 4th USITS, March
2003.

