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Abstract

Coordinated behavior of mobile robots is an important
emerging application area. Different coordinated behav-
iors can be achieved by assigning sets of control tasks, or
strategies, to robots in a team. These control tasks must be
scheduled either locally on the robot or distributed across
the team. An application may have many control strategies
to dynamically choose from, although some may not be fea-
sible, given limited resource and time availability. Thus,
dynamic feasibility checking becomes important as the co-
ordination between robots and the tasks that need to be per-
formed evolves with time. This paper presents an online al-
gorithm for finding a feasible strategy given a functionally
equivalent set of strategies for achieving an application’s
goals.

We present two heuristics for feasibility checking. Both
consider communication cost and utilization bound to make
allocation (of tasks to execution sites) and scheduling de-
cisions. Extensive experimental results show the effective-
ness of the approaches, especially in resource-tight environ-
ments. We also demonstrate the application of our approach
to real-world scenarios involving teams of robots and show
how feasibility analysis also allows the prediction of the
scalability of the solution to large robot teams.

Keywords: Distributed real-time systems, allocation,
schedulability, precedence constraint

1 Introduction

A promising application for a team of mobile robots is to
collaborate with each other to accomplish a common goal,
for example, searching a burning building for trapped peo-
ple. Human operators may direct the search by teleopera-
tion, but wireless communications in these situations can be
unreliable. When a search robot ventures outside a reliable
communication range, a second robot can autonomously
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create a network to preserve quality of service between the
operator and the search robot. The lead robot can thus pene-
trate further into the rubble at the expense of communication
latencies and distributed control overhead. One instantia-
tion of such a strategy constructs a series, kinematic chain of
mobile robots where each of them actively preserves Line-
Of-Sight (LOS) [27] and intra-network bandwidth. In the
simplest case, pairwise coordinated controllers were devel-
oped for a team of two robots. One controller, denoted pull,
allows a leader robot to search an area while “pulling” a fol-
lowing robot behind it. The other controller, push, allows a
follower to specify the search area of the leader, in effect,
“pushing” the leader along. The application constructs a
strategy by assigning push or pull controllers to the entire
team. The task models for these two strategies, namely, the
push and pull controllers themselves, are shown in Figure 1.
In the two task graphs, sensor and motor tasks IR;, POS;,
and M; are preassigned to specific execution sites, while
three control tasks H;, Hs, and Ly may reside on either
team member, if necessary, to optimize processor utiliza-
tion or communication costs. The H; and H, tasks are used
by the robots to determine current search and LOS areas,
respectively, while Ly is used for coordinating the desired
movements of the robots so that LOS is maintained and the
search can make progress. The functionality of the team
is not affected by changing the allocations of the control
tasks. The differences between push and pull can be seen at
the task graph level. For example, with push, the communi-
cation H; — Ls specifies to the leader which areas it may
search, while with pull, Lo — Mj tells the follower where
it may move.

A discussion of how applications generate possible
strategies is beyond the scope of this paper. Usually, appli-
cations determine the required type of coordinated behavior
for a team of n robots, and generate a set of functionally
equivalent strategies. Since each strategy is constructed by
periodic real-time tasks, a strategy that is valid at the appli-
cation level may not always be feasible at the system level.
How to find feasible, schedulable, strategies from a a set of
functionally equivalent strategies, given by the application,
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Figure 1. Tasks in a Leader/Follower team

is one goal of this work.

The team size is not fixed, so, as robots enter or leave the
team, the application must recompute the set of strategies
that can be used. As the team size changes, the application
may determine that the goal of the behavior must change as
well, which, in turn, also changes the set of correct strate-
gies that can be used. Figure 2 shows a sequence from a
simulation with five robots using push and pull controllers,
where robot 0 is the leader searching for the goal which is
the square in the lower left of the map. Each time a robot
joins the team and the set of possible strategies changes,
the application must run the on-line scheduling algorithm
to determine which strategies are feasible; otherwise, a sys-
tem failure may occur. The control tasks that make up a
strategy may be distributed among sites in a team, such as
H,, Hs and Ly in the push and pull models. A goal of our
work is to determine the assignment of tasks to sites in order
to optimize the coordinated behavior while minimizing the
communication overhead and workload at each site, thereby
improving overall schedulability.

As shown in the task graphs of push and pull, communi-
cation between tasks is needed to achieve coordination. In
this paper, we assume that each robot is equipped with wire-
less broadcast communication. Because a shared multiple-
access medium is used in the system, contention for the
communication medium can occur at run time. We avoid
this contention by scheduling the communication as well.

Assigning tasks with precedence relationships in a dis-
tributed environment is in general an NP-hard problem [17],
and even some of the simplest scheduling problems are NP-
hard in the strong sense [7]. Systematically derived heuris-
tic allocation and scheduling algorithms are, therefore, pro-
posed and evaluated in this paper.

The contributions of this paper are as follows. We de-
velop an online algorithm for finding a feasible control
strategy given a functionally equivalent set of strategies
for achieving an application’s goals. Specifically, we pro-
pose two simple but efficient heuristics for allocating con-
trol tasks to distributed processing entities, which aim to
improve the overall schedulability by minimizing commu-
nication costs and utilization of processors. We have per-
formed extensive evaluations of the algorithms and also ex-
ercised it using a case study of a real world example from
mobile robotics to achieve a simple but efficient allocation
and communication scheme for a team of robots.

The rest of the paper is structured as follows. In Sec-
tion 2, the system model and goal are described. The details
of the allocation and scheduling algorithms are provided in
Section 3. Results of evaluations from simulation are pro-
vided in Section 4. Section 5 analyzes a real-word robotic
application. Section 6 discusses related work. Section 7
concludes the paper by summarizing the important charac-
teristics of the algorithm and discusses future work.

2 System Model and Our Goal
2.1 System and Task Model

A coordinated team consists of a set of sites (robots),
each site having an identical processor. In this paper, we use
site and processor interchangeably. Robots in a team share
a communication medium, which allows broadcast commu-
nication between robots. To prevent contention, communi-
cation is also prescheduled.

A strategy, which is specified at the application level, is
denoted at the system level by an acyclic Task Graph (TG).
To achieve a common goal for the team, a set of functionally
equivalent strategies may also be supplied by applications.

In a TG, nodes represent tasks (73), directed edges be-
tween tasks represent precedence (e.g., producer/consumer)
relationships. The amount of communication is denoted as
a communication cost attached to the edges. All tasks in
our model are periodic. Each task is characterized by a pe-
riod P;, Worst Case Execution Time (WCET) C;, and rela-
tive deadline D;, here, D; = P;. Periods can be different
for different tasks. But if the producer and the consumer run
with arbitrary periods, task executions may get out of phase,
which results in large latencies in communication [21]. Har-
monicity constraints can simplify the reading/writing logic
and reduce those latencies [20]. Harmonic periods may also
increase the feasible processor utilization bound [25]. To
this end, we assume the period of the consumer is a multi-
ple of that of the related producer.

2.2 Our Goal

Given a set of sites and a set of functionally equivalent
strategies, our goal is to find a feasible strategy. A strategy
is feasible if and only if:

o within the LC'M (Least Common Multiple) of task pe-
riods in that strategy, each instance of a task is sched-
uled at its schedule start time and the completion of
this instance will not be later than its relative deadline;

e all constraints, such as precedence, are satisfied.

Based on the nature of the application, some tasks, e.g, sen-
sor and motor systems, are required to run on designated
sites, e.g., a specific robot platform. Other tasks, however,
can be assigned to any site in a team. To find a feasible
strategy, the system needs to:
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Figure 2. A sequence of active robots in a robot team

1. assign unallocated tasks to appropriate sites;

2. determine a schedule for all task instances.

3 Allocation and Scheduling Algorithms

We now give the details of the allocation and scheduling
algorithms. The notation used in this paper is explained in
Table 1, where CC R;; is defined as:

communication_cost (T; — Tj)

CCR; )
Notation Meaning

T; Task ID

C; Worst Case Execution Time (WCET) of task T;
D} Deadline of the n*” instance of T;

E} Earliest start time of the n*" instance of T;

Si Site ID

Uuj Utilization of the site S;

uf Utilization of the site S; that T% is on

T; — T;  Precedence constraint between T and T;
CCR;,;  Communication Cost Ratio of T; — T}

Table 1. Notation used in this paper

3.1 Allocation Algorithm

Optimal assignment of real-time tasks to distributed pro-
cessors is an intractable problem. Two resource-bounded
iterative heuristics are proposed in this section. Based on
utilization of each processor and the amount of communica-
tion between tasks, the heuristics attempt to minimize work-
load of each processor, as well as the total communication.
A dynamic utilization threshold is used at each step in both
heuristics. The function of this threshold is to: 1) balance
and minimize the workload of each processor; 2) avoid the
violation of utilization bound for schedulability purpose.

3.1.1 Greedy Heuristic

This heuristic considers the amount of communication and
computation involved for each pair of producer and con-
sumer tasks. A decision is made as to whether these two

tasks should be assigned to the same processor, thereby
eliminating the communication cost. At each step, for all
allocated tasks and related unallocated successors, the al-
gorithm selects an unallocated task T, that has the largest
CCRy y, where Ty, is located on site Sy and T, — T,
The algorithm then attempts to allocate T, to Sy, based on
whether or not the utilization of Sy becomes larger than the
threshold ¢. If the utilization is not larger than ¢, T is as-
signed to Sy and ¢ needs not change; otherwise, the algo-
rithm tries to find a site S; that currently has the least uti-
lization, and attempts to assign T}, to S;. In this case, ¢t may
need to be updated. If a proper processor can be found, the
algorithm continues with the next unallocated task that has
the largest CC' R among the remaining unallocated tasks,
using the new threshold. If there is no task left to be as-
signed and the workload of every processor is less than 1,
the algorithm is deemed successful; if the algorithm chooses
a task to be allocated, but no site can be found (because any
processor’s utilization will be larger than 1 after loading this
task), the algorithm fails. The pseudo-code for the Greedy
allocation algorithm is shown in Table 3.

The basic idea of updating the threshold ¢ is to use an
increasing limit on utilization. Initially, ¢ is the maximum
value of the utilizations of all processors to which preallo-
cated tasks have been assigned. At the times when the algo-
rithm has to find a site .S; with the least utilization, so it can
assign Ty to .S, several conditions need to be considered.
Suppose t is the utilization if T, is assigned to Sy, and u;
is the utilization if T}, is assigned to ;. First, if t > 1,
in this case, if site [ # k and u; < 1, then the task can be
assigned to S; and the threshold is updated to maz(t, u;);
otherwise, no processor can be found for loading 7', since
all utilizations will be larger than 1. Second, if ¢ < 1, then
T, is assigned to S, but ¢ is updated to ¢’ since this is the
expected lowest value since the last time. The pseudo-code
for the function updating the threshold is shown in Table 4.
The returned value is either the new threshold if it finds a
location, or —1 if it does not.

3.1.2 Aggressive Heuristic

To address the motivation behind this heuristic, let us use a
simple task graph depicted in Figure 3, for which WCETs
and periods are given in Table 2. Consider the commu-
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Figure 3. A simple task graph example

Task T, | T |15 | Ty | Ts
WCET (C;) | 2 2 1 2 8
Period () | 10 | 20 | 2 | 20 | 40

Table 2. Parameters for tasks in Figure 3

nications to task Ty. 7Ty is assigned to site Sy in the
Greedy algorithm because CC R34 is larger than CC Ry 4
and CCRy 4. However, we notice the accumulated com-
munication cost from S is larger than that from Sa, i.e.,
(CCR1,4 + CCRQA) > CCR3’4. So, intuitively, it is bet-
ter to assign Ty to S; instead of Ss.

The second heuristic we propose takes into account the
total communication from the same site to see which un-
allocated task has the largest accumulated CC' R, and then
selects this task to be considered next. Since the utilization
bound is still needed to be considered, once the task is se-
lected, the assignment and threshold updates are the same as
in the Greedy heuristic. To this end, line 5 in Table 3 needs
to be changed to: Initialize R = {Rj|T, € N}, R} =
>, CCR;,,T; € F,T; — T,, Site(T;) = S;; and line 12
is changedto: R = R\ {Ry} U{R.},VT, € N,T, — T,.
Following the Aggressive algorithm, T} is first selected and
assigned to S1, and then Tj is also assigned to Sp, since Sy
currently has the least utilization, at 0.4. This slightly more
complicated algorithm is shown more effective with regards
to higher schedulability in Section 4.

3.2 Making Scheduling Decisions

After a successful assignment is found, a schedule is
needed for each instance of tasks. Before we discuss the
algorithm, first, let us define some terminology.

o Earliest start time The earliest start time of an in-
stance of a task is derived from the precedence con-
straints. Let L be the LCM of task periods. If task
T; has no predecessors, the first instance is ready to
execute at time 0, denoted as Ez1 = 0; and for the
nt" instance of that task, E! = (n — 1) x P;, where
1 <n < N;,N; = L/P;. If T; has predecessors, its
first instance becomes enabled only when all its prede-
cessors have completed execution. In order to achieve
this condition, the tasks in the original task graph are
topologically ordered. When a task T;; is processed, the
lower bound of E} is set to maz (E}, E}; + C), where

Greedy Allocation Algorithm
Input: a task graph G = (E, V); P;, C; for each task Tj;
communication costs; preallocated tasks with related sites; the number of sites m
Output: an assignment to all unallocated tasks such that utilization of each
processor is less than 1
Variables:

F': the set of tasks that have been allocated;

N': the set of tasks that have not been allocated

R: the set of communication cost ratios”

U': array of utilizations (workload)

t: threshold of utilization

CCR; ;: communication cost ratio of

Algorithm 3.1:
1. Initialize U = {wu;|i = 1, 2, ..., m}, such that for each processor S;:
C.
= Si ; Vg, -
u; = Ej B ,T; € FASite(Tj) = Si;
2. Lett = maz(ui), u; € U,
/* t is the threshold for workload control, initialize the threshold */;
JIf (¢ > 1).do
exit without solution;
. Initialize R = {CCR, y|T, € F,Ty € N}, Ty — Ty;
. While (N is not empty) do
Find such task T, that has the maximum value CC R out of R;
Letu;c = (ur + g—;’);
/* Site(Tz) = Sk, calculate the new utilization, if Ty is allocated to site k */
9. If ((t = thresholdUpdate(uy, k, Ty)) < 0), do;
10. exit without solution; /* cannot find an appropriate site */
11. Update set F', N suchthat F = F U{Ty}, N = N\ {Ty};
12. Update set R, suchthat R = R\ {CCR, y} U{CCRy .},
VT, € F,T, € N(T, — Ty) A (Ty — T).

communication_cost(T; 5 T;)

C;+C;

® Nowh W

“We use the same notation R to express different functionalities in
two heuristics algorithms

Table 3. Greedy allocation algorithm

Function of A t and Threshold Update
float thresholdUpdate(float t’ ,int k, Task T7)
/* tis the threshold; T’y and processor k is selected; t’ is the new workload if
assigning Ty, to k */
1. Casel:t < t,do /* ¢ is less than the threshold ¢ */
Assign task T to processor k;

2
3 Update U with the new utilization uj = t’ ;
4. Case2:¢ > ¢,do /*¢ is larger than the threshold ¢ */
5 Find the processor { that has least utilization u; = min(u;), u; € U,
- Cy.
letu; = u; + Py’

6. Case2.1:t >1,do /+ processor k cannot load Ty */
7. If (1 # k) A (u; < 1), do

8. Allocate task Ty to processor I;

9. Update U with the new u; = u; ;

10. t= maz(t,u;);

11. Else return -1 ;

F(l=k)V (u; > 1), cannot find a processor to load Ty, */
2. Case22:t <1,do ffuy <t <1%

13. Allocate task T, to processor [;
14. Update U with the new u; = u;;
15, t=t;

16. Returnt¢; /* new threshold */

Table 4. Assignment and threshold updates

Vk,T), € Predecessors(T;). Since we will model
communication as a task if the producer/consumer
tasks are on different sites, and we have harmonicity
constraints for all such pairs, initially, the lower bound
of EP is assigned to (n — 1) x P; + E}.



¢ Communication task If the producer and consumer
are allocated on the same site, the communication
cost is avoided; otherwise, communication needs to be
scheduled. We model this as a communication task.
For T; — T}, a communication task T¢opmm has fol-
lowing features.

1. Peomm = Pj;. This is because each instance of
T} needs to process data sent from T; only once
during one period of 7T';

2. E¢ppm = (n = 1) X Peomm + E}. This is a
lower bound because the instance should begin
execution at least after the completion of the first
instance of Tj;

3. D2 um = N X Peomm — Cj. This is an upper
bound since the communication should finish its

execution no later than the latest start time of T}.

Within the LC' M, each instance of tasks is treated as an
individual entity to be scheduled. We take into account the
deadline, laxity and earliest start time, which characterize
the most important properties for real-time tasks and prece-
dence constraints, to actively direct the searching to find a
feasible schedule. The potentially heuristic functions of H
are: (1) Minimum deadline first: H(T) = Min_D; (2)
Minimum earliest-start-time first: H(T) = Min_E; (3)
Minimum laxity first: H(T') = Min_L = min(D; — (E; +
Ci)); 9 H(T) = Min. D+ W x Min_E; (5) H(T) =
Min_ D+W xMin_L; (6) H(T) = Min_ E+W xMin_L;
where W is the weight factor to adjust the effect of different
temporal characteristics of tasks.

The search attempts to determine a feasible schedule for
a set of tasks in the following way. It starts with an empty
partial schedule as the root, and tries to extend the sched-
ule with one more task by moving to one of the vertices at
the next level in the search tree until a feasible schedule is
derived. The heuristic function H is applied to each of the
remaining unscheduled tasks at each level of the tree. The
task with the smallest value is selected to extend the current
partial schedule. Because Min_FE considers the precedence
constraints, it performs better than other simple heuristics
in our experiments. The simulation studies also show that
(Min_D + W x Min_E) has superior performance.

4 Simulated Results

To study the features of the proposed algorithms, we con-
ducted several experiments to evaluate the allocation heuris-
tics with regards to schedulability. How to use it for an ac-
tual robotics application is discussed in Section 5. Tasks
generated in a directed acyclic graph have the following
characteristics:

e The computation time C; of each task T is uniformly
distributed between Cp,n and Cipqaz set to 10 and 60

time units, respectively. The communication cost lies
in the range (CR X Cpin, CR X Cpaz), Wwhere CR
is the Communication Ratio used to assign communi-
cation costs. Experiments were conducted with CR
values between 0.1 and 0.4.

o To address harmonicity relationships, we set a period
range, (minP}, mazP}), for each input task T (task
without incoming edges), and (l,maxPjO) for each
output task T} (task without outgoing edges), where
mian-I = Lower x C; and ma:I;PZ-I = Upper x Cj,
Lower = 1.1 and Upper = 4.0. To ensure that the
periods of output tasks are no less than those of input
tasks, a parameter, mult_factor is used to set the up-
per bound of the period for output task 7: maa:PjO =

mult_factor x maz(mazP}), where T; are input
tasks and mult_factor is randomly chosen between 1
and 5. In order to make periods harmonic, first, we pro-
cess input tasks and make their periods harmonic; then
we tailor the techniques from [20] to process output
tasks; finally, we use the GCD technique for intermedi-
ate tasks to achieve harmonicity constraints. The idea
of computing GCD is to do a backward period assign-
ment: a task T} gets period Py from all its successors
so that P, = GCD{P,|P, € succ(Ty)}. Because of
precedence constraints, periods of output tasks cannot
be considered separately from those of input tasks, so
PP, which is the least period of output tasks, is cal-
culated upon the largest period of input tasks (PL),
PP = |mazPP/PL | x PL. Other output tasks’ pe-
riods are computed upon P to achieve harmonicity.

e Parameter out_degree is used to set the precedence
relationships in terms of data processed by multiple
producers/consumers. For each task, except for out-
put tasks, the out_degree is randomly chosen be-
tween 1 and 3. The total number of tasks in a
task set is: 4 X tasksetsize_factor, where 3 <
tasksetsize_factor < 8, and all the results shown
here are for task sets with four input and four output
tasks, though we have conducted experiments with dif-
ferent numbers.

All the simulation results shown in this section are ob-
tained from the average value of 10 simulation runs. For
each run, we generate 100 test sets, each set satisfying
> 1 (Ci/P;) < m, where n is the number of tasks and
m is the number of processors. For a given task set, if
this condition is not held, at least one processor utilization
will be larger than 1. The scheme used here is to remove
the task sets that are definitely infeasible. Obviously, this
does not eliminate all infeasible task sets because the pres-
ence of communication costs are not considered. However,
since feasibility determination is intractable, if one heuris-
tic scheme is able to determine a feasible schedule while
another cannot, we can conclude that the former is superior.



Therefore, the performance of the algorithms and parameter
settings are compared using the SuccessRatio (SR):

_ NSUCC
N

N5ue¢ ig the total number of schedulable task sets found
by the algorithm, and N is the total number of task sets
tested. Here N is 100 for each simulation run, and for each
result point in the graphs, SR = (Ezlil SR;)/10, where
SR; = N&“/100.

The tests involved a system with 2 to 12 processors con-
nected by a multiple-access network. Resources other than
CPUs and the communication network were not considered.
Whereas we study the algorithm under various parameter
settings, due to space limitation, here we only show some
of the salient results and conclusions. Details that are not
reported here can be found in [13].

SR

4.1 Choosing a Scheduling Heuristic

In order to eliminate bias from the scheduling search
heuristics, we first examine which heuristic function is suit-
able to evaluate the allocation algorithms in terms of Suc-
cess Ratio (SR) of schedulability for a fixed task set size.

For both Greedy and Aggressive, we found Min_FE is the
best simple heuristic. This is because the earliest start time
of each instance of a task encodes the basic precedence in-
formation. For integrated heuristics, Min_D + W x Min_E
has substantially better performance than other heuristics
including Min_E. The reason should be clear: besides
precedence constraints, another important factor, deadline,
is also taken into account.

Since Min_D + W x Min_FE is a weighted combination
of simple heuristics, we investigate its sensitivity to changes
of weight (W) values. When W = 0, the heuristic becomes
the simple heuristic Min_D, and does not perform well.
When the weight increases from 0 to 4, or from 0 to 12 when
#Proc = 2, we see a significant performance increase for
various # Proc values. The algorithm is robust with respect
to heuristics, as performance is affected only slightly when
the weight varies from 4 to 30 (or 12 to 30 if # Proc = 2).
So we will choose W = 4 for following experiments. Here-
after, we denote “The Number of Processors” as “#Proc”,
and “The Number of Tasks Within a Set” as “#Task”.

4.2 Performance of the Allocation Algorithm

In this section, we evaluate the performance of the allo-
cation algorithms, Greedy and Aggressive, compared with
another method, random allocation. Figure 4 illustrates the
results for task set size of 12, 20 and 32, respectively, when
CR = 0.1. As shown in the graphs, for each instance, the
performance of Aggressive is better than that of Greedy,
which is in turn better than the random allocation. The
gains come from the elimination of communication while

maintaining minimal utilization for each processor. Since
Aggressive takes into account the utilization bound at each
assignment step, and tries to cluster as many tasks as possi-
ble, so as to eliminate the total communication cost, it is not
surprising that it achieves better performance than Greedy,
which considers only the individual communication cost for
a given site.

The other observation is that the improvements in per-
formance of Greedy or Aggressive with CR = 0.4 is larger
than the improvement with CR = 0.1, especially when the
task set size is large, say, no less than 20. Table 5 shows
the difference in improvement of Greedy to the random; Ta-
ble 6 is for the improvement of Aggressive to the random.
Both are with #Task = 20 and #Task = 32, respec-
tively. As we can see, in most cases, the improvements with
CR = 0.4 are much larger than those with CR = 0.1 for
either the Greedy or the Aggressive heuristic. The reason
is that when CR = 0.4, the communication costs intro-
duce more workload into the system, and hence increase the
resource contention. So communication costs dictate the
schedulability much more than the case when CR = 0.1.
In contrast to random assignment, our approaches exploit
this important property to direct the allocation assignment,
hence, they work better in a resource-tight environment.

Finally, we found that as the number of processors in-
creases, the improvements for both Greedy and Aggressive
become less for a given task set. This observation shows
that the tighter the resource constraint, the better our algo-
rithms perform.

Processor 4 6 8 10 12
CR=0.1 | 192 156 9.7 37 24
CR=04 | 179 146 150 13.7 15

(@)#Task =20

Processor | 4 6 8 10 12
CR=0.1 | 47 13 7 2.9 0.3
CR=04 (45 121 114 123 13.1

(b) #Task = 32

Table 5. Improvement of Greedy over random
approach (Percentage)

4.3 Effect of Communication

Due to space limit, we omit details of the effect of com-
munication costs that may be found in [13]. Our results
show that when the number of processors is very limited,
e.g., 2 or 3, the performance is almost the same. This is
because in such a situation, it is hard to find a feasible
schedule for both cases. But as the number of processors
increases, the performance for CR = 0.1 is better than that
for CR = 0.4. This is because each communication intro-
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Processor 4 6 8 10 12
CR=0.1 | 248 202 132 6.5 3.8
CR=04 | 228 183 181 16.1 163

#Task = 20

Processor | 4 6 8 10 12
CR=0.1 |71 143 177 4.0 0.3
CR=04 | 64 12,5 11.8 133 13.6

#Task = 32

Table 6. Improvement of Aggressive over ran-
dom approach (Percentage)

duces additional precedence constraints that will affect the
earliest start time of consumers. The communication costs
also affect the overall system workload, therefore, lowering
communication leads to improved schedulability.

S Application of Our Algorithms to Mobile
Robotics

In this section, we return to the robotic problem dis-
cussed in Section 1, where two strategies, push and pull,
are given for a team of two robots. In Table 7, the WCET
of tasks are taken from an experimental implementation on
a StrongARM 206MHz CPU; in Table 9, communication
costs are based on the bytes transmitted using 802.11b wire-
less protocol with 11 Mbit/s transmission rate. Although
802.11b does not allow for real-time transmission guaran-
tees, by prescheduling communications, medium contention
is avoided. The periods are assigned with 220 ms for all
sensor tasks and motor drivers by the application. There-
fore, the periods of controller tasks are also designed to be
220 ms by the harmonic constraint. Though these figures
are given based on tasks in Figure 1, they are compatible to
tasks that occur with more robots; let us consider the sce-
nario when a third robot wants to join the team. Since the
push and pull controllers are pairwise, there are four strate-
gies, composed of push and pull controllers, that the appli-

Task | TR1(2) | Pos1(2) | Hy | Hy | L2 | M1(2)
Push 20 120 35 25| 5 20
Pull 20 120 25 | 25 | 18 20

Table 7. WCETs (ms) of tasks in Figure 1

cation can use for a team of three robots: {Pull, Pull},
{Pull, Push}, {Push, Pull}, and {Push, Push}. The
task graphs for these four strategies are shown in Figures 5.

First, let us use the Aggressive heuristic to analyze the
tasks’ locations in each strategy. The details of the alloca-
tion steps are omitted here due to space limitations. In this
example, since the accumulated communication cost is con-
sidered, the allocation is the same for all strategies: H; is
assigned to Sy, Hs to S5, H3t0 S3, Ly to Sy and L3 to Ss.

Next, the algorithm will see which strategies are schedu-
lable using the heuristic Min_D + W x Min_E. To sim-
plify the analysis, here W is set to 1. The completion times
for tasks on each site are shown in Table 8. The algorithm
finds that, except for { Push, Pull}, denoted as {ph, pl},
all other strategies are feasible, but with different comple-
tion times (including communication delay). Since multi-
ple strategies are feasible, the application can use some cri-
teria to rank the strategies. In this case, if the total laxity
is used as the criterion, then the application will choose the
{Pull, Push} strategy, which has the maximal value.

The application can then use the feasible results when
computing new sets of strategies. For example, if at some
time a fourth robot joins the team, the application immedi-
ately knows that any strategy that contains {Push, Pull}
will not be feasible, since that strategy was already deter-
mined to be infeasible. Therefore, the application can use
the feasibility analysis to prune infeasible strategies as the
team’s size scales.

strategy | {Ph, Ph} | {Pl,Pl} | {Ph,Pl} | {Pl,Ph}
Site 1 195 205979 | 222.979 195
Site 2 202.979 208.958 220 205.979
Site 3 210.958 203 230.958 203

Table 8. The completion time for all strategies



(a) {Push, Push}

(b){Pull, Pull}

(a) {Push, Pull}

(b) {Pull, Push}

Figure 5. Four possible strategies for a team of three robots using the pusk and pull controllers

Comm. IRl(g) — H1(2) POSl(z) — H1(2) Hy—- Ly | HH > M, | Hy — Ly | Posy = Ly | Ly — M2(1)
Push 0.02327 0.01236 2.979 2.979 2.979 0 2.979(0)
Pull 0.02327 0.01236 0 2.979 2.979 0.01236 2.979(2.979)

Table 9. Communication costs of Figure 1

6 Related Work

Numerous research results have demonstrated the com-
plexity of design for real-time system, especially with re-
spect to temporal constraints [9, 19, 20, 21, 22]. Also the
schedulability analysis for distributed real-time systems at-
tracted a lot of attention in recent years [12, 15, 16, 28]. For
tasks with temporal constraints, researchers have focused on
generating task attributes, e.g., period, deadline and phase.
For example, Gerber et al. [9, 22] proposed the period
calibration technique to derive periods and related dead-
lines and release times from given end-to-end constraints.
Techniques for deriving system-level constraintsfrom per-
formance requirements are proposed by Seto et al. [23, 24].
When end-to-end constraints are transformed into interme-
diate task constraints, most previous research results are
based on the assumption that task allocation has been done
a priori. However, schedulability is clearly affected by both
the temporal characteristics and the allocation of tasks.

For a set of independent periodic tasks, Liu and Lay-
land [14] first developed the feasible workload condition for
schedulability analysis under uniprocessor environments.
Much later, Baruah et al. [5] presented necessary and suf-
ficient conditions, namely, U < n (n is the number of
processors) based on P-fairness scheduling for multiproces-
sors. Also, the upper bounds of workload specified for the
given schedules, e.g., EDF and RMA, are derived for ho-
mogeneous or heterogeneous multiprocessor environments
[2,4,6, 10, 11, 26]. All these techniques are for preemptive
tasks and task or job migrations are assumed to be permit-
ted without any penalty. If precedence and communication
constraints exist, these results cannot be directly used.

Peng et al. [17], Abdelzaher et al. [1] and Ramamritham
[18] studied the task allocation and scheduling problem in a
distributed environment. In their models, subtasks or mod-
ules of a task can have precedence and communication con-
straints. From this perspective, their work comes closest to
ours. By using a branch-and-bound search algorithm [17],

the optimal solution in the sense of minimizing maximum
normalized task response time is found to the problem of
allocating communicating periodic tasks to heterogeneous
processing nodes. Though the heuristic guides the algo-
rithm efficiently toward an optimal solution, the algorithm
cannot be simply applied and extended to our environment.
The major differences are: 1) applications require that the
decision be made on-line; 2) we consider a non-preemptive
schedule which is NP-hard in the strong sense even with-
out precedence constraints [8], while the algorithm [3] used
in their method is to find a preemptive schedule; 3) the
precedence constraints are predetermined among specific
instances of tasks in their algorithm, while in our approach,
this is accomplished by the scheduling subject to the prece-
dence constraints. In [1], a period-based method is proposed
to the problem of load partitioning and assignment for large
distributed real-time applications. Scalability is achieved by
utilizing a recursive divide-and-conquer technique.[18] dis-
cussed a static algorithm for allocating and scheduling com-
ponents of periodic tasks across sites in distributed systems.
How to allocating replicates is a major issue counted in the
algorithm. Our task allocation and scheduling algorithm,
however, focuses on the improvement of schedulability by:
1) using a dynamic increasing threshold to bound the uti-
lization bound along each allocation step; 2) consider the
precedence constraints as early as possible by setting the
earliest start time into the heuristic scheduling function.

7 Conclusion and Future Direction

Allocating and scheduling of real-time tasks in a dis-
tributed environment is a difficult problem. The algorithms
discussed in this paper provide a framework for allocating
and scheduling periodic tasks with precedence and commu-
nication constraints in a distributed dynamic environment,
such as mobile robotic system.

Our algorithm was applied to a real world example from



mobile robotics to achieve a simple but efficient allocation
and scheduling scheme for a team of robots. We believe
that this approach can enable system developers to design a
predictable distributed embedded system, even if there are a
variety of temporal and resource constraints.

Now we discuss some of the possible extensions to the
algorithm. First, if the system design does not have pre-
allocated tasks, the heuristic is still applicable. In this case,
the initial threshold is 0. After selecting the first pair of
communicating tasks and randomly assigning them to a pro-
cessor, the algorithm can continue to work on remaining
tasks as discussed in the original algorithms.

Second, the algorithm can be tailored to apply to hetero-
geneous systems. If processors are not identical, the exe-
cution time of a task could be different if it runs on differ-
ent sites. To apply our approach in such an environment,
first, we can take the worst case communication cost ratio,
which is calculated by the slowest processors for each pair
of communicating tasks, and then we can use these values as
estimates to choose the task to be considered next. Second,
when we select the processor, if the task can be assigned
to the processor that the producer is on, then we are done;
otherwise, we need to consider the utilization and the speed
of a processor the same time, e.g., compare the utilizations
from the fastest processors to see which processor will have
the least utilization after loading the task, and choose the
one with the minimum value. After assigning each task, the
threshold will change in a way similar to the original algo-
rithm.
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