
Scheduling Communication in Real-Time Sensor Applications �

Huan Li, Prashant Shenoy, Krithi Ramamritham
Department of Computer Science, Dept. of Computer Science and Engineering,

University of Massachusetts, Indian Institute of Technology,
Amherst, MA 01003 Mumbai 400076, India

�lihuan,shenoy�@cs.umass.edu krithi@cse.iitb.ac.in

Abstract

We consider a class of wireless sensor applications—
such as mobile robotics—that impose timeliness con-
straints. We assume that these applications are built us-
ing commodity 802.11 wireless networks and focus on the
problem of providing qualitatively-better QoS during net-
work transmission of sensor data. Our techniques are de-
signed to explicitly avoid network collisions and minimize
the completion time to transmit a set of sensor messages. We
argue that this problem is NP-complete and present three
heuristics, based on edge coloring, to achieve these goals.
Our simulations results show that the minimum weight color
heuristic is robust to increases in communication density
and yields results that are close to the optimal solution.

1 Introduction

The design of wireless sensor applications has received
increased research attention in recent years. A sensor appli-
cation typically includes a collection of sensors that contin-
uously monitor the surrounding environment and a collec-
tion of sinks that aggregate, process, and react to the sen-
sory data. Communication between the sensors and sinks
requires a network; since the inherent nature of many sensor
applications precludes the use of wired networks, wireless
networks are commonly used in such applications.

In this work, we consider a class of wireless sensor ap-
plications that impose timeliness constraints on the trans-
mission and processing of sensory data. We refer to such
applications as real-time sensor applications. An example
of such an application is a team of robots searching for peo-
ple trapped in a building on fire. Each robot is equipped
with a set of sensors such as temperature and pressure mon-
itors, video cameras, GPS, and infra-red monitors. Not all

�This research was supported in part by NSF grants CCR-9984030,
CCR-0098060, CCR-0219520, EIA-0080119 and gifts from IBM, Mi-
crosoft and Intel.

robots may have all of these sensors due to power, weight
and design considerations (e.g., some robots may specialize
in thermal imaging sensors for locating humans, while oth-
ers may carry extra processing elements and fewer sensors).
The robots pool the sensory data from all sensors and use it
to determine where to move next, both individually and as a
group. Since the path for each robot needs to be determined
to ensure timely mobility, the transmission and processing
of sensory data posses timeliness constraints.

The problem of scheduling processing tasks to meet
timeliness constraints in a real-time sensor application was
considered in [8]. In this paper, we focus on the transmis-
sion of sensory data. Traditional wireless network proto-
cols, such as the CSMA/CA-based 802.11 family of pro-
tocols, cannot be directly used in time-sensitive sensor ap-
plications due to the following reasons. First, CSMA/CA
networks do not completely eliminate the possibility of col-
lisions despite the collision avoidance techniques. Second,
senders will back-off exponentially when they sense on-
going transmissions on the channel, which may cause un-
predictable delays. Third, vanilla 802.11 networks suffer
from the blocking problem as observed in [1]. In such net-
works, a node must explicitly request permission to trans-
mit via a “request-to-sent” (RTS) and must receive a “clear-
to-send” (CTS) acknowledgment before sending data. Fur-
ther, all nodes in the vicinity that receive these messages
must avoid transmission for the transmission duration and
are thus blocked. Such a protocol can lead to false block-
ing and blocking propagation as observed in [12] and illus-
trated in Figure 1. As shown in the figure, node �� transmits
data to node�� and node�� is blocked since it within ��’s
transmission range. While �� is blocked, node �� sends a
RTS packet to �� and receives no response. However, node
�� which is within ��’s range also receives the RTS and
is blocked. If �� wishes to send data to �� and issues a
RTS, it will not receive the CTS from �� and has to back
off exponentially although the transmissions �� � �� and
�� � �� can occur in parallel.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 22,2023 at 18:55:10 UTC from IEEE Xplore. Restrictions apply.

S3

R4(Blocked)

R2(Blocked)

R3(Blocked)

S2

S1R1

Figure 1. False blocking problem (blocking
propagates from �� to �� to ��)

In this paper, we consider techniques to avoid such prob-
lems in sensor applications. We exploit the specific char-
acteristics of sensor applications, such as the robotics sce-
nario, to devise network transmission techniques so that col-
lisions are explicitly avoided and the total time for transmit-
ting a set of messages is minimized (by parallelizing non-
interfering transmissions to the extent possible).

We argue that the problem is NP-complete and present
heuristics based on edge coloring to address this problem.
We discuss modifications to our approach to incorporate
timeliness constraints. We also present an ��-based optimal
algorithm to enable comparisons with our heuristics. We
conduct a detailed simulation study to evaluate our heuris-
tics and find that the minimum weight color heuristic is ro-
bust to increases in communication density and yields re-
sults that are close to the optimal solution. In conjunc-
tion with clustering and grouping techniques, we believe
such communication scheduling techniques can adapt well
to large scale sensor networks.

The rest of this paper is structured as follows. Section
2 presents our system model and the problem formulation.
Sections 3 and 4 present our edge coloring-based heuristics
and the optimal solution, respectively. Section 5 presents
simulation results. Section 6 discusses how our scheme
can be extended to handle deadline constraints. Section 7
presents related work and, finally, Section 8 summarizes our
work.

2 Background and Problem Formulation

In this section, we present the system model, and then
formulate the problem of scheduling communication in
real-time sensor applications.

2.1 System Model

Consider a wireless sensor application with � nodes. We
denote designated sender nodes by � and receiver nodes by
�. Each node has a wireless network interface with a cer-
tain transmission range; depending on the exact wireless in-
terface employed (e.g., 802.11b versus 802.11g), different
nodes may have different transmission ranges. Each node
can be a sender or a receiver or both, and no base-stations
are assumed in this environment. A node should be within
the transmission range of a sender to be an eligible receiver,
and all communication is assumed to be unicast. The terms
source and sender as well as sink and receiver are used in-
terchangeably in this paper.

The communication medium is assumed to be shared by
all nodes in the system. If a receiver is within the range of
multiple senders, then interference may happen if more than
one sender attempts to transmit simultaneously. However,
there will be no interference if two receivers are mutually
outside the other sender’s range. In Figure 2, �� is in the
transmission range of sender �� and ��; if both senders at-
tempt to simultaneously communicate with their receivers,
interference may occur. On the other hand, �� can transmit
messages in parallel with either of the other transmissions.
In this work, we assume that the location of each node is
known at all times, and thus the nature of the overlap can
be determined for the purpose of scheduling the network
transmissions. This is a reasonable assumption, since in the
robotics example, robots carry GPS receivers and can addi-
tionally use localization algorithms [10] to precisely deter-
mine their locations.

Observe in Figure 2 that source �� sends data to two
different receivers �� and ��. Such a scenario might re-
sult from the need to transmit data from different sensors on
robot �� to different robots. The unicast nature of the com-
munication necessitates separate messages to each receiver.

To precisely state these assumptions, let ��������� ���
denote that �� is within the transmission range of ��, and
�� � �� denote a message transmission from �� to ��.
We have following system constraints.

� Network Interface Constraint: At any instant, a node
can be either a sender or a receiver, but not both.

� Range Constraint: A node can receive a message only
if it is within the sender’s range, i.e., �� � �� ��
��������� ���.

� Interference Constraint: Two simultaneous transmis-
sions will not interfere if and only if both receivers
are mutually outside the other sender’s range. That
is, ��	 ��
�� ��� � ��� � ��� � ��� �
�������������� � ��� �� � ��� ��

���������� ��� � ��������� � ���.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 22,2023 at 18:55:10 UTC from IEEE Xplore. Restrictions apply.

S2

R3

R2

R4 S3

S1

R1

Figure 2. A communication example

� Unicast Constraint: Each message can have only one
recipient.

Given a set of senders, receivers, their locations and
transmission ranges, the communication scheduler must de-
termine a transmission schedule such that the above con-
straints are satisfied and the time to complete all transmis-
sions is minimized (by parallelizing non-interfering trans-
missions). We refer to this problem as the Optimal Parallel
Communication Scheduling (OParCS) problem.

2.2 Communication Scheduler

In this work, we assume a centralized scheduler for
scheduling message transmissions. This is a reasonable as-
sumption for applications such as robotics since a central-
ized path planner is used to determine the movement for
each robot as well as for the whole group. Consequently,
the scheduler can run in conjunction with the planner to de-
termine when each message should be transmitted.

The scheduler can be invoked periodically or on demand
(like the scheduler studied in Spring System [11]). Upon
each invocation, the scheduler must schedule all messages
that have become ready for transmission since the previous
invocation (thus, a newly arriving message must wait un-
til the next scheduling instance before it can be scheduled
for transmission). When invoked, the scheduler considers
the current schedule (i.e., the messages that were sched-
uled in a prior invocation and are awaiting transmission) and
all newly arrived messages at each node. Two approaches
are possible for generating a new schedule. In the first ap-
proach, the unsent messages and the new messages are con-
sidered to compute a new schedule. The second approach
is incremental—it determines a new schedule for the new
messages and appends that schedule to the current sched-
ule; the approach essentially assigns a transmission time to
each new message while keeping the current schedule un-
changed. In either case, the transmission times are then
conveyed to the corresponding sender nodes.

2.3 Graph-based Representation of the Problem

Consider a set of messages that are awaiting transmis-
sion at various nodes. The scheduling problem can be for-
mulated using a weighted, directed graph � � �����, in
which each vertex denotes a node in the sensor application,
and a directed edge from vertex �� to �� indicates that a
message needs to be sent from �� to �� . The weight � of
the edge denotes the transmission cost (time) and is a func-
tion of the message length (and the transmission rate). We
refer to this graph as the communication graph. Each vertex
is associated with a transmission range, therefore, the inter-
ference set, � � � � �, includes all pairwise edges that
will incur interference if messages are transmitted through
those edges at the same time. If the range of each transmis-
sion is known in advance, we can obtain the interference
set by checking the interference constraints in polynomial
time. Given such a graph and associated interference set,
the OParCS problem can be formulated as follows.

Input: Graph � � �����, a weight function � that
assigns a positive weight to each edge, and the interference
constraint set � � � ��.

Problem: Find a partition of E into disjoint sets
��� ��� � � � � �� such that,

1. ���� �� � ��� ���� ��� 	� � ,

2. ���� �� � ��� ��� �� do not share a common endpoint
in �,

3.
�

������������
������ is minimized.

The first condition avoids interference during message
transmissions, while the second condition addresses the net-
work interface and unicast constraints; the range constraint
is implied in the input.

Proposition 1: The OParCS problem is NP-complete.
The problem is NP-complete even if all weights are equal.

The proof is given in [7].

3 Heuristic Communication Scheduling

Consider a simplified version of the problem where all
messages are of equal length (edge weights are normalized
to 1) and there is no interference between any of the mes-
sages. In this case, the only constraint is that all adjacent
edges (sharing a common endpoint) cannot be scheduled
simultaneously. Since an edge coloring of a graph is an
assignment of colors to the edges such that adjacent edges
receive distinct colors, we can color the edges so that edges
with the same color can be scheduled simultaneously. In
this simplified version, the number of colors in the edge
coloring is equivalent to the time slots taken to schedule the
transmission. However, determining the minimum number
of colors is also NP-Complete [5].

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 22,2023 at 18:55:10 UTC from IEEE Xplore. Restrictions apply.

In this section, we propose polynomial time heuristics
for the OParCS problem. Our heuristics use edge coloring
as a building block — note that edge coloring can not be
used directly since it does not explicitly consider weights on
edges, nor does it consider the interference constraint. Both
of these factors should be taken into account when generat-
ing a transmission schedule for our problem.

In the following, we first present a color-based heuristic
and then discuss three color selection strategies for coloring
edges. The notation used in this section is summarized in
Table 1.

Notation Meaning
�� edge ID
�� vertex ID
�� color ID
���� edge of �� � ��

����� the color of ��
�� � �� �� is adjacent to ��
� ���� the weight, communication delay, of edge ��
� ���� the weight of the color ��
� ���� the palette associated with ��

Table 1. Notation

3.1 Edge Coloring Heuristic

The objective of the heuristic is to assign a color to each
edge such that (i) no two edges sharing a common endpoint
have the same color, (ii) no two edges with the same color
interfere with one another, and (iii) the total time to com-
plete transmission is minimized.

Given a communication graph and an interference set,
we design a palette for each edge in the graph. Initially
all palettes are identical and are assumed to contain a suf-
ficiently large number of colors. Also, each color in the
palette is assigned a weight. Initially, all colors have a
weight of zero and as the heuristic progresses, the weight
for a color will be set to the weight of the “heaviest” edge
with that color.

The heuristic begins by picking the vertex with the max-
imum degree. If the degree of this vertex is �, then we
need � distinct colors to color those incident edges. Once
an edge has been assigned a color, that color is deleted from
the palettes of all uncolored adjacent edges. From this point
on, the heuristic repeats the following steps until all edges
are colored.

1. Choose an edge �� with the smallest palette (i.e., a
palette with the least number of colors). This is be-
cause the smaller the palette is, the more constraint is
on the possible colors. Ties are broken randomly.

2. Pick a color from the palette such that no other edges
with that color interfere with this edge (we present

three heuristics for this color selection step in the next
section).

3. Delete the chosen color from the palettes of all uncol-
ored edges that are adjacent to this edge, if the color is
in those palettes.

4. Update the weight of the chosen color: � ���� �
max�� ������ �����.

Once all edges have been colored, the transmission schedule
involves scheduling all edges with the same color in paral-
lel. For instance, all red edges are scheduled in parallel,
then all the blue edges and so on. The total time to trans-
mit messages of a given color depends on the edge with the
maximum weight, which is also given by the weight of that
color � ����. Therefore, the time to transmit all messages
is
�

�
� ����, where � is the number of distinct colors that

are needed to color the graph. Figure 3 depicts the various
steps in our heuristic.

Input: A communication graph with message lengths and all constraints.
Output: The time to complete all transmissions without any conflict.

1. Find the vertex that has the maximum degree, and do:
1.1 Color each incident edge �� with a distinct color.
1.2 For each neighbor �� of the edge ��, do:

� ����� � ���� � ����, if ����� � �� � �� � ��.
1.3 Update the weights of the assigned colors, s.t.,

� ������ ����, if ����� � �� .
2. Select the edge �� that has the smallest palette. Break ties randomly.
3. Select the first appropriate color �� based on the specific heuristic,

and then test if there is an interference with existing same colored edges.
If not, i.e., ���� ������ � ��� � ������	���������� ���, assign �� to
��, s.t., ����� � �� ; otherwise, choose the next appropriate color until no
interference can happen.

4. If � ����
 � ����, then � ������ ����.
5. ��� � ��� � ����� � ���� � ����, if �� � � ����.
6. If there is at least one un-colored edge, goto step 2; otherwise calcu-

late and output the final completion time:
�

�
� ����.

Figure 3. Edge coloring heuristic

3.2 Color Selection Policies

We propose three heuristics to choose a color from the
palette for the selected edge.

Minimal Weight Color (MWC) Heuristic: Observe
that the total time to transmit messages of a certain color is
governed by the longest message in the set. If the palette of
an edge contains a color that already indicates a longer mes-
sage transmission time, i.e., the weight of the color is larger
than that of the selected edge, then choosing that color will
not result in any increase in the total time to transmit all
messages (including the new one) of that color. This is the
intuition behind this heuristic.

Suppose that the weight of the selected edge is � ����.
Consider only those colors from its palette that have a

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 22,2023 at 18:55:10 UTC from IEEE Xplore. Restrictions apply.

21

3

C1

C2 C3

4

0
80 82

38 15

81

Figure 4. An example

weight greater than � ����. These are essentially colors that
are associated with a message that is longer than the current
message. If the palette has such colors, the MWC heuristic
picks a color with the least weight. Note that the interfer-
ence constraint must still be satisfied when picking a color.

If no color in the palette has a weight greater than the
edge weight, then the heuristic simply picks the color with
the maximum weight from the ones in the palette.

In summary, the heuristic attempts to assign messages
with “similar” lengths with the same color and avoids in-
creasing the weight of a color whenever possible. Doing so
enables the heuristic to reduce the completion time for all
messages.

Random Color Selection (RCS) Heuristic: The ran-
dom color selection heuristic picks a random color from the
palette such that the interference constraint is satisfied.

Least Used Color (LUC) Heuristic: The least used
color is a common heuristic for general coloring problems
and we choose this heuristic to determine its effectiveness
for our communication scheduling problem. This heuristic
picks the least used color—the color with the least number
of edges—such that the interference constraint is satisfied.

Consider the example depicted in Figure 4. Suppose
initially, each palette has � colors with weight of 0. Since
vertex �� has the maximum degree, the heuristic begins by
assigning distinct colors (�� as shown in the figure) to all
edges incident on ��. After deleting the related color(s)
from the palette, edge ���� has the smallest palette (it has
2 colors, while ���� has 3 colors), and is considered next.
If using MWC, because � ���� � �� � � ������ � ��,
color �� is selected for ����; if using LUC, since �� is the
currently least used color, �� is chosen and � ���� � ��.
Now, let us consider edge ����. Any color except �� is a
possible color. If we use MWC, since �� is the heaviest
edge (the weights of ��, �� and �� are all less than ��), ��
is chosen and � ���� � ��. For LUC, since all colors
have been evenly used, any possible color can be chosen.
In the above analysis, we assume that there is no interfer-
ence in any step. Hence, the completion time for MWC is
� ���� �� ���� �� ���� � �� � �� � �	 � �

, which
is also the optimal solution; for LUC, before assigning edge
����, the completion time is: � ���� �� ���� �� ���� �
� ���� � �� � �� � �	 � �� � ���.

4 Optimal Communication Scheduling

In this section, we present an optimal solution to the
OParCS problem—a solution that minimizes the comple-
tion time for all transmissions, subject to the constraints.
Since the problem is NP-complete, the optimal solution has
exponential complexity. Nevertheless, it is useful to con-
sider such a solution to enable comparisons with our pro-
posed heuristics.

Our technique uses directed search based on the �� al-
gorithm. �� search has been shown to be optimally efficient
in that no other search algorithm will expand fewer nodes
in the search tree to locate the optimal solution [3]. The
search process builds a search tree in which the root node
represents the original communication graph. Expanding a
node involves two steps. First, it finds all matchings for
the current expanding node (a matching is a subset of edges
such that no two edges share a vertex), subject to the in-
terference constraints. Then, for each matching, the corre-
sponding edges are deleted from the node (graph) and the
resulting graph is added as a leaf node to the tree.

To find the next node to be expanded, an evaluation func-
tion ���� � ���� � 	��� is needed in �� so that the node
with the lowest � value is selected. Here, ���� is the cost of
the path from the root to node �, and 	��� is the estimated
cost of the cheapest path from � to the goal. To guarantee
that the search algorithm is complete and optimal, �� re-
quires that 	 function should never overestimate the cost to
reach the goal.

In our algorithm, the � function is defined as the sum of
the costs of all matchings along the path from the root to
the node. Let � ���� denote the cost of edge �� in the orig-
inal communication graph, �� denote a node representing
a graph
 in the search tree, and ��

�� denote a child of this
node representing graph
�, then ����

��� is defined as:

����

��� � ����� ����	��� �������

� ����� ���� �� ����� � �� ��� (1)

where,
� �
 � ��, �� is a possible matching of
.
Initially, ����� � � for the root.

For a search node �� and related graph
, if � ���� de-
notes the weight of vertex ��, then 	���� is defined as:

	���� � ��� �� �����

� ���

�
��

�

� �����

�
� (2)

where, ��� are all edges that are incident on vertex ��. Ob-
serve that this 	 function never overestimates the cost to
reach the goal. This is because the time to transmit the re-
maining messages is at least equal to the cost of the edges
that can not be scheduled at the same time (i.e., are adjacent
to each other).

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 22,2023 at 18:55:10 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 20 25 30 35 40 45 50

C
TR

 (
C

om
pa

re
d

to
 M

W
C

)

Number of Nodes

C = 100
C = 50

MWC
RCS
LUC

Figure 5. Effect of the number of nodes

5 Simulation Results

We conduct a simulation study to evaluate the perfor-
mance of our heuristics. Our study also compares the
heuristics to the optimal solution computed by the�� search
algorithm.

We assume that the sensor network is represented by a
3-tuple �������, where � is the number of nodes, � �
����� ���� � � � � �� is the set of positions for the nodes
in the area of ����� ���� units. Each �� is generated ran-
domly in the area for its � and � coordinates. � is the set
of transmission ranges. We convert the communication net-
work into a directed graph ��	�
�, so that �	 � � � , and
��� �� �
 if and only if the Euclidean distance between
�� � is less than or equal to��. The communication cost for
each transmission � is randomly chosen over ���� ����.

All results shown in this section are obtained as the mean
of at least 1000 runs or with ��	 confidence interval in
��������
������. In each run, one communication graph is
generated with some specific settings. Since the algorithms
attempt to minimize the total completion time for all trans-
missions in a graph, the performance is measured by com-
paring the completion times across different algorithms. For
instance, if we have � graphs, and the comparison result
for ��� to �� per graph is ������������ �
� ���������� �������, and if we use Completion
Time Ratio (CTR) to denote the mean, then we have:

����������� �
�

�

��������������

5.1 Comparison of Heuristics

In this section, we compare the three color selection
heuristics by varying three system parameters, the number
of nodes, the number of edges and the transmission range.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 100 200 300 400 500 600 700 800 900

C
TR

 (
C

om
pa

re
d

to
 M

W
C

)

Number of Edges

MWC
RCS
LUC

Figure 6. Effect of the number of edges

5.1.1 Effect of the Number of Nodes

To study the impact of the number of nodes (�), we sys-
tematically vary � from 20 to 50. For each � , we gener-
ate sufficient different communication graphs and determine
the total time to schedule all messages (for each graph) us-
ing the three heuristics. Figure 5 shows the ��� of the
three heuristics (we use the completion time of the MWC as
the normalizing factor).

As can be seen, the minimum weight color (MWC)
heuristic outperforms the other two heuristics. Random
color selection (RCS) yields completion times that are
within �	 of MWC, but the performance is not sensitive
to the value of � . The least used color (LUC) heuristic has
the worst performance. This is because LUC always tries
to find the color that is currently least used, which actu-
ally decreases the ability to schedule messages in parallel.
The sudden increase in the LUC curve reflects the impact
of the initial palette size. For a fixed palette size, when �
increases, the ��� decreases. This indicates if the initial
palette size is closer to the number of colors needed, the
better is the LUC performance. We choose more colors at
� � �� because the palette has not enough colors to cover
all edges. (In the figure, � � �� means that the initial num-
ber of colors in the palette is 50).

5.1.2 Effect of the Number of Edges

The number of edges reflects the communication density.
Figure 6 plots the completion time ratio for the three heuris-
tics as the number of edges varies. Again, the MWC out-
performs the other two heuristics. Random color selection
is about 10-18% worse and is not sensitive to different com-
munication densities. For LUC, when the density is small,
the number of colors chosen is much larger than necessary
(and depends on the initial palette). The performance of
LUC improves as the number of edges increases.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 22,2023 at 18:55:10 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 20 25 30 35 40 45 50

C
TR

 (
C

om
pa

re
d

to
 M

W
C

)

Range

MWC
N = 20
N = 40
N = 60
N = 70

(a) RCS vs MWC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

 20 25 30 35 40 45 50

C
TR

 (
C

om
pa

re
d

to
 M

W
C

)

Range

MWC
N = 20
N = 40
N = 60
N = 70

(b) LUC vs MWC

Figure 7. Effect of range

5.1.3 Effect of the Range

In this experiment, transmission range of a node is varied
from 20 to 50. For a given range, we determine the com-
pletion times for the three heuristics for sensor networks
containing 20, 40, 60 and 70 nodes. To avoid the impact
of palette size, the initial palette is set to have 100 colors.

Figure 7 (a) compares the completion times of RCS and
MWC, while Figure 7(b) compares the completion times of
LUC and MWC. We find that MWC outperforms the other
two heuristics across all ranges and network sizes. Like in
the previous experiment, the performance of random color
selection is within 10-20% of MWC, while that of LUC is
significantly worse. For LUC, for a given � , initially the
curve goes up to some peak, and then drops as the range
increases. This is because, initially, the number of nodes
has more impact on the communication density, and after
some point, the ����� dominates.

Overall, our results show that MWC heuristic yields the
best performance among the three heuristics. This is not sur-
prising since the heuristic takes the completion time of each
color into account when assigning colors to edges (which
in turn, helps minimize the total completion time). Next,
we compare the performance of this heuristic to the optimal
solution.

5.2 MWC versus the Optimal Solution

MWC is a time-based heuristic that has better perfor-
mance than the other two heuristics in term of minimizing
the communication completion time. We construct several
examples to understand how far MWC is from the optimal
schedule. Since the ��-based optimal solution has expo-
nential complexity as the problem scales, it is computation-
ally feasible to compare MWC with the optimal solution
only for small network sizes. Consequently, we restrict the
input to no more than 20 nodes (and 20 edges) in our exper-
iments (this still involves expanding������ search nodes in

the search tree for one instance, and can take several hours
to find a solution on a Pentium-4 workstation).

We conduct two experiments. In the first experiment,
each node is assumed to have a different transmission range;
we vary the number of nodes and compute the completion
times of the schedules produced by MWC and ��. In the
second experiment, each node in the network has an iden-
tical transmission range; we vary the number of nodes and
compute the completion times. Because of the space limit,
we only show the results of the first experiment (the results
of the second experiment have similar trend and are detailed
in [7]). Figure 8.(a) plots the CTR (normalized by the op-
timal solution); and Figure 8.(b) plots the fraction of the
cases where MWC yields a solution identical to the optimal
solution.

We observe the following behavior:

1. The time to complete transmissions using MWC is
within ���� of the optimal solution for sensor net-
works of up to 20 nodes (and 20 edges).

2. While the solution yielded by MWC is different from
the optimal solution in a large fraction of the cases,
this sub-optimal schedule is only about at most 6-8.5%
worse for a variety of transmission ranges.

3. When the transmission range becomes larger, e.g., in
� � ��		 �	
, or the number of nodes increases, the
performance actually becomes stable, i.e., still within
8.5% of the optimal solution, which indicates that
MWC is robust even when the complexity increases.

5.3 Summary of Results

Our experiments obtain the following results:

� MWC is the best of the three heuristics across a wide
range of system parameters. The better performance is
a result of taking the communication time into account
when generating a schedule.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 22,2023 at 18:55:10 UTC from IEEE Xplore. Restrictions apply.

 0.95

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 10 11 12 13 14 15

C
TR

 (
C

om
pa

re
d

to
 O

pt
im

al
 R

es
ul

t)

Number of Nodes

OPT
R = [10,50]
R = [10,60]
R = [10,70]
R = [10,80]

(a) Completion Time of MWC to OPT

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 11 12 13 14 15

Fr
ac

tio
n

of
 Id

en
tic

al
 R

es
ul

ts

Number of Nodes

R = [10,50]
R = [10,60]
R = [10,70]
R = [10,80]

(b) Fraction of Identical Results

Figure 8. MWC Versus OPT for varying transmission ranges

� RCS is a close second in terms of the completion
times of its schedules. Further, RCS performs stable
as the number of nodes increases or the range parame-
ter changes.

� LUC has worst performance and is very sensitive to the
initial number of colors in the palette.

� For small networks, the results of MWC are close to
the optimal solution.

� The performance of MWC can be considered to be sta-
ble, even with increasing range and number of nodes,
because its performance is within 8.5% of the optimal
solution.

6 Incorporating Timeliness Constraints

Our heuristics so far have focused on scheduling mes-
sages in order to minimize completion time. Since we are
concerned with real-time sensor applications in this work,
it is conceivable that messages will have deadlines on when
they should be received at the destination node. In general,
these deadlines will be determined by the deadline of the
processing task at the sink that will consume the data, once
received. It is possible to enhance our heuristics to take
deadlines of messages into account.

One approach is to first determine a coloring of edges
based on the techniques described in the previous section.
Observe that while messages with identical colors can be
scheduled in parallel, our heuristics leave the ordering of
colors unspecified. For instance, if a graph is assigned two
colors, red and blue, then we could schedule all red mes-
sages first, followed by the blue messages, or vice versa.
We can exploit this flexibility to take deadlines into account.
We define the deadline of a color to be the minimum dead-
line of all messages with that color. We can then simply
order colors by their deadline. Doing so orders the schedul-
ing of messages across various colors — colors with earlier

deadlines get scheduled before those with later deadlines
(messages of the same color are scheduled in parallel, like
before). Note that, regardless of the ordering of colors, the
total completion time remains unchanged.

Another approach is to incorporate deadlines when as-
signing colors to edges. This will require us to modify
the edge coloring heuristics outlined in the previous sec-
tion. While a detailed discussion of such heuristics is be-
yond the scope of this paper, we present a brief discussion
on how such a technique might work. The technique will
need to balance three factors—the weight, the deadline, and
the palette size of an edge. Edges can be chosen based on
the most important factor. For instance, if meeting dead-
lines is a primary goal and reducing completion times is a
secondary goal, then edges can be chosen for coloring in the
order of their deadlines, such as EDF. If the opposite is true,
the edges are chosen based on their palette sizes and then
color is assigned on the deadlines and weights. A detailed
exposition of these ideas is the subject of future work.

7 Related Work

Real-time issues that arise in various layers of the net-
work stack in sensor networks are studied in [14]. In terms
of MAC layer, the authors pointed out that a key research
challenge is to provide predictable delay and/or prioritiza-
tion guarantees, while minimizing overhead packets and en-
ergy consumption. Our work aims to provide the explicit
delay for data transmissions by avoiding collisions; at the
same time, the total transmission time for sending sensor
messages is minimized.

Other efforts that address real-time issues in sensor net-
works include the design of the communication stack and
real-time routing. For example, RAP [9] is a real-time
communication architecture for large-scale wireless sen-
sor networks that includes a novel packet scheduling pol-
icy called velocity monotonic scheduling. In this method,
the requested velocity is mapped to a MAC-layer priority,

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 22,2023 at 18:55:10 UTC from IEEE Xplore. Restrictions apply.

which in turn reduces the deadline miss ratio. In [4], an
adaptive real-time routing protocol, SPEED, uses feedback-
based techniques that try to satisfy per-hop deadlines in face
of unpredictable traffic. A EDF-based MAC protocol is ex-
ploited in a hexagonal cellular network architecture in [2],
and the schedulability condition is given for a hybrid mes-
sage set consisting of hard periodic and soft aperiodic mes-
sages.

In cellular telephones systems, a communication
channel—a band of frequencies—can be used simultane-
ously by many callers if these callers are spatially apart and
their calls do not interfere with one another. This problem
is similar to our problem in terms of the ability to reuse the
channel. The difference is that there is no need to consider
transmission costs and time constraints. Ramanathan [13]
introduced a unified algorithm for efficient (T/F/C)DMA
channel assignment to network nodes or to inter-nodal links
in a (multihop) wireless networks. In [6], the authors estab-
lished a relationship between the mutual exclusion problem
and the distributed dynamic channel allocation problem.

8 Conclusions

In this paper, we considered a class of wireless sensor
applications—such as mobile robotics—that impose timeli-
ness constraints. We assumed that these sensor applications
are built using commodity 802.11 wireless networks and fo-
cused on the problem of providing qualitatively-better QoS
during network transmission of sensor data. We proposed
three heuristics based on edge coloring that are designed to
explicitly avoid network collisions and minimize the com-
pletion time to transmit a set of sensor messages. Our simu-
lation results showed that the minimum weight color heuris-
tics yields the best performance across a range of systems
parameters and is close to the optimal solution in the sensor
networks tested.

As part of future work, we plan to evaluate the effective-
ness of our techniques by implementing them into a sensor
testbed. To do so, we plan to design a scheduler above the
MAC layer to prioritize the packet transmissions based on
the transmission schedule. We also plan to examine the im-
pact of message deadlines and will extend our techniques to
multi-hop sensor networks.

9 Acknowledgment

We thank Shrikumar Hariharasubrahmanian, Zihui Ge
and Zhengzhu Feng for various helpful discussions and
comments. We also thank the anonymous referees for their
comments.

References

[1] V. Bharghavan. Performance evaluation of algorithms for
wireless medium access. In IEEE Performance and Depend-
ability Symposium (IPDS), pages 86–95. IEEE, July 1998.

[2] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo. An
implicit prioritized access protocol for wireless sensor net-
works. In Proceedings of the IEEE Real-Time System Sym-
posium (RTSS). IEEE, December 2002.

[3] R. Dechter and J. Pearl. Generalized best-first search strate-
gies and the optimality of A*. Journal of the ACM (JACM),
32(3):505–536, July 1985.

[4] T. He, J. A. Stankovic, C. Lu, and T. F. Abdelzaher. Speed:
A staleless protocol for real-time communication in sensor
networks. In International Conference on Distributed Com-
puting Systems (ICDCS), May 2003.

[5] I. Holyer. The NP-completeness of edge-coloring. SIAM
Journal on Computing, 10(4):718–720, November 1981.

[6] J. Jiang, T.-H. Lai, and N. Soundarajan. On distributed
dynamic channel allocation in mobile cellular networks.
IEEE Transactions on Parallel and Distributed Systems,
13(10):1024–1037, October 2002.

[7] H. Li, P. Shenoy, and K. Ramamritham. Scheduling com-
munication in real-time sensor application. Technical Report
TR-04-05, University of Massachusetts at Amherst, January
2004.

[8] H. Li, J. Sweeney, K. Ramamritham, R. A. Grupen, and
P. Shenoy. Real-time support for mobile robotics. In IEEE
Real Time Technology and Applications Symposium (RTAS),
pages 10–18. IEEE, May 2003.

[9] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic,
and T. He. Rap: A real-time communication architec-
ture for large-scale wireless sensor networks. In IEEE
Real Time Technology and Applications Symposium (RTAS).
IEEE, September 2002.

[10] S. Meguerdichian, S. Slijepcevic, V. Karayan, and
M. Potkonjak. Localized algorithms in wireless ad-hoc net-
works: location discovery and sensor exposure. In Proceed-
ings of the 2nd ACM international symposium on Mobile ad
hoc networking & computing, pages 106 – 116. ACM, 2001.

[11] K. Ramamritham, J. A. Stankovic, and P. Shiah. Effi-
cient scheduling algorithm for real-time multiprocessor sys-
tems. IEEE Transactions on Parallel and Distributed Sys-
tems, 1(2):184–194, April 1990.

[12] S. Ray, J. B. Carruthers, and D. Starobinski. RTS/CTS-
induced congestion in ad hoc wireless LANs. In Wire-
less Communications and Networking Conference (WCNC),
March 2003.

[13] S.Ramanathan. A unified framework and algorithm for chan-
nel assignment in wireless networks. Wireless Networks,
5(2):81–94, March 1999.

[14] J. A. Stankovic, T. F. Abdelzaher, C. Lu, L. Sha, and J. C.
Hou. Real-time communication and coordination in embed-
ded sensor networks. Proceedings of the IEEE, 91(7):1002–
1022, 2003.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 22,2023 at 18:55:10 UTC from IEEE Xplore. Restrictions apply.

	footer1:

