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Abstract

In this paper, we examine two architectural alternatives—
native OS support versus middleware—for supporting mul-
timedia applications. Specifically, we examine whether ex-
tensions to OS functionality are necessary for supporting
multimedia applications, or whether much of these bene-
fits can be accrued by implementing resource management
mechanisms in a middleware system. To answer these ques-
tions, we use QLinux and TAO as representative examples
of a multimedia operating system and a multimedia middle-
ware, respectively, and examine their effectiveness in sup-
porting distributed applications. Our results show that al-
though the run-time overheads of a middleware can impact
application performance, middleware resource management
mechanisms can, nevertheless, be as effective as native OS
mechanisms for many applications. We also find OS kernel-
based mechanisms to be more effective then middleware sys-
tems at providing application isolation and at preventing ap-
plications from interfering with one another.

1 Introduction

1.1 Motivation

Since the emergence of multimedia applications more
than a decade ago, applications such as streaming media
players, distributed games, and online virtual worlds have
become commonplace today. Multimedia applications ac-
cess a combination of audio, video, images and textual data
and have timeliness constraints. Until recently, the demand-
ing computing and storage requirements of these applica-
tions as well as their soft real-time nature necessitated the
use of specialized hardware and software. For instance,
continuous media servers were used to stream audio and
�
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video instead of general-purpose file servers, while audio-
video playback required the use of specialized hardware de-
coders. Due to the rapid improvements in computing and
communication technologies as dictated by Moore’s Law,
it is now feasible to employ general-purpose, commodity
hardware, software and operating systems to run such appli-
cations. For instance, today’s processors can easily decode
full-motion DVD-quality (MPEG-2) video; in fact, popular
streaming players, such as Real and WindowsMedia, em-
ploy a software-only architecture and need no special hard-
ware. Since commodity (COTS) operating systems such
as Linux and Windows were originally designed for tradi-
tional best-effort applications, an important issue is how to
enhance them to meet the needs of multimedia applications.

In the simplest case, the soft real-time needs of multime-
dia applications can be met by running such applications at
low utilization levels—the absence of resource contention
from other applications allows a COTS operating system to
easily meet all the needs of a multimedia application and no
enhancements to the OS are necessary. However, running
multimedia applications in the presence of traditional best-
effort tasks (e.g., DVD playback in the presence of compute-
intensive background tasks) causes resource contention and
jitter, resulting in unsatisfactory performance. Two funda-
mentally different approaches can be employed to address
this problem (see Figure 1).

 Native operating system support: In this approach, re-

source management mechanisms in existing operating
systems are augmented to support multimedia applica-
tions. The augmented mechanisms employ service dif-
ferentiation to provide a “better than best-effort” ser-
vice or explicit QoS guarantees to soft real-time ap-
plications. Typically this is done in an incremental
manner so as to preserve the semantics and the API
provided to best-effort applications, ensuring backward
compatibility. Examples of this approach include the
real-time priority class employed by Windows 2000
[16], the real-time scheduling class in Solaris [19] and
the reservation and proportional-share schedulers de-
veloped for Linux [18] and FreeBSD [1].




 Use of a middleware system: In this approach, a mid-
dleware layer between the application and the operat-
ing system arbitrates access to system resources (see
Figure 1(b)). Since all requests for system resources
are made via the middleware, the middleware has com-
plete control over how to allocate resources to vari-
ous applications. Such a middleware system can em-
ploy sophisticated resource management mechanisms
to provide QoS guarantees to soft real-time applica-
tions, while continuing to provide a best-effort service
to other applications. In addition, the middleware sys-
tem can provide other useful services, such as nam-
ing, not provided by the operating system. Examples
of this approach include real-time CORBA (TAO) [13]
and MidArt [10, 14].

These two approaches represent fundamentally differ-
ent philosophies for supporting multimedia applications,
namely “change the OS” versus “leave the OS unchanged
and use mechanisms that build on top of the OS instead”.
The approaches also represent two viewpoints in a broader
philosophical debate—are additional extensions to OS func-
tionality warranted, or can most of these benefits be accrued
by implementing resource management mechanisms in a
middleware without modifying the operating system? This
is a non-trivial question to address since both approaches
have several advantages and disadvantages.

Typically, OS extensions are feasible only when the sys-
tem designer has access to the kernel source code—although
this is less of an issue for open-source operating systems,
source code access to proprietary or commercial operating
systems is often difficult (the only option in such a scenario
is to enhance OS functionality without modifying the ker-
nel). OS extensions are, nevertheless, efficient by virtue of
entrusting all resource management to the OS kernel. The
need to seamlessly coexist (i.e., be backward compatible)
with kernel management mechanisms can, however, limit
the choice of feasible OS enhancements. In contrast, the use
of middleware systems is appealing since no modifications
to the OS kernel are necessary, making the approach feasible
on any COTS system with appropriate resource management
mechanisms. However, the presence of a middleware layer
imposes an additional overhead, which is turn degrades ap-
plication performance.

In the recent past, both approaches have been investigated
in detail, resulting in numerous commercial products and re-
search prototypes. Surprisingly, however, there has been rel-
atively little effort at a systematic study that quantifies the
tradeoffs of the two approaches—existing efforts have im-
plicitly assumed that one or the other approach is necessary
without first considering the merits and demerits of both ap-
proaches. This paper attempts to address this issue by pre-
senting a detailed comparative study of the two approaches.
The goal of our work is not to recommend one approach over
the other; rather it is to articulate and quantify the tradeoffs
of the two approaches so as to provide guidelines to future
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Figure 1. Two canonical approaches for supporting
multimedia applications. A multimedia operating sys-
tem employs enhanced resource management mecha-
nisms within the kernel, whereas a multimedia mid-
dleware employs QoS mechanisms at the user-level to
support soft real-time multimedia applications. Both
approaches also support traditional best-effort appli-
cations.

system designers.

1.2 Research Contributions

In this paper, we compare the two different approaches
for supporting multimedia applications—native OS support
and the use of a middleware—along dimensions such as
portability, complexity, performance, ease of use, and back-
ward compatibility. Since metrics such as ease of use and
compatibility are difficult to quantify, we provide qualitative
arguments for these metrics and quantify the tradeoffs of the
two approaches with respect to performance. Performance,
however, is not the sole criterion for choosing between the
two approaches and many other factors influence this deci-
sion. Consequently, our goal is to articulate the tradeoffs of
the two approaches along various dimensions and quantify
them wherever possible so as to enable system designers to
make good engineering tradeoffs. It should be noted that the
two approaches are at the two ends of a spectrum; hybrid ap-
proaches are also possible where some of the enhancements
are implemented within the OS kernel and the rest are im-
plemented at the user-level [7].

Specifically, this paper attempts to answer the following
questions:


 Under what scenarios and for what kind of applications
is one approach more suitable then the other?


 What are the run-time overheads of the middleware ap-
proach and what are their implications on application
performance? Specifically, can a middleware system
yield performance that is comparable to an OS-based
approach despite its run-time overheads?

One approach to address these issues is to develop new
resource control mechanisms for OS kernels and middle-
ware and compare their performance. However, the goal of



our work is not to develop new mechanisms, rather it is to
compare existing systems and mechanisms that belong to
the two categories and evaluate their tradeoffs. To do so,
we use TAO as a representative example of a multimedia
middleware and QLinux as a representative example of a
multimedia operating system and conduct an experimental
evaluation of these systems. Our evaluation of these sys-
tems uses a mix of best-effort and multimedia applications
ranging from streaming media servers, industrial control ap-
plications and web servers. Our results show that although
the run-time overheads of TAO can impact application per-
formance when compared to QLinux, TAO can, neverthless,
provide performance comparable to QLinux for many ap-
plications. Specifically, we see the TAO yields (i) stream-
ing performance that is comparable at low loads but slightly
worse at heavy loads and (ii) comparable performance for
industrial control applications. A closer examination of why
TAO can provide comparable performance, despite middle-
ware overheads, reveals the following. We find that some of
these these benefits are due to the higher level abstractions
provided by a middleware. An untuned application using
these high-level abstractions benefits from the optimizations
performed on these abstractions by middleware developers,
whereas the same untuned application running on a com-
modity OS kernel needs to implement this functionality (and
does so without any tuning). However, some of these ben-
efits are outweighed by the higher run-time overheads of a
middleware at moderate to heavy loads, which can result in
a degradation in application performance.

Our experiments also indicate that, for certain applica-
tions such as industrial control systems, middleware re-
source management mechanisms can be as effective as na-
tive OS mechanisms. We also find that TAO is less effective
at providing application isolation (i.e., preventing interfer-
ence when multiple competing applications access OS re-
sources concurrently). Since our study is specific to the two
systems, QLinux and TAO, we note that our results should
be interpreted accordingly—our quantitative results should
not be treated as broadly applicable to other systems, al-
though many of our observations may apply in qualitative
terms.

The rest of this paper is structured as follows. Section
2 discusses the qualitative differences between the two ap-
proaches. We present the results of our experimental evalu-
ation in Section 3. Section 4 discusses our experiences with
the two platforms used in our experimental study and the
lessons learned in the process. Section 5 discusses related
work, and finally, Section 6 presents some concluding re-
marks.

2 Qualitative Considerations

In this section, we articulate the qualitative differences
between the two approaches and provide several examples
of existing systems that employ these approaches.

2.1 OS Extensions for Multimedia

OS kernel enhancements to support multimedia applica-
tions have the following advantages and disadvantages.


 Efficiency and performance: Handling all resource
management mechanisms within the kernel allows this
approach to efficiently arbitrate resources among con-
tending applications, resulting in low overheads. Fur-
thermore, the benefits of providing service differenti-
ation to applications typically outweigh the run-time
overheads imposed by the approach [18].


 Complexity for the application developer: Observe that
this approach requires incremental enhancements to the
OS system call interface to expose the new resource
management mechanisms to applications. Since the in-
terface is enhanced in an incremental manner, appli-
cations continue to deal with standard OS interfaces
(API), resulting in lower complexity for the application
developer. An added benefit of the approach is that all
existing and legacy applications continue to run on the
OS without any modifications.


 Complexity for the system designer: In certain in-
stances, it may be possible to enhance OS functionality
via dynamically loadable modules without modifying
the kernel source.1 In general, however, OS enhance-
ments are feasible only when one has access to the ker-
nel source code. In either case, OS modifications re-
quire a solid understanding of the intricacies of the ker-
nel and of the possible interactions between the new
and the existing mechanisms. Since OS kernels tend to
be complex software systems, this imposes a significant
challenge on the system designer.


 Choice and effectiveness of resource management
mechanisms: One of the main challenges of this ap-
proach is that new OS enhancements need to coexist
with existing mechanisms. The need for coexistence
and backward compatibility can limit the choice of fea-
sible OS enhancements, making the task of the system
designer more complex. Moreover, these compatibil-
ity limitations can reduce the overall effectiveness of
the approach. For instance, depending on the kernel ar-
chitecture, only mechanisms that provide a “better than
best effort” service may be feasible instead of those that
provide explicit QoS guarantees.2

1To illustrate, Ensim ServerXchange, a commercial product, employs
this approach—OS functionality is extended via dynamically loadable
modules that provide QoS support [3]. HP’s Linux CPU scheduler inter-
face also embraces this philosophy by allowing new CPU schedulers to be
written as dynamically loadable modules [11].

2A better-than-best-effort-service is one where applications receive
qualitatively better service than vanilla best-effort service, although no
quantitative guarantees are provided.




 Portability and Reuse: Since OS kernels have different
architectures, enhancements made to one kernel are not
directly applicable to another (the basic concepts may
apply but the implementation is not portable). Thus,
the approach does not permit reuse and is not portable
across OS kernels. Portability can be problematic even
across different versions of the same kernel.

Finally, we note that our study focuses on approaches
that incrementally extend the functionality of existing OS
kernels. It is also possible to design a completely new OS
kernel or make radical changes to an existing OS kernel.
Whereas such an approach eliminates the hurdles faced in
incrementally extending OS functionality, designing a new
or radically redesigned kernel is very expensive (in terms of
programming effort ) and can result in compatibility prob-
lems with existing applications.

2.2 Multimedia Middleware

The use of a middleware system to support multime-
dia applications has the following advantages and disadvan-
tages:


 Efficiency and performance: The need to use an ad-
ditional software layer to access system resources im-
poses a run-time overhead, which in turn lowers appli-
cation performance. One of the goals of this paper is
to quantify the impact of this overhead on application
performance.


 Complexity for the application developer: Typically
each middleware layer exports an API for accessing
system resources and middleware services. Although
the API may be similar in design to commonly used ap-
plication libraries and OS system call interfaces, there
are often subtle differences in the syntax and seman-
tics of the API [12]. Consequently, applications may
need to be programmed to a new API, which increases
complexity for application developers. Furthermore,
existing and legacy applications need to be modified
to use this API if they are to run on the middleware,
which results in compatibility problems. An alternate
approach is to bypass the middleware system and run
legacy applications directly on the OS. However, this
can interfere with the QoS guarantees provided by the
middleware system to soft real-time applications (since
the middleware no longer controls access to system re-
sources for all applications).


 Complexity for the system designer: Since a middle-
ware system is a separate software component from the
OS kernel, there are fewer interdependences between
the middleware and the kernel, reducing complexity
for the middleware designer. However, depending on
the functionality and services provided, a sophisticated
middleware system can be a complex software system.

Middleware

OS scheduler

middleware scheduler

request
ordering

  possible
reordering

OS kernel

Applications

Figure 2. Possible interactions between the middle-
ware scheduler and the OS scheduler. The two effec-
tively form a two-level scheduler.


 Choice and effectiveness of resource management
mechanisms: Whereas the choice of feasible OS kernel
enhancements can be limited by compatibility issues,
no such limitations apply to middleware system—in
principle, the middleware system can employ any re-
source management mechanism to provide QoS sup-
port for multimedia applications. In reality though, im-
plementing a particular resource management mecha-
nism in the middleware is complex, since it depends
on the scheduling policy implemented by the underly-
ing OS kernel. As shown in Figure 2, the middleware
scheduler and the OS scheduler effectively form a two-
level scheduler; the overall order in which requests get
scheduled depends on the combined effect of the two
schedulers. In general, requests ordered by the mid-
dleware scheduler may be reordered by the OS sched-
uler, reducing the overall effectiveness of the middle-
ware system.

Certain OS scheduling policies can make the task of
middleware resource management easier. For instance,
if the OS scheduler is FIFO, it is possible to implement
any arbitrary scheduling policy in the middleware—
once requests are ordered by the middleware scheduler,
they get serviced in the same order inside the kernel
due to the FIFO policy. Similarly, if the OS scheduler
is a strict priority scheduler, it is possible to implement
any arbitrary scheduling policy in the middleware—
based on the middleware scheduling policy, the next
request to be scheduled is elevated to the highest prior-
ity level, causing the OS to schedule this request next.
In general, however, an arbitrary OS scheduling pol-
icy makes the task of the middleware resource manager
more complex.

One approach to prevent reordering of requests within
the kernel is to simply issue one request at a time
to the OS, based on the order determined by the
middleware—the presence of a single outstanding re-
quest eliminates the possibility of request reordering
(all scheduling policies reduce to FIFO in the presence



of a single request). Whereas this approach suffices for
certain OS resources, it can reduce the throughput and
utilization of resources where concurrency is impor-
tant. For instance, in the case of disks, the presence of
multiple outstanding requests allows the disk scheduler
to perform seek optimizations and reduce the seek over-
head incurred per request (e.g., the SCAN scheduling
policy). For such resources, there is a conflict between
the need to improve throughput and the effectiveness of
the middleware scheduler. Thus, managing resources
using a middleware is a complex issue and requires an
intimate knowledge of OS scheduling mechanisms.

Finally, observe that the middleware resource manager
is effective only if all requests for system services are
made via the middleware. If some applications bypass
the middleware and request OS resources directly, this
interferes with QoS guarantees provided by the middle-
ware to soft real-time applications. Such interference
may be inevitable if the machine runs legacy applica-
tions.


 Portability and reuse: Since a middleware system does
not require any modifications to the underlying OS,
the approach is portable and can be reused on differ-
ent COTS systems. Similarly, applications designed to
run on middleware system are portable to any platform
supported by the middleware.

2.3 Examples

In the recent past, several systems—both from the com-
mercial and research domains—have been developed to
manage CPU, network interface bandwidth and disk band-
width based on the two approaches (see Section 5 for exam-
ples of these systems). In this paper, we restrict our focus to
only one of these three resources, namely network interface
bandwidth and examine its impact on application perfor-
mance. We choose network bandwidth over other resources
since studies have shown that the network is typically a bot-
tleneck resource for many distributed multimedia applica-
tions such as network servers. Hence, a study of network
interface bandwidth management using the two approaches
provides a good overview of their tradeoffs. Further, there
are freely-available systems such as QLinux and TAO (real-
time CORBA) that belong to the two approaches and make
our study feasible. Next, we provide a brief overview of the
two systems used in our study.

2.3.1 QLinux

QLinux is a QoS-enhanced kernel based on the popular
Linux operating system [18]. QLinux replaces the standard
CPU, disk and network interface schedulers within Linux
with QoS-aware schedulers. Specifically, QLinux employs
four key components: (i) hierarchical start-time fair queu-
ing (H-SFQ) CPU scheduler that allocates CPU bandwidth

root
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Figure 3. The H-SFQ CPU scheduler in QLinux. The
packet scheduler shows a sample scheduling hierar-
chy with three classes, namely HTTP, soft real-time
and default, and two sub-classes within HTTP. The
weights indicate the partitioning of bandwidth among
classes.

fairly among application classes, (ii) hierarchical start-time
fair queuing (H-SFQ) packet scheduler that can fairly al-
locate network interface bandwidth to various applications,
(iii) Cello disk scheduler that can support disk requests with
diverse performance requirements, and (iv) lazy receiver
processing for appropriate accounting of protocol process-
ing overheads [18]. Since the focus of our work is on manag-
ing network interface bandwidth, in this paper, we are only
concerned with the H-SFQ packet scheduler, which we de-
scribe next.

An OS kernel employs a packet scheduler at each net-
work interface to determine the order in which outgoing
packets are transmitted. Traditionally, operating systems
have employed the FIFO scheduler to schedule outgoing
packets. To meet the needs of multimedia applications,
QLinux employs H-SFQ to schedule outgoing packets. H-
SFQ is a fair, proportional-share scheduler based on gen-
eralized processor sharing (GPS). H-SFQ allows a weight
to be assigned to each outgoing flow (more specifically, a
socket) and allocates bandwidth to flows in proportion to
their weights. Hence, a socket with a weight ��� is allocated������ � � fraction of the interface bandwidth. The scheduler

is hierarchical in that sockets can be hierarchically grouped
into classes that are allocated an aggregate weight (see Fig-
ure 3). Bandwidth unused by a class or a flow is reallocated
to other classes to improve network utilization. QLinux en-
sures backward compatibility by instantiating a FIFO class
in the H-SFQ hierarchy—outgoing packets are queued up
at the FIFO scheduler by default. An application requiring
QoS guarantees needs to associate its sockets to a different
application class and assign them an appropriate weight.
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2.3.2 TAO/real-time CORBA

TAO is a freely available, open-source, real-time implemen-
tation of CORBA that provides predictable quality of service
to applications (see Figure 4(a)). Conventional CORBA im-
plementations have provided only a best-effort service to ap-
plications. The barrier to real-time support within CORBA
has been the challenge of providing real-time guarantees
that transcend the layering boundaries within CORBA. TAO
overcomes this drawback by integrating the network inter-
face, the I/O subsystem, the ORB and the middleware ser-
vices so as to provide QoS guarantees that span all layers
from the application to the operating system. The salient
features of TAO include: (i) the use of active demulti-
plexing and perfect hashing to dispatch requests to objects
in constant time, (ii) a concurrency model that minimizes
context switching and locking (the model can be config-
ured to incur only a single context switch and no locking
or memory allocation on the fast path), (iii) the use of a
non-multiplexed connection model that avoids priority in-
version and behaves predictably when used with real-time
applications [13]. TAO provides these features and opti-
mizations while conforming to the CORBA 2.3 standard.
Moreover, TAO is backward compatible with conventional
CORBA and hence is able to support all existing (best-
effort) CORBA applications.

Although TAO implements a rich set of features and op-
timizations, the two particular features of TAO relevant to
the present study are the event service [4] and the audio-
video streaming service [9]. The event service enables
client-server communication based on a publish-subscribe
paradigm—producers publish events and consumers receive
events to which they have subscribed (see Figure 4(b)). An
event channel provides a mechanism that decouples con-
sumers from producers; by using an event channel as an
intermediary, neither producers nor consumers need to be
aware of one another. TAO uses a push model for the event
channel—producers push events (or data) to the event chan-
nel, which pushes them to appropriate consumers. TAO

enhances the standard CORBA event service with features
such as real-time event dispatch and scheduling, event filter-
ing, event correlation and periodic event processing. Appli-
cations using TAO can associate deadlines with events; the
deadlines determine the scheduling and dispatch of events
within the event channel. Further, consumers can instantiate
filters to receive only those events that are of interest to them.
Event correlation allows an event to be delivered depend-
ing on the occurrence of a related event. TAO’s real-time
event service can be employed to provide predictable ser-
vice to distributed multimedia applications such as stream-
ing servers and audio/video players.

The CORBA audio-video streaming service is designed
to support audio/video streaming. The service integrates
well-defined modules, interfaces, and semantics for stream
establishment and control with efficient data transfer pro-
tocols for streaming data transmission [9]. It supports the
notion of pluggable protocols to allow different streaming
protocols to be supported by the service; the current imple-
mentation supports various transport protocols such as UDP,
TCP and RTP on the data path. The control path supports
client-server signaling for stream operations such as play,
stop and rewind.

3 Experimental Evaluation

Having discussed the qualitative differences between the
two approaches, in this section, we quantify the tradeoffs of
the OS- and middleware-based approaches with respect to
application performance. Using QLinux and TAO as rep-
resentative examples of the two approaches, we attempt to
answer the following questions: (i) what are the run-time
overheads of middleware resource management mechanisms
and what are their implications on application performance?
and (ii) can a middleware-based approach yield performance
that is comparable to a OS-based approach? If so, under
what operating regions? Next, we present our experimental
methodology and then our experimental results.

3.1 Experimental Methodology

The testbed for our experiments consists of a cluster of
Linux-based 350 MHz Pentium III PCs, each with 96MB
RAM and 512 MB swap space, interconnected by 100Mb/s
switched ethernet. The version of QLinux used for our ex-
periments is based on the 2.2.0 Linux kernel, while the ver-
sion of TAO used is 1.1 (version 1.2 is used for experiments
related to streaming, since the audio-video streaming service
was first supported in version 1.2). Both versions are com-
piled with the GNU C/C++ compiler (version 2.95.2) with
the highest level of optimizations.

The workload for our experiments consists of the follow-
ing applications: (i) streaming: a streaming video server and
client, (ii) industrial control: a real-time application that em-
ulates an industrial control console system and a data sensor



and monitoring system and (iii) the Apache web server that
is chosen a legacy application. Experiments with additional
applications are reported in [15].

To ensure a fair comparison between QLinux and TAO,
we ensured that applications developed for the two platforms
were identical in all respects except for their communication
routines (which were based on the specific functionality pro-
vided by QLinux and TAO).

Next, we present our experimental results.

3.2 Performance of Video Streaming

First, we examine the performance of video streaming on
the two platforms. Our application consists of a video server
that streams a 1.5 Mb/s, 30 frames/s MPEG-1 video to mul-
tiple clients. The QLinux version of the application consists
of a multi-threaded server that services clients in periodic
rounds. The duration of a round is set to 1 second in our
experiments. In each round, the server retrieves the next 30
frames for each client from disk; frames retrieved in a given
round are transmitted to clients in the following round. Due
to the real-time nature of streaming, all frames need to be
transmitted to clients by the end of each round. The QLinux
server uses the H-SFQ packet scheduler to provide the de-
sired QoS guarantees to each client. To do so, the server
associates a weight with each socket over which video data
is transmitted; the weight depends on the bit-rate of each
stream and ensures that the stream is allocated the neces-
sary transmission bandwidth. In contrast, the TAO version
of the server employs the audio-video streaming service.
Like in the QLinux version, the server proceeds in periodic
rounds. In each round, the server retrieves frames from disk
and transmits them to clients in the next round. Like in the
QLinux server, the server transmits each set of 30 frames at
their real-time rates; In both cases, the server was run at the
highest priority level of the CPU scheduler.

We vary the number of concurrent clients accessing the
server and measure the total time required to transmit and
deliver data in each round. Figure 5 plots our results. Fig-
ure 5(a) shows that both QLinux and TAO are able to meet
the real-time requirements imposed by streaming at low and
moderate loads (by virtue of delivering frames before the
end of each round). The figure also shows that TAO results
in a larger fraction of deadline violatations at higher loads.

Fig 5(b) and (c) shows the histogram of frame arrivals
for the QLinux and TAO, respectively, at a moderate load
of 4 concurrent clients. These plots show that the increased
computational overheads in TAO cause more frames to miss
their deadlines than QLinux. About 3.7 % of the rounds have
frames missing their deadlines in QLinux, whereas there are
deadlines misses in 4.1% of the rounds in TAO. Thus, we
conclude that TAO can provide streaming performance com-
parable to QLinux at low loads, but the middleware over-
heads degrade streaming performance at higher loads.

3.3 Performance of an Interactive Real-time Ap-
plication

In this experiment, we study the performance of an in-
teractive real-time application on the two platforms. The
objective of this experiment is two-fold: (1) understand the
efficacy of the two platforms in servicing interactive applica-
tions, and (2) study how the presence of background appli-
cations affects the performance of interactive applications.
We use an industrial control console system as a represen-
tative application for our experiment (see [10] for a detailed
description of this application). The applications consists of
two distinct components. The first component is a supervi-
sor’s command console that periodically issues commands
to a remote actuator device (emulated by a remote server).
The actuator performs the operation requested by the client
and then sends an acknowledgment back to the console.
Commands generated by the console have inter-arrival times
that are uniformly distributed between 100 and 300 ms. The
second component consists of a data sensor (simulated by
a producer) that periodically (every 30ms) sends an update
to a remote monitor (simulated by a consumer). The two
components serve as an interactive application and the back-
ground application, respectively. The components enable us
to study the performance of interactive applications in the
presence and absence of background load (by simply run-
ning the console component with and without the data sen-
sor component).

The QLinux version of the application consists of two
client-server pairs, one for each component, that commu-
nicate using TCP. As explained above, the client emulating
the command console sends 1 byte commands at random
intervals and receives a 1 byte response; the response time
and the jitter are measured for each command. In the data
sensor application, the server receives periodic 1 byte up-
dates from the client; the arrival times of these updates and
the jitter are recorded. The TAO version of the command
console uses RPCs to issue commands, while the data sens-
ing component is implemented using TAO’s real-time event
channel. Like in our previous experiment, the mechanisms
supported by the H-SFQ packet scheduler and the real-time
scheduler in the event channel are used to specify the de-
sired QoS requirements in the two platforms.3 As an aside,
observe that these two applications have characteristics sim-
ilar to web and video servers—the command console is a
request-response application, while the sensor streams data
to the monitor, albeit at lower data rates.

Table 1 depicts the response times and the jitter seen by
the command console application with and without the data
sensor application. The table shows that the response time
degrades in the presence of the data sensor application for
both platforms (due the increase in system load). The table
also shows that QLinux yields smaller response times and

3An alternative to the real-time event service is to use the ORB’s real-
time CORBA features.
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Figure 5. Performance of video streaming.

Table 1. Response times and jitter for the command
console application.

QLinux TAO
( 5 s) ( 5 s)

Without data sensor 67617.6 6 12.97 67974.3 6 96.09
With data sensor 67853.9 6 11.53 70960.7 6 443.9

Table 2. Inter-arrival times of updates and jitter for
the data sensor.

QLinux TAO
( 7 s) ( 7 s)

Sender 29997.65 8 4.63 29996.37 8 9.21
Receiver 29997.63 8 5.70 29992.54 8 7.80

smaller jitter than TAO (the response times are 0.5% and
4.4% smaller in QLinux). Further, the increase in jitter due
to background load is larger in TAO than QLinux, indicating
that QLinux is able to better isolate applications from one
another.

Table 2 depicts the performance of the data sensor appli-
cation as measured by the inter-arrival times of updates at the
server and the resulting jitter. As shown, the performance of
the two platforms is comparable, with updates arriving every
30ms, indicating that both platforms are able to provide the
desired service quality to this application.

The above results show that the effectiveness of middle-
ware mechanisms is only marginally worse than OS kernel
mechanisms, indicating that they may be acceptable for ap-
plications such as those considered in this experiment.

3.4 Effect of Running Legacy Applications

In this experiment, we examine the efficacy of the two
platforms in isolating applications from one another. We
consider a worst-case scenario where a legacy application
is run concurrently with an application that needs QoS guar-
antees. We use an unmodified Apache web server as an ex-
ample of a legacy application and use the streaming server
described in Section 3.2 as an example of a multimedia ap-
plication. The streaming server is configured using the using
the audio-video streaming service discussed in Section 3.2.
We increase the load on the Apache web server by increas-
ing the number of concurrent requests and measure its im-
pact on the streaming server (i.e., on the transmission of 30
frames in each round). Figure 6 depicts our results. The
figure shows that increasing the load on the Apache web
server degrades streaming performance by less than 30% in
QLinux. In contrast, the web workload interferes with the
streaming server on TAO, resulting in a significant degra-
dation in performance. This is because the legacy Apache
server bypasses the TAO middleware and interacts directly
with the underlying operating system. Since TAO has no
control over the behavior of Apache, it is unable to isolate
the streaming server from the web requests. In contrast, by
managing resources at the OS level, QLinux is able to pro-
vide better application isolation (even though Apache does
not use any QoS mechanisms, network packets from all ap-
plications are processed by the QLinux packet scheduler, al-
lowing it to reduce interference from legacy applications).

4 Experiences and Lessons Learned

In this section, we discuss our experiences in using the
two platforms and present some of the lessons learned from
our study.


 Effectiveness of resource management mechanisms:
Although the run-time overheads of a middleware de-
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Figure 6. Effect of the Apache web server on a
streaming media server.

grade application performance, we found that a middle-
ware can indeed provide performance comparable to an
OS-based approach for certain applications and in cer-
tain operating regions. Despite the overheads of a mid-
dleware system, our study also showed that middleware
applications benefit from the optimizations and tuning
in the middleware libraries and services, which can re-
sult in performance comparable to highly-tuned appli-
cations. In contrast, an OS-based approach requires
application developers to write code dealing with the
low-level OS interactions. Consequently, the efficiency
of the application depends on the expertise of the pro-
grammer and the efforts employed in tuning the code.


 Choice of resource management mechanisms: The
choice of the exact resource management mechanism
is important, since it can greatly simplify or compli-
cate application development. Consider the streaming
media server experiment described in Section 3.2. In
this case, QLinux mechanisms only support bandwidth
allocation and do not support the notion of deadlines;
consequently, the OS supports only throughput guaran-
tees and not frame-specific deadline guarantees.


 Complexity for application developers: Designing a
middleware application involves a substantial “learn-
ing curve”. However, the subsequent programmer pro-
ductivity is also higher due to the higher-level primi-
tives supported by the middleware. Initially, we had
to invest a significant effort in learning about TAO’s
API and functionality. Having done so, we found that
TAO’s high-level abstractions and services (e.g., event
service, naming service) made the task of designing
a distributed application easier. In contrast, design-
ing QLinux applications required us to use lower-level
primitives supported by the OS system call interface
and libraries (which meant writing additional code).


 System complexity: Building (compilation) the TAO
system and TAO-based applications was found to be
surprisingly CPU and memory-intensive. A minimal
build of TAO And TAO ORB services, around a mil-
lion lines of C++ code, took several hours on a lightly
loaded Pentium-III with 192MB RAM. Even the sim-
plest TAO application took several minutes to build.
In contrast, a build of the QLinux kernel, a few hun-
dred thousand lines of C code, takes about 10 minutes,
while compiling a simple application takes tens of sec-
onds. Some of these overheads are an artifact of us-
ing C++ for TAO and C for QLinux—C++ compilers
are generally slower than those for C. Further, portions
of TAO depend on the ACE framework, which further
increases its compile-time complexity. While a large
compilation complexity may not necessarily translate
to run-time complexity, we were nevertheless surprised
by these differences.

5 Related Work

Several research efforts have investigated approaches for
predictable allocation of system resources such as CPU,
disk and network interface bandwidth. Recently, many re-
searchers have devised middleware-based approaches that
extend OS functionality in non-trivial ways—these efforts
assume that kernel source code access is unavailable due
to the proprietary nature of many operating systems, and
consequently, enhancing OS functionality without modi-
fying the kernel is the only feasible approach. For in-
stance, scheduling of threads in a threads library is the most
prevalent example of managing CPU resources at the user-
level.The advantages and disadvantages of the approach are
well known—since the kernel is unaware of the presence of
user-level threads, the efficacy of the thread scheduler can be
diminished by kernel scheduling decisions. The advantage
though is that any scheduling policy can be implemented in
the threads library. More recently, scheduling tasks at the
user-level using a middleware has been studied in [8]; the
approach exploits kernel scheduling policies to implement
various policies at the user level. Similarly, (soft) real-time
OS enhancements to the CPU scheduler have been imple-
mented in numerous operating systems such as Linux [18],
FreeBSD [1], Solaris [17] and Windows [16].

Middleware approaches to manage network interface
bandwidth include MidART [14], CREMES [2], and TAO
[13]. All of these approaches run on commodity operating
systems such as Windows and Linux and provide QoS guar-
antees for inter-process communication. OS enhancements
for managing network interface bandwidth includes a num-
ber of predictable packet scheduling algorithms;these sched-
ulers provide bandwidth and/or delay guarantees to network
flows. Many of these scheduling algorithms have also been
implemented in commercial and open-source operating sys-
tems. Streaming media servers implemented at the user level



are an example of managing disk resources at the application
level [20], while file systems such as SGI XFS [6] and IBM
TigerShark [5] implement schedulers that support guaran-
teed rate I/O.

6 Concluding Remarks

In this paper, we examined two architectural alternatives,
namely native OS support and a middleware, for supporting
multimedia applications. Specifically, we examined whether
extensions to OS functionality are necessary for supporting
multimedia applications, or whether much of these bene-
fits can be accrued by implementing resource management
mechanisms at the user-level. Our results showed that al-
though the run-time overheads of a middleware can impact
application performance, user-level resource management
can, nevertheless, be just as effective as native OS mecha-
nisms for certain applications. We also found that kernel-
based mechanisms can be more effective at providing appli-
cation isolation than a middleware system.

We emphasize here that our study represents a first step
in the debate between extending OS functionality versus
the use of a middleware—our study has not answered all
the questions that arise in this debate but has, nevertheless,
provided valuable insights into the tradeoffs of the two ap-
proaches. Further, our results are specific to the two plat-
forms we examined; while our quantitative results might not
generalize to other platforms, many of our observations may
apply in qualitative terms. One limitation of our study was
that we choose readily available “off-the-shelf” systems for
our experimental evaluation (since we believed they were
representative examples of the two approaches). An arti-
fact of this design decision was that some of our results
were colored by the idiosyncrasies of the two systems. As
part of future work, we plan to implement identical resource
management mechanisms into a commodity OS kernel and a
lightweight middleware and then compare the effectiveness
of the two systems.
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