PRESTO: Feedback-driven Data Management in Sensor Networks

Ming Li, Deepak Ganesan, and Prashant Shenoy
Department of Computer Science
University of Massachuseits

Amherst MA 01003.
{mingli,dganesan,shenoy }@cs.umass.edu
Abstract forts such as Directed Diffusion [11] and Cougar [23]

This paper presents PRESTO, a novel two-tier sensoespoused the notion of the sensor network as a database.
data management architecture comprising proxies an@he framework assumes that intelligence is placed at the
sensors that cooperate with one another for acquiringensors and that queries are pushed deep into the net-
data and processing queries. PRESTO proxies construetork, possibly all the way to the remote sensors. Di-
time-series models of observed trends in the sensor datact querying of remote sensors is energy efficient, since
and transmit the parameters of the model to sensors. Sequery processing is handled at (or close to) the data
sors check sensed data with model-predicted values argburce, thereby reducing communication needs. How-
transmit only deviations from the predictions back to theever, the approach assumes that remote sensors have suf-
proxy. Such a model-driven push approach is energyficient processing resources to handle query processing,
efficient, while ensuring that anomalous data trends aran assumption that may not hold in untethered networks
never missed. In addition to supporting queries on cur-of inexpensive sensors (e.g., Berkeley Motes [19]). In
rent data, PRESTO also supports queries on historicatontrast, efforts such as TinyDB [13] and acquisitional
data using interpolation and local archival at sensorsquery processing [3] from the database community have
PRESTO can adapt model and system parameters to dag@lopted an alternate approach. These efforts assume that
and query dynamics to further extract energy savingsintelligence is placed at the edge of the network, while
We have implemented PRESTO on a sensor testbed conkeeping the sensors within the core of the network sim-
prising Intel Stargates and Telos Motes. Our experi-ple. In this approach, data is pulled from remote sensors
ments show that in a temperature monitoring applicationpy edge elements such as base-stations, which are as-
PRESTO vyields one to two orders of magnitude reducsumed to be less resource- and energy-constrained than
tion in energy requirements over on-demand, proactiveemote sensors. Sensors within the network are assumed
or model-driven pull approaches. PRESTO also resultso be capable of performing simple processing tasks such
in an order of magnitude reduction in query latency in aas in-network aggregation and filtering, while complex
1% duty-cycled five hop sensor network over a systenquery processing is left to base stations (also referred

that forwards all queries to remote sensor nodes. to as micro-servers or sensor proxies). In acquisitional
query processing [3], for instance, the base-station uses

1 Introduction a spatio-temporal model of the data to determine when to
pull new values from individual sensors; data is refreshed

1.1 Motivation from remote sensors whenever the confidence intervals

] o on the model predictions exceed query error tolerances.
Networked data-centric sensor applications have become

popular in recent years. Sensors sample their surround- While both of these philosophies inform our present
ing physical environment and produce data that is therwork, existing approaches have several drawbacks:
processed, aggregated, filtered, and queried by the appINeed to capture unusual data trendSensor applica-
cation. Sensors are often untethered, necessitating effiions need to be alerted when unusual trends are observed
cient use of their energy resources to maximize applicain the sensor field; for instance, a sudden increase in
tion lifetime. Consequently, energy-efficient data man-temperature may indicate a fire or a break-down in air-
agement is a key problem in sensor applications. conditioning equipment. Although rare, it is imperative
Data management approaches in sensor networks haver applications, particularly those used for monitoring,
centered around two competing philosophies. Early efto detect these unusual patterns with low latency. Both

TinyDB [13] and acquisitional query processing [3] rely The remote sensors check the sensed data against this
on a pull-based approach to acquire data from the sensonodel and push data only when the observed data devi-
field. A pure pull-based approach can never guaranteates from the values predicted by the model, thereby cap-
that all unusual patterns will be always detected, sincduring anomalous trends. Such a model-driven push ap-
the anomaly may be confined between two successivproach reduces communication overhead by only push-
pulls. Further, increasing the pull frequency to increasdng deviations from the observed trends, while guar-
anomaly detection probability has the harmful side-effectanteeing that unusual patterns in the data are never
of increasing energy consumption at the untethered sermissed. An important requirement of our model is that
Sors. it should be very inexpensive to check at resource-poor

Support for archival queriesMany existing efforts fo- ~ sensors, even though it can be expensive to construct at
cus on querying and processing of current (live) sensothe resource-rich proxies. PRESTO employs seasonal
data, since this is the data of most interest to the appliARIMA-based time series models to satisfy tlaisym-
cation. However, support for querying historical data ismetricrequirement.

also important in many applications such as surveillance, Support for archival queries: Whereas PRESTO
where the ability to retroactively “go back” is necessary,sypports queries on current data using model-driven
for instance, to determine how an intruder broke into 8push, it also supports queries on historical data using a
building. Similarly, archival sensor data is often useful to ngyel combination of prediction, interpolation, and lo-
conduct postmortems of unusual events to better undegg| archival. By associating confidence intervals with the
stand them for the future. Architectures and algorithmsy,gdel predictions and caching values predicted by the
for efficiently querying archival sensor data have not re-model in the past, a PRESTO proxy can directly respond
ceived much attention in the literature. to such queries using cached data so long as it meets
Adaptive system desigriong-lived sensor applica- query error tolerances. Further, PRESTO employs inter-
tions need to adapt to data and query dynamics whilgyolation methods to progressively refine past estimates
meeting user performance requirements. As data trendghenever new data is fetched from the sensors. PRESTO
evolve and change over time, the system needs to adagknsors also log all observations on relatively inexpen-
accordingly to optimize sensor communication over-sjye flash storage; the proxy can fetch data from sensor
head. Similarly, as the workload—query characteris-archives to handle queries whose precision requirements
tics and error tolerance—changes over time, the systergan not be met using the local cache. Thus, PRESTO ex-
needs to adapt by updating the parameters of the modyoits the proxy cache to handle archival queries locally
els used for data acquisition. Such adaptation is key fofyhenever possible and resorts to communication with the

enhancing the longevity of the sensor application. remote sensors only when absolutely necessary.
Adaptation to Data and Query Dynamics: Long-
1.2 Research Contributions term changes in data trends are handled by periodically

.) refining the parameters of the model at the proxy, which
This paper presents PRESTO, a two-tier sensor archimproves prediction accuracy and reduces the number of
tecture that comprises sensor proxies at the higher t'ebushes. Changes in query precision requirements are
each controlling tens of remote sensors at the lower tief,5441ed by varying the threshold used at a sensor to
PRESTO proxies and sensors interact and cooperatqrigger a push. If newer queries require higher preci-

for acquiring data and processing queries [4]. PRESTQion (accuracy), then the threshold is reduced to ensure
strives to achieve energy efficiency and low query la-ihat small deviations from the model are reported to the
tency by exploiting resource-rich proxies, while respect-proxy’ enabling it to respond to queries with higher pre-

ing constraints at resource-poor sensors. Like TinyDBysion. Overall, PRESTO proxies attempt to balance the

PRESTO puts intelligence at the edge proxies whileg,gt of pushes and the cost of pulls for each sensor.
keeping the sensors inside the network simple. A key

difference though is that PRESTO endows sensors with W€ have implemented PRESTO using a Stargate

the ability to asynchronously push data to proxies rathePrO%Y and Telos Mote sensors. We demonstrate the ben-

than solely relying on pulls. Our design of PRESTO hasefits of PRESTO using an extensive experimental eval-
uation. Our results show that PRESTO can scale up to

led to the following contributions. .
Model-driven Push: Central to PRESTO is the use of °N¢ hundred Motes per proxy. When used in a temper-
ure monitoring application, PRESTO imposes an en-

a feedback-based model-driven push approach to suppo?{

queries in an energy-efficient, accurate and Iow-latenc;frgy requwemgnts that 'S one to two orders of magnitude
ess than existing techniques that advocate on-demand,

manner. PRESTO proxies construct a model that cap- . . .
P b roactive, or model-driven pulls. At the same time, the

tures correlations in the data observed at each sensdl’ N
average latency for queries is within six seconds for a 1%

IPRESTO is an acronym for PREdictive STOrage. duty-cycled five hop sensor network, which is an order of

nodes are assumed to be untethered, and hence battery-
powered, with a limited lifetime. Sensors are assumed
(ﬁﬂio to be deployed in a multi-hop configuration and are ag-
gressively duty-cycled; standard multi-hop routing and
duty-cycled MAC protocols can be used for this purpose.
— Since communication is generally more expensive than
processing or storage [5], PRESTO sensors attempt to
,, trade communication for computation or storage, when-
: | ever possible.
N

R e System Operation: Assuming such an environment,
= ; each PRESTO proxy constructs a model of the data ob-
managed by a proxy served at each sensor. The model uses correlations in the

past observations to predict the value likely to be seen

PRESTO . .

Sensors at any future instant. The model and its parameters
are transmitted to each sensor. The sensor then executes
the model as follows: at each sampling instgrthe ac-

Figure 1 : The PRESTO data management architecturetual sensed value is compared to the value predicted by
the model. If the difference between the two exceed a
threshold, the model is deemed to have “failed” to accu-

magnitude less than a system that forwards all queries toately predict that value and the sensed value is pushed to

remote sensor nodes, while not significantly more than @he proxy. In contrast, if the difference between the two

system where all queries are answered at the proxy. is smaller than a threshold, then the model is assumed to
The rest of this paper is structured as follows. Sectiorbe accurate for that time instant. In this case, the sen-

2 provides an overview of PRESTO. Sections 3 and 4 desor archives the data locally in flash storage and does not

scribe the design of the PRESTO proxy and sensors, rgransmit it to the proxy. Since the modekitso known to
spectively, while Section 5 presents the adaptation mectthe proxy the proxy can compute the predicted value and
anisms in PRESTO. Sections 6 and 7 present our impledse it as an approximation of the actual observation when
mentation and our experimental evaluation. Finally, Secanswering queries. Thus, so long as the model accurately
tions 8 and 9 discuss related work and our conclusions. predicts observed values, no communication is necessary
between the sensor and the proxy; the proxy continues to
. use the predictions to respond to queries. Further, any de-
2 System Architecture viations from the model are always reported to the proxy

- . and anomalous trends are quickly detected as a result.
System Model:PRESTO envisions a two-tier data man-

agement architecture comprising a number of sensor Given such a model-driven push technique, a query
proxies, each controlling several tens of remote sensord1ving at the proxy is processed as follows. PRESTO
(see Figure 1). Proxies at the upper tier are assume@SSUMes that each query specifies a tolerance on the error
to be rich in computational, communication, and stor-It I willing to accept. Our models are capable of gener-
age resources and can use them continuously. The ta§iting aconfidence intervefor each predicted value. The

of this tier is to gather data from the lower tier and an- PRESTO proxy compares the query error tolerance with
swer queries posed by users or the application. A typ_the confidence intervals and uses the_ model_pred|ct|ons
ical proxy configuration may be comprised of an Intel SO |0ng at the query error tolerance is not violated. If
Stargate [21] node with multiple radios—an 802.11 ra-the query demands a higher precision, the proxy simply
dio that connects it to an IP network and a Iow-powerpu”s the actual sensed values from the remote sensors

802.15.4 radio that connects it to sensors in the lowefNd uses these values to process the query. Every predic-

tier. Proxies are assumed to be tethered or powered byen made by the model is cached at the proxy; the cache

a solar cell. A typical deployment will consist of mul- also contains all values that were either pushed or pulled

tiple geographically distributed proxies, each managing"©™ the remote sensors. This cached data is used to re-
tens of sensors in its vicinity. In contrast, PRESTO s:en-SP()n.d to historical queries so long as query precision is

sors are assumed to be low-power nodes, such as Tel§St Vviolated, other_/wse the corresponding data is pulled

Motes [18], equipped with one or more sensors, a microf"om the local archive at the sensors.

controller, flash storage and a wireless radio. The task Since trends in sensed values may change over time,
of this tier is to sense data, transmit it to proxies whena model constructed using historical data may no longer

appropriate, while archiving all data locally in flash stor- reflect current trends. A novel aspect of PRESTO is that

age. The primary constraint at this tier is energy—sensoit updates the model parameters online so that the model

Query
Response

Proxy
PRESTO

Proxies

Local Data
Archive

- fabs(- X) 5 5 Tl fic at an intersection exhibits correlations based on the
alL <—Pushsa‘mpl'em proxy |~ e hour of the day (e.g., traffic peaks during “rush” hours)
S Ch;’c:e,; and day of the week (e.g., there is less traffic on week-
Engine J| _ If precision(query) > A() __ ends). PRESTO proxies rely @easonal ARIMAnod-
Proxy Cache Pullvalue from sensor Archival Store els; ARIMA is a popular family of time-series models
PRESTO Proxy PRESTO Sensor that are commonly used for studying weather and stock

market data. Seasonal ARIMA models (also known as
SARIMA) are a class of ARIMA models that are suitable

Figure 2 : The PRESTO proxy comprises a prediction engine, for data exhibiting seasonal trends and are well-suited for
query processor and a cache of predicted and real sensor valuggnsor data. Further they offer a way to deal with non-
The PRESTO sensor comprises a model checker and an archigtationary data.e. whose statistical properties change
of past samples with the model predictions. over time [1]. Last, as we demonstrate later, while sea-
sonal ARIMA models are computationally expensive to

construct, they are inexpensive to check at the remote

can continue to reflect current observed trends. Upon reésansors—an important property we seek from our sys-
ceiving a certain number of updates from a sensor, thgsy, The rest of this section presents the details of our

proxy uses these new values to refine the parameters @A Rr|MA model and its use within PRESTO.

the model. These parameters are then conveyed back to - _ _ . _

the corresponding sensor, when then uses them to push Prediction Model: A discrete time series can be rep-

subsequent values. Thus, our approach incorposates '€Sented by a set of time-ordered d@t , w1, ., 21,),

tive feedbackbetween the proxy and each Sensc)r_theresultlng from observation of some temporgl_ physical

model parameters are used to determine which data vaRN€nomenon such as temperature or humidity. - Sam-

ues get pushed to the proxy, and the pushed values aFges are assumed to be taken at discrete time instants

used to compute the new parameters of the model. If thdi+ f2; - -~ The goal of time-series analysis is to obtain

precision demanded by queries also changes over tim&1€ Parameters of the underlying physical process that

the threshold used by sensors to determine which valued®Verns the observed time-series and use this model to

should be pushed are also adapted accordingly—highdPrecast future values.

precision results in smaller thresholds. Next, we present PRESTO models the time series of observations at a

the design of the PRESTO proxy and sensor in detail. sensor as aAutoregressive Integrated Moving Average
(ARIMA) process. In particular, the data is assumed to
conform to the Box-Jenkins SARIMA model [1]. While

3 PRESTO Proxy a detailed discussion of SARIMA models is outside the

The PRESTO proxy consists of four key componentsSc°P€ of this paper, we provide the intuition behind these

(see Figure 2): (ilnodeling and prediction enginehich models for the benefit of the reader._An SARIM_A pro-
is responsible for determining the initial model parame-€SS has four componentzto-regressive (ARnoving-

ters, periodic refinement of model parameters, and pregverage (MA)one-step differencingindseasonal differ-

diction of data values likely to be seen at the various senénciNg The AR component estimates the current sample

sors, (iiyquery processqmwhich handles queries on both as a linear weighted sum_of previous samples;_th_e MA
current and historical data, (iilpcal cache which is a component captures relationship between prediction er-

cache of all data pushed or pulled by sensors as well adrs the one-step di_fferencing component captures relq-
all past values predicted by the model, and (ivipalt tionship between adjacent samples; and the seasonal dif-

detector which detects sensor failures. We describe eac/l€"€NciNg component captures the diurnal, monthly, or
component in detail in this section yearly patterns in the data. In SARIMA, the MA compo-

nent is modeled as a zero-mean, uncorrelated Gaussian
i o . random variable (also referred to as white noise). The
3.1 Modeling and Prediction Engine AR component captures the temporal correlation in the

The goal of the modeling and prediction engine is to delime series by modeling a future value as a function of a
termine a model, using a set of past sensor observation8Umber of past values.

to forecast future values. The key premise is that the In its most general form, the Box-Jenkins seasonal
physical phenomena observed by sensors exhibit longmodel is said to have an ordgr, d, q) x (P, D, Q)s; the
term and short-term correlations and past values can berder of the model captures the dependence of the pre-
used to predict the future. This is true for weather phe-dicted value on prior values. In SARIMA,andq are the
nomena such as temperature that exhibit long-term searders of the auto-regressive (AR) and moving average
sonal variations as well as short-term time-of-day andMA) processesP and(are orders of the seasonal AR
hourly variations. Similarly phenomena such as traf-and MA components] is the order of differencing)) is

the order of seasonal differencing, afids the seasonal sensed data that occurs after the initial training phase.
period of the series. Thus, SARIMA is family of models = Model-based Predictions:Once the model order and
depending on the integral valuesyofy, P, Q,d, D, S. 2 its parameters have been determined, using it for predict-
Model Identification and Parameter Estimation: ing future values is a simple task. The predicted vaiije

Given the general SARIMA model, the proxy needs tofor timet is simply given as:

determine the order of the model, including the order of
differential and the order of auto-regression and moving
average. That is, the valuesgfd, ¢, P, D andQ need + Oero1 — Oers +00ei-5-1 ©)
to be determined. This step is called model identification
and is typically performed once during system initializa-
tion. Model identification is well documented in most
time series textbooks [1] and we only provide a high level

overview here. Intuitively, since the general model is ac- - :
monitoring, we use a seasonal peri§af one day, and

tually a family of models, depending on the valuegpf hence.X,_s andX,_s.; represent the values seges-

q, etc., this phase identifies a particular model from thet rdavat this time instant and the previ time instant
family that best captures the variations exhibited by thecroayat this ime instant a € previous time instant,

underlying data. It is somewhat analogous to fitting a;esp;c:;:/ely. eij,_kt_denotes Fhe _preldlcttr;ond(_ef;ror at t|rl;1e
curve on a set of data values. Model identification in-, (the prediction error is simply the difference be-

volves collecting a sample time series from the field andtwg?n thzg;e;i;%ed and obser\rqed vallue forr':hat mstantl).
computing its auto-correlation function (ACF) and par- ince sensors push a value to the proxy only

tial auto-correlation function (PACF). A series of tests v;/1henh|tl dde\r?ates frclzm lthe %edmg?n by :jn;re than a

are then performed on the ACF and the PACF to deterlnreshold, the actual values & _;, X;_g and.X;_s_,

mine the order of the model [1]. seen at_ the sensor may not be k_noyvn to the proxy. How-
Our analysis of temperature traces has shown that thgver, Since the lack of a push indicates that the model

best model for temperature data is a Seasonal ARIMA opredictions are accurate, _thf"’ proxy can 5|mply use the
order(0,1,1) x (0,1,1)s. The general model in Equa- corresponding model predictions as an approximation for
tion 1 re7dl’Jces to T the actual values in Equation 3. In this case, the corre-

sponding prediction errat; ;. is set to zero. In the event
(1-B)(1-BMX,=(1-6B)(1—-0B%¢ (2) Xi—1,Xi—s0rX,_g_, were either pushed by the sensor
or pulled by the proxy, the actual values and the actual

wheref and© are parameters of th{§,1,1) x (0,1, 1)g prediction errors can used in Equation 3.
SARIMA model and capture the variations shown by dif- Both the proxy and the sensors use Equation 3 to pre-
ferent temperature traces3 is the backward operator dict each sampled value. At the proxy, the predictions
and is short-hand foB‘X, = X, ;. S is the seasonal serve as a substitute for the actual values seen by the sen-
period of the time series ang is the prediction error. sor and are used to answer queries that might request the

When employed for a temperature monitoring appli-data. At the sensor, the prediction is used to determine
cation, PRESTO proxies are seeded witfi0al, 1) x whether to push—the sensed value is pushed only if the
(0,1,1)s SARIMA model. The seasonal peridtis also prediction error exceeds a threshéld
seeded. The parameté¢tand© are then computed by Finally, we note th@asymmetriproperty of our model.
the proxy during the initial training phase before the sys-The initial model identification and parameter estima-
tem becomes operational. The training phase involvesion is a compute-intensive task performed by the proxy.
gathering a data set from each sensor and using the leaSihce determined, predicting a value using the mauel
squares method to estimate the values of paramétersvolves no more than eight floating point operatigitsee
ando© on a per-sensor basis (see [1] for the detailed promultiplications and five additions/subtractions, as shown
cedure for estimating these parameters). The order of thgy Equation 3). This is inexpensive even on resource-
model and the values ¢f and© are then conveyed to poor sensor nodes such as Motes and can be approxi-
each sensor. Section 5 explains hband© can be peri- mated using fixed point arithmetic.
odically refined to adapt to any long-term changes in the

X = X1+ Xi—s—Xi—s5-1

whered and® are known parameters of the mod#},
denotes the previous observatidfy, s andX;_g_; de-
notes the values seen at this time instant and the previ-
ous time instant in the previous season. For temperature

2While not essential for our discussion, we present the general Box3,2 Query Processing at a Proxy
Jenkins seasonal model for sake of completeness. The general model

of order(p,d, q) x (P, D, Q)s is given by the equation In addition to forecasting future values, the prediction
®p(B5)-¢p(B)-(1-B) (1—BS)P X} = 0,(B)©¢(BS)e: (1) engine at the proxy also provides a confidence interval
where B is the backward operator such thBEX: — X,_;, S is for each predicted value. Th(_e conﬂdenc_e interval rep-
the seasonal period, © are parameters of the model, aedis the _resentg a bound on the error in the predlcted_value and
prediction error. is crucial for query processing at the proxy. Since each

query arrives with an error tolerance, the proxy com-predictions between the newly inserted value and the pre-
pares the error tolerance of a query with the confidenceious pushed or pulled value. To do so, it makes a simpli-
interval of the predictions, and the current push threshfying assumption that the prediction error grows linearly
old, 6. If the confidence interval is tighter than the er- at each step, and the corresponding prediction error is
ror tolerance, then the predicted values are sufficientlysubtracted from each prediction.
accurate to respond to the query. Otherwise the actual P
value is fetched from the remote sensor to answer the X=X, — ——er (5)
guery. Thus, many queries can be processed locally even r-T

if the requested data was never reported by the sensanhere X, is the original predictionX; is the updated
As a result, PRESTO can ensure low latencies for suclprediction, T denotes the observation instant of the
gueries without compromising their error tolerance. Thenewly inserted value7” is time of the nearest pushed
processing of queries in this fashion is similar to that pro-or pulled value befor&".

posed in the BBQ data acquisition system [3], although

there are significant differences in the techniques. 3.4 Failure Detection
For a Seasonal ARIMAO,1,1) x (0,1,1)s model, . . .
the confidence interval dfstep ahead forecast(() is: Sensors are notoriously unreliable and can fail due hard-
ware/software glitches, harsh deployment conditions or
-1 battery depletion. Our predictive techniques limit mes-
A(l) = Fug (1 + Z(l —0)%)?0 (4) sage exchange between a proxy and a sensor, thereby
j=1 reducing communication overhead. However, reducing

whereu, , is value of the unit Normal distribution at M€SSage frequency also affects the latency to detect sen-
£/2, o is the variance of step ahead prediction error. ~ SOr failures and to recover from them. In this work, we
discuss mechanisms used by the PRESTO proxy to de-
tect sensor failures. Failure recovery can use techniques
such as spatial interpolation, which are outside the scope
Each proxy maintains a cache of previously fetched orof this paper.
predicted data values for each sensor. Since storage is The PRESTO proxy flags a failure if pulls or feedback
plentiful at the proxy—microdrives or hard-drives can messages are not acknowledged by a sensor. This use of
be used to hold the cache—the cache is assumed to t@plicit heartbeats has low communication energy over-
infinite and all previously predicted or fetched values arehead, but provides an interesting benefit. A pull is initi-
assumed to be stored at the proxy. The cache is useafed by the proxy depending on the confidence bounds,
to handle queries on historical data—if requested valwhich in turn depends on the variability observed in the
ues have already been fetched or if the error bounds o$ensor data. Consequently, failure detection latency will
cached predictions are smaller than the query error tolbe lower for sensors that exhibit higher data variability
erance, then the query can be handled locally, otherwis@esulting in more pushes or pulls). For sensors that are
the requested data is pulled from the archive at the sensdiiueried infrequently or exhibit low data variability, the
After responding to the query, the newly fetched valuesProxy relies on the less-frequent model feedback mes-
are inserted into the cache for future use. sages for implicit heartbeats; the lack of an acknowledg-

A newly fetched value, upon insertion, is also used toment signals a failure. Thus, proxy-initiated control or
improve the accuracy of the neighboring predictions usull messages can be exploited for failure detection at no
ing interpolation. The intuition for using interpolation is additional cost; the failure detection latency depends on
as follows. Upon receiving a new value from the sensorthe observed variability and confidence requirements of
suppose that the proxy finds a certain prediction errorincoming queries. Explicit heartbeats can be employed
Then it is very likely that the predictions immediately for applications with more stringent needs.
preceding and following that value incurred a similar er-
ror, and interpolation can be used to scale those cached PRESTO Sensor
values by the prediction error, thereby improving their
estimates. PRESTO proxies currently use two types oPRESTO sensors perform three tasks: (i) use the model
interpolation heuristics: forward and backward. predictions to determine which observations to push, (ii)

Forward interpolation is simple. The proxy uses Equa-maintain a local archive of all observations, and (iii) re-
tion 3 to predict the values and Equation 4 to re-estimatespond to pull requests from the proxy.
the confidence intervals for all samples between the The PRESTO sensor acts as a mirror for the prediction
newly inserted value and the next pulled or pushed valuemodel at the proxy—both the proxy and the sensor exe-
In backward interpolation, the proxy scans backwardscute the model in a completely identical fashion. Conse-
from the newly inserted value and modifies all cachedquently, at each sampling instant, the sensor knows the

3.3 Proxy Cache

exact estimate of the sampled value at the proxy and caar pulled from a sensor; all missing values in the time
determine whether the estimate is accurate. Only thoseeries are substituted by the corresponding model predic-
samples that deviate significantly from the prediction aretions. Note that these prior predictions are readily avail-
pushed. As explained earlier, the proxy transmits allable in the proxy cache; furthermore, they are guaranteed
the parameters of the model to each sensor during syse be a good approximation of the actual observations
tem initialization. In addition, the proxy also specifies (since these are precisely the values for which the sensor
a threshold that defines the worst-case deviation in thedid not push the actual observations). This approximate
model prediction that the proxy can tolerate. Dgtde- time series is used to retrain the model and recompute
note the actual observation at timend letX, denote the new parameters.
the predicted value computed using Equation 3. Then, For the temperature monitoring application that we

5 implemented, the models are retrained at the end of each

If | X, = X[> 0, PushX; to Proxy (©) day® The new parameters and© are then pushed to
As indicated earlier, computation &f, using Equation 3 each sensor for future predictions. In practice, the pa-
involves reading of a few past values such’gs s from rameters need to be pushed only if they deviate from the
the archive in flash storage and a few floating point mul-previously computed parameters by a non-trivial amount
tiplications and additions, all of which are inexpensive. (i.e., only if the model has actually changed).
PRESTO sensors archive all sensed values into an

energy-efficient NAND flash store; the flash archive is 5.2 Adaptation to Query Dynamics
an append-only log of tuples of the forift, X;, X;, e;).
A simple index is maintained to permit random accesslust as sensor data exhibits time-varying behavior, query
to any entry in the log. A pull request from a proxy in- patterns can also change over time. In particular, the
volves the use of this index to locate the requested datquery tolerance demanded by queries may change over

in the archive, followed by a read and a transmit. time, resulting in more or fewer data pulls. The proxy
can adapt the value of the threshold paraméterEqua-
5 Adaptation in PRESTO tion 6 to directly influence the fraction of queries that

trigger data pulls from remote sensors. If the threshold
PRESTO is designed to adapt to long-term changes id is large relative to the mean error tolerance of queries,
data and query dynamics that occur in any long-livedthen the number of pushes from the sensor is small and
sensor application. To enable system operation at théhe number of pulls triggered by queries is larger. If
most energy-efficient point, PRESTO employs activeis small relative to the query error tolerance, then there
feedback from proxies to sensors; this feedback takewill be many wasteful pushes and fewer pulls (since
two forms—adaptation to data and query dynamics. the cached data is more precise than is necessary to an-

swer the majority of queries). A careful selection of the
5.1 Adaptation to Data Dynamics threshold parametérallows a proxy to balance the num-

ber of pushes and the number of pulls for each sensor.
Since trends in sensor observation may change over time, To handle such query dynamics, the PRESTO proxy
a model constructed using historical data may no longeses a moving window average to track the mean error
reflect current trends—the model parameters becomglerance of queries posed on the sensor data. If the error
stale and need to be updated to regain energy-efficiencyolerance changes by more than a pre-defined threshold,
PRESTO proxies periodically retrain the model in Ol'del'the proxy computes a the neWwand transmits it to the

to refine its parameters. The retraining phase is similar tensor so that it can adapt to the new query pattern.
the initial training—all data since the previous retraining

phase is gathered and the least squares method is used to
recompute the model parametérand© [1]. The key
difference between the initial training and the retraining
lies in the data set used to compute model parameters.
For the initial training, an actual time series of sen-
sor observations is used to compute model parameter

PRESTO Implementation

We have implemented a prototype of PRESTO on a
multi-tier sensor network testbed. The proxy tier em-
%oys Crossbow Stargate nodes with a 400MHz Intel

However, once the system is operational, sensors onl Scale processor and 64MB RAM. The Stargate runs

report observations when they significantly deviate from he .L|nu(>j< 2.‘3}'1\?\/ ker.nell and E_mStarCr_elea;e_ 2.1 tagfo's
the predicted values. Consequently, the proxy only ha qudpe80;w11b o(\j/ywe ezs rah 'Of’ at |sbc_od |rc3{neth T-
access to a small subset of the observations made at eatft-- ' radio and a hostmote bridge 1o the: 1e-
sensor. Thus. the model must be retrained \itom- '©S Mote sensor nodes using the EmStar transceiver. The
ple_te_ information The time series used duri_ng the re- 3Since the seasonal period is set to one day, this amounts to a re-
training phase contains all values that were either pushethining after each season.

sensor tier uses Telos Mote sensor nodes, each consisesponds to parameter feedback messages to the sensor
ing of a MSP430 processor, a 2.4GHz CC2420 radionodes, and the lower priority corresponds to data pull
and 1MB external flash memory. The sensor nodes rumessages. Prioritizing messages ensures that parame-
TinyOS 1.1.14. Since sensor nodes may be several hofsr messages are not dropped even if the queue is full
away from the nearest proxy, the sensor tier employss a result of excess pulls. Our second enhancement in-
MultiHopLEPSM multi-hop routing protocol from the volves emulating the latency characteristics of a duty-
TinyOS distribution to communicate with the proxy tier. cycling MAC layer. Many MAC-layer protocols have

Sensor Implementation: Our PRESTO implementa- Peen proposed for sensor networks such as BMAC [17]
tion on the Telos Mote involves three major tasks: (i)@nd SMAC [24]. However, not all these MAC layers
model checking, (i) flash archival, and (i) data pull. are supported on all platforms — for instance, no duty-
A simple data gathering task periodically obtains sensofycling scheme is currently supported on the Telos Motes
readings and sends the sample to the model checker. THBat we use. We address this issue by benchmarking the
model checking task uses the most recent model paraméatency introduced by BMAC on Mica2 sensor nodes,
ters ¢ and®) and push deltas) obtained from the proxy and using these measurements to drive our experiments.
to determine if a sample should be pushed to the proxy aghus, the proxy implementation includes a MAC-layer
per Equation 6. Each push message to the proxy contair@nulator that adds duty-cycling latency corresponding to
the id of the mote, the sampled data, and a timestamf€ chosen MAC duty-cycling parameters.
recording the time of the sampling. Upon a pull from
the proxy, the model checking task performs the forward7
and backward updates to ensure consistency between the
proxy and sensor view. For each sample, the archival tasE

Experimental Evaluation

stores a record to the local flash that has three fields: (i h this section, we evaluate the performance of PRESTO

the timestamp when the data was sampled, (i) the Sam_sing our prototype and simulations. The testbed for our
. . ' experiments comprises one Stargate proxy and twenty
ple itself, and (iii) the predicted value from the model Telos Mote sensor nodes. One of the Telos motes is
checker. The final component of our sensor implemen- ' .
A L connected to a Stargate node running the EmStar sensor
tation is a pull task th_at, upon receiing a pu”.requeSt’network emulator [89]] The EmStar ergnulator enables us
r?)?glsi;Zig?g;(;se%o::;ghdztr? dfrr(;? t:ne dgizht#;mr%i ter% introduce additional virtual sensor nodes in our large-
P . P P i Y scale experiments that share a single Telos mote radio as
Proxy Implementation: At the core of the proxy im- the transceiver to send and receive messages. In addition
plementation is the prediction engine. The predictiony the testbed, we use numerical simulations in Matlab
engine includes a full implementation of ARIMA pa- 5 evaluate the performance of the data processing algo-
rameter estimation, prediction and update. The engingihms in PRESTO.

uses two components, a cache of real and predicted sam- ppe ST sensors in our testbed are seeded with two
ples, and a protocol suite that e_:nabl.es mter.actlons W'“ﬂemperature traces—a seven day temperature dataset
each sensor. The Proxy _cache IS a tl_me—senes stream ?rfom James reserve [22] (also used in our simulations)
records, each of which includes a timestamp, the Préznd a four day outdoor data from a live PRESTO de-

dicted sensor value, and the prediction error. The prox)f)loyment at UMass. The first two days are used to train

uses one stream per node that it is responsible for, anfy o' qel for the James reserve dataset, and the first day
models each node’s data separately. The prediction ens used for training in the UMass deployment. In our

gine communicates with each sensor using a protocol, e riments, sensors use the values from the remainder
suite that enables it to provide feedback and change th8f these traces—which are stored in flash memory—as
operating parameters at each sensor. a substitute for live data gathering. This setup ensures
Queries on our system are assumed to be posed at thgpeatable experiments and comparison of results across
appropriate proxy using either indexing [5] or routing experiments (which were conducted over a period of sev-
[12] techniques. A query processing task at the proxyeral weeks). We also experiment with a live, outdoor de-
accepts queries from users, checks whether it can be aptoyment of PRESTO to demonstrate that our results are
swered by the prediction engine based on the local cacheepresentative of the “real world”.
If not, a pull message is send to the corresponding sensor. |n order to evaluate the query processing performance
Our proxy implementation includes two enhance-of PRESTO, we generate queries as a Poisson arrival pro-
ments to the hostmote transceiver that comes witltess. Each query requests the value of the temperature at
the EmStar distribution [6]. First, we implemented a a particular time that is picked in a uniform random man-
priority-based 64-length FIFO outgoing message queu@er from the start of the experiment to the current time.
in the transceiver to buffer pull requests to the sensorsThe confidence interval requested by the query is chosen
There are two priority levels — the highest priority cor- from a normal distribution.

7.1 Microbenchmarks on the Telos mote makes it a bad fit for a storage-centric

, . .) _ architecture such as PRESTO.
Our first experiment involves a series of microbench-

ks of th " f icati In order to fully exploit state-of-art in computation,
marks of the energy consumption ot communication, ., y,mnjcation and storage, a new platform is required
processing and storage to evaluate individual compo

f the PRESTO q Th that combines the best features of the two platforms that
nent:s Oht € K b p(;oxy and sensors. ¢ €S€ Miye have measured. This platform would use the TI MSP
crobenchmarks are based on measurements of two Senspfn icrqcontroller and CC2420 radio on the Telos mote

platforms — a Telos mote, and a Mica2 mote augmenteq0 ; -
. . gether with NAND flash storage. Assuming that the
with a NAND flash storage board fabricated at UMaSS'component-level microbenchmarks in Table 1 hold for

The board is attached to the Mica2 mote through the stafa new platform, storage and computation would be
dard 51'pif‘ _connector, and provides a considerably mor?oughly equal coét, whereas communication would be
energy-efficient storage option than the AT45DBO4lBtwo to three orders of magnitude more expensive than

NOR flash that is loaded by default on the Mica2 motey, , storage and communication. We note that the en-
[15]. The N.AND flash board enableg thg PRESTO sen'ergy requirements for communication in all the above

sor to archive a large amount of historical data at X chmarks would be even greater if one were to in-
tremely low energy cost. clude the overhead due to duty-cycling, packet headers
and multi-hop routing. These comparisons validate our

Module | Component Operation Energy . . R
NAND | NAND Flash Read + Write +]| 21nJ key premise that in future platforms, storage will offer
flash- Erase 1 sample _affici i i i
enabled [ATmegal28r T Prediction 207 a more energy gfflment optlon than commgnlcatlon and
Mica2 | Processor should be exploited to achieve energy-efficiency.
CC1000 Radio | Transmit 1 sample +[20.3uJ
Receive 1 ACK -
Telos | ST M25P80 | Read + Write +| 2.14uJ Component Operation Latency | Energy
Mote Flash Erase 1 sample Stargate (PXA255) | Model Estimation 21.75ms| 11mJ
MSP430 T Prediction 713 Telos Mote | Predict One Sample| 18us 27nd
Processor (MSP430)
CC2420 Radio | Transmit 1 sample +[3.3uJ
Receive 1 ACK

Table 3: Asymmetry: Model estimation vs Model checking

Table 1: Energy micro-benchmarks for sensor nodes. L :
Communication Latency: Our second microbench-

mark evaluates the latency of directly querying a sen-

Round Trip [aiency(ms) sor node. S_ensor _node_s are often highly duty-cycled to
Routing Hops | 1% | 7.53% | 35.5% save energyi.e. their radios are turned off to reduce en-
;Egg e I ergy use. However, as shown in Table 2, better duty-
3-hop 6750 | 1040 | 347 cycling corresponds to increased duration between suc-
Z-hop 8999 | 1388 | 465 cessive wakeups and worse latency for the CC1000 ra-
5-hop 11249 1733 580

dio on the Mica2 node. For typical sensor network duty-
cycles of 1% or less, the latency is of the order of many
Table 2: Round trip latencies using B-MAC seconds even under ideal 100% packet delivery condi-
tions. Under greater packet-loss rates that is typical of
Energy Consumption: We measure the energy con- wireless sensor networks [25], this Iatency would in-
sumption of three components—computation per samplérease even further. We are unable to provide numbers
at the sensor, communication for a push or pu||' and Storfor the CC2420 radio on the Telos mote since there is no
age for reads, writes and erases. Table 1 shows that tivailable TinyOS implementation of an energy-efficient
results depend significantly on the choice of platform.MAC layer with duty-cycling support for this radio.
On the Mica2 mote with external NAND flash, storage Our measurements validate our claim that directly
of a sample in flash is an order of magnitude more effi-querying a sensor network incurs high latency, and this
cient than the ARIMA prediction computation, and three approach may be unsuitable for interactive querying.
orders of magnitude more efficient than communicatingTo reduce querying latency, the proxy should handle as
a sample over the CC1000 radio. The Telos mote usegany of the queries as possible.
a more energy-efficient radio (CC2420) and processor Asymmetric Resource UsageTable 3 demonstrates
(TI MSP 430), but a less efficient flash than the modi-how PRESTO exploits computational resources at the
fied Mica2 mote. On the Telos mote, the prediction com-proxy and the sensor. Determining the parameters of the
putation is the most energy-efficient operation, and is 8CARIMA model at the proxy is feasible for a Stargate-
times more efficient than storage, and 122 times morelass device, and requires only 21.75 ms per sensor. This
efficient than communication. The high cost of storageoperation would be very expensive, if not infeasible, on

10000 6000 80 al

(7} Model Driven Push —&— Model Driven Push —8— / Avg Latency —+—
g) Model Driven Pull - S 5000 Model Driven Pull - . —~ 70 Max Latency &
I . Value Driven Push ------ E Value Driven Push ---- . w
0 1000 ¢ i] X = 60
g o 4000) g 50
1S < ; 2 i
s g_ 3000 i E S 40 .8
x X - < 'S
o (g 2000 > * > 30
-g 8 g S 2 e
1000 (@] o
2 1 = 0 2 12'
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 40 60 80 100 120
delta(8) delta(d) Number of Nodes
(a) Communication Cost (b) Mean Square Error
Figure 3 : Comparison of PRESTO SARIMA models with model-driven Figure 4 : Scalability of PRESTO: Im-
pull and value-driven push. pact of network size.

a Telos Mote due to resource limitations. In contrast,value-driven push. Here, the sensor node pushes the data
checking if the model is correct at the Mote consumesto the proxy when the difference between current data
considerably less energy since it consists of only threend last pushed data is larger than a thresh®)d The
floating point multiplications (approximated using fixed proxy assumes that the sensor value does not change until
point arithmetic) and five additions/subtractions corre-the next push from the sensor. In general, a pull requires
sponding to Equation 3. This validates the design choicewo messages, a request from the proxy to the sensor and
in PRESTO to separate model-building from model-a response, whereas push requires only a single message
checking and to exploit proxy resources for the formerfrom the sensor to the proxy.

and resources at the sensor for the latter. We compared the three techniques using Matlab sim-

.Surrr]]m'ary: Oudr n;:c::())gt-:l-znsc_rr]garkhs valldoﬁe three de'ulations that use real data traces from James Reserve.
sign choices made by —the need for a storagg-, ., experiment uses 5 days worth of data and each

centric architecture that exploits energy—efficignt NANDdata point is the average of 10 runs. Figure 3 compares
flgsh storage, e need ior proxy-centric querying to.(.jealthese three techniques in terms of the number of mes-
with high latency of duty-cycled radios, and exploiting sages transmitted and mean-square error of predictions.

proxy resources to construct models while performing, communication cost, PRESTO out-performs both the
only simple model-checking at the sensors. other schemes irrespective of the choicé.oWhens is

100, the communication cost of PRESTO is half that of
7.2 Performance of Model-Driven Push model-driven pull, and 25% that of value-driven push. At
the same time, the mean square error in PRESTO is 30%

~dri 0, I
exploiting both proxy and sensor resources offers greatetnhathOfA”;g%el driven purl1l, and 60% .tha't of valug driven
energy benefit than placing intelligence only at the proxypus ‘ ecreases, the communication cost increases

or only at the sensor. We compare the performance 0ffor all three algorithms. However, the increase in com-

model-driven push used in PRESTO against two othemunication cost for model-driven pull is higher than that
data-acquisition algorithms. The first algorithm, model-for the other two algorithms. Whehis 50, value driven

driven pull, is representative of the class of techniqueéJUShhbe‘~:]1'8S rt]o out pberforfm model-dn_ven p(;JHII d"‘_’“%” I
where intelligence is placed solely at the proxy. This al-reaches 10, the number of messages in model-driven pu

gorithm is motivated by the approach proposed in BBQiS 20 times more tha_ln that of PRE.STO’ and 8 times more
[3]. In this algorithm, the proxy uses a model of sensorthan that of value driven push. This is because in the case

data to predict future data and estimate the confidence ian model-driven pull, the Proxy pulls samples from the
ensor whenever the prediction error exce@&dddow-

terval in the prediction. If the confidence interval exceeds’ . o : .
ever, since the prediction error is often an overestimate

the sensor nodes, thus keeping the confidence intervglnd since each pull is twice as expensive as a push, this
bounded. The sensor node is simple in this case, and perl’?s’u”S in a larger number of pull messages compared to
RESTO and value-driven push. The accuracies of the

forms neither local storage nor model processing. Whil h lorithms b | h other wihd
BBQ uses multi-variate Gaussians and dynamic Kalmad"'ree algorithms become close to each other 8-

Filters in their model-driven pull, our model-driven pull creases. Whed is smaller than 40, model-driven pull

uses ARIMA predictions to ensure that the results cap-.has shgh_tly lower mean square error than PRESTO but
geurs 4 times the number of messages.

ture the essential difference between the techniques arl
not the difference between the models used. The second Summary: These performance numbers demonstrate
algorithm that we compare against is a relatively naivethat model-driven push combines the benefits of both

In this section, we validate our claim that intelligently

1000 70
Avg Latency —+— o

= Max Latency & 2\1 60 g
= 2 50 o
O 100 . © ©
EJ ol & 3] o % o
© Q »
- <] 30 2
> 10 B B (=) =
g > 20 >
[}
(€] S 10 S
¢} (e}
1 0 —— 0
02505 1 2 4 8 16 32 64 02505 1 2 4 8 16 32 64 025 05 1 2 4 8 16 32 64
Number of Queries per Minute Number of Queries per Minute Number of Queries per Minute
(a) Query Latency (b) Query Drop Rate (c) Query Miss Rate

Figure 5 : Scalability of PRESTO: Impact of query rates.

proxy-centric as well as sensor-centric approaches. It isdays of data collected from the James Reserve deploy-
2-20 times more energy-efficient and upto 3 times morenent. Queries arrive at the proxy as as a Poisson process
accurate than proxy-centric model-driven pull. In addi- at the rate of one query/minute per sensor. The confi-
tion, PRESTO is upto 4 times more energy-efficient thardence interval of queries is chosen from a normal distri-

a sensor-centric value-driven push approach. bution, whose expectation is equal to the push threshold,
6 = 100.
7.3 PRESTO Scalability Figure 4 shows the query latency and query drop rate

at system sizes ranging from 40 to 120. For system sizes

Scalability is an important criteria for sensor algorithm of less than 100, the average latency is always below five
design. In this section, we evaluate scalability along twoseconds and has little variation. When the system size
axes — network size and the number of queries poseteaches 120, the average latency increases five-fold to
on a sensor network. Network size can vary depending0 seconds. This is because the radio transceiver on the
on the application (e.g: the Extreme Scaling deploymenproxy gets congested and the queue overflows.
[7] used 10,000 nodes, whereas the Great Duck Island The effect of duty-cycling on latency is seen in Fig-
deployment [14] used 100 nodes). The querying rateure 4, which shows that the maximum latency increases
depends on the popularity of sensor data, for instancewith system scale. The maximum latency corresponds
during an event such as an earthquake, seismic sensdisthe worst case of PRESTO when a sequence of query
might be heavily queried while under normal circum- misses occur and result in pulls from sensors. This re-
stances, the query load can be expected to be light. sults in queuing of queries at the proxy, and hence greater

The testbed used in the scalability experiments comiatency. An in-network querying mechanism such as Di-
prises one Stargate proxy, twenty Telos mote sensorected Diffusion [11] that forwards every query into the
nodes, and an EmStar emulator that enables us to intravetwork would incur even greater latency than the worst
duce additional virtual sensor nodes and perform largecase in PRESTO since every query would result in a pull.
scale experiments. Messages are exchanged betweéhese experiments demonstrate the benefits of model-
each sensor and the proxy through a multihop routingdriven pushes for user queries. By the use of caching
tree rooted at the proxy. Each sensor node is assumeahd models, PRESTO results in low average-case latency
to be operating at 1% duty-cycling. Since MAC layers by providing quick responses at the proxy for a majority
that have been developed for the Telos mote do not curef queries. We note that the use of a tiered architecture
rently support duty-cycling, we emulate a duty-cycling makes it easy to expand system scale to many hundreds
enabled MAC-layer at the proxy. This emulator adds ap-of nodes by adding more PRESTO proxies.
propriate duty-cycling latency to each packet based on

the microbenchmarks that we presented in Table 2. 7.3.2 Impact of Query Rate

7.3.1 Impact of Network Size Our second scalability experiment stresses the query
handling ability of PRESTO. We test PRESTO in a net-
A good data management architecture should achieverork comprising one Stargate proxy and twenty Telos
energy-efficiency and low-latency performance even inmote sensor nodes under different query rates ranging
large scale networks. Our first set of scalability exper-from one query every four minutes to 64 queries/minute
iments test PRESTO at different system scales on fivdor each sensor. Each experiment is averaged over one

hour. We measure scalability using three metrics: thechanges what the sensor does for future data and not
guery latency, query miss rate, and query drop rate. Aor past data. Our experiments evaluate adaptation for
guery miss corresponds to the case when it cannot be agiueries that request data from the recent past (one hour).
swered at the proxy and results inapull, and a query drop |, gy first experiment, we run PRESTO for 12 hours.
results from an overflow at the proxy queue. Every two hours, we vary the mean of the distribution of
Figure 5 shows the result of the interplay betweeng,ery precision requirements thereby varying the query
model accuracy, network congestion, and queuing at thg oy tolerance. The proxy tracks the mean of the query
proxy. To better understand this interplay, we analyz€gjstribution and notifies the sensor if the mean changes
the graphs in three partse, 0.25-4 queries/minute, 4- py more than a pre-defined threshold, in our case, 10.
16 queries/minute and beyond 16 queries/minute. Figure 6(a) shows the adaptation to the query distribu-

Region 1. Between 0.25 and 4 queries/minute, thetjon changes. Explicit feedback from the proxy to each
query rate is low, and neither queuing at the proxy norsensor enables the system to vary sheorresponding
network congestion is a bottleneck. As the query rate inyg the changes in query precision requirements. From
creases, greater number of queries are posed on the sygg figure, we can see that there is a spike in average
tem and result in a few more pulls from the sensors. Asquery latency and the energy cost every time the query
a consequence, the accuracy of the model at the proxygnfidence requirements become tighter. This results in
improves to the point where it is able to answer mostyreater query miss rate and hence more pulls as shown
queries. This results in a reduction in the average latency, Figure 6(a). However, after a short period, the proxy
This behavior is also reflected in Figure 5(9), where theprovides feedback to the sensor to change the pushing
query miss rate reduces as the rate of queries grows. threshold, which decreases the query miss rate and con-

Region 2: Between 4 and 16 queries/minute, the sequently, the average latency. The opposite effect is
query rate is higher than the rate at which queries caReen when the query precision requirements reduce, such
be transmitted into the network. The queue at the proxy,s at the 360 minute mark in Figure 6(a). As can be seen,
starts building, thereby increasing latency for query ré-the query miss rate reduces dramatically since the model
sponses. This _results in a sharp increas_e in.average 13t the proxy is too precise. After a while, the proxy pro-
tency and maximum latency, as shown in Figure 5(a)yjdes feedback to the sensors to increase the push thresh-
This increase is also accompanied by an increase ig|d and to lower the push rate. A few queries result in
query drop rate beyond eight queries/minute, as morgy,|is as a consequence, but the overall energy require-
queries are dropped due to queue overflow. We estimatgents of the system remains low. In comparison with a
that eight queries/minute is the breakdown threshold fornon-adaptive version of PRESTO that kept a fisedur

our system for the parameters chosen. adaptive version reduces latency by more than 50%.
Region 3: Beyond sixteen queries/minute, the system

drops a significant fraction of queries due to queue over
flow as shown in Figure 5(b). Strangely, for the queries
that do not get dropped, both the average latency (Fig
ure 5(a)), and the query miss rate (Figure 5(c)) drop!

_ Inour second experiment, we demonstrate the benefits
of adaptation to data dynamics. PRESTO adapts to data
dynamics by model retraining, as described in Section 5.

We use a four day dataset, and at the end of each day, the

This is because with each pull, the model precision im-Proxy retrains the model based on the pushes from the

proves and it is able to answer a greater fraction of the€Nsor for the previous day, and provides feedback of the
queries accurately new model parameters to the sensor. Our result is shown

The performance of PRESTO under high query ratein Figure 6(b). For instance, on day three, the data pat-

demonstrates one of its key benefits — the ability to usee™m change_s considerably and the communication cost
the model to alleviate network congestion and queuin ncreases since the model does not follow the old pat-
delays. This feature is particularly important since senso ems. How_ever, at the end of the third day, the PRESTO
networks can only sustain a much lower query rate tharp oY retrains the model and send the new pe_trameters to
tethered systems due to limited wireless bandwidth. the sensors. As a result, the model accuracy improves on

Summary: We show that PRESTO scales to aroungje second day and reduces communication. The figure

hundred nodes per proxy, and can handle eight querieé‘ls‘O shﬁws ;hoa:;the model reér:[';umng r?dgc_es pushes by
per minute with query drop rates of less than 5% ang?s much as 0 as compared to no retraining.

average latency of 3-4 seconds per query. While most of our experiments involved the use of
temperature traces as a substitute of live temperature
7.4 PRESTO Adaptation sampling, we conducted a number of experiments with

a live outdoor deployment of PRESTO using one proxy
Having demonstrated the scalability and energy effi-and four sensors. These experiments corroborate our
ciency of PRESTO, we next evaluate its adaptation tdindings from the trace-driven testbed experiments. The
guery and data dynamics. In general, adaptation onlyesult of one such experiment is shown in Figure 6(c).

[
@
=]

[

No Retraining —+—

Query Pull —=—
With Retraining &

Sensor Push &
Push + Pull -+

o
3]
o
o

EN
N
o
ESN
H

N
n
o
N

o

Query Latency(s)
w
Number of Messages
w
o

b SR = R oty

120 240 360 480 1 2 3 4 5 2 3
Time(minute) Time(days) Time(days)

(a) Query Dynamics (b) Data Dynamics (c) Outdoor experiment

Push/Pull Rate per Day(%)

o
o

o

Figure 6 : Adaptation in PRESTO to data and query dynamics as well as adaptation in an outdoor deployment.

T 10 [Query Tolerance Mean= 14 —a— time period between pushes grows longer, the model can
2 90|\ e Tolerance Means To only provide progressively looser confidence bounds to
% I gueries. In addition, for highly dynamic data, model
.'E precision degrades more rapidly over time triggering a
s pull sooner. Hence, even queries with low precision
E [needs may trigger a pull from the sensor. The failure
8 I TR g detection time also reduces with increase in precision re-
0.1 02 0.3 04 05 06 0.7 08 0.9 1 quirements of queries. For instance, for a query rate of

Number of Queries per Minute 0.1 queries/minute, the detection latency increases from

15 minutes when queries require high precision to 100
minutes when the queries only require loose confidence
bounds.

The worst-case time taken for failure detection is one

The figure shows that, over a period of three days, aglay since this is the frequency with which a feedback
the model adapts via retraining, the frequency of pulls agnessage is transmitted from the proxy to each sensor.
well as the total frequency of pushes and pulls falls. However, this worst-case detection time occurs only if a
Summary: Feedback from the proxy enables PREST@eNSsor is very rarely queried.
to adapt to both data as well as query dynamics. We Summary: Our results show that sensor failure detec-
demonstrate that the query-adaptive version of PREST®ON in PRESTO is adaptive to data dynamics and query
reduces latency by 50%, and the data-adaptive versiorecision needs. The PRESTO proxy can detect sensor
reduces the number of messages by as much as 30% coffilures within two hours in the typical case, and within
pared to their non-adaptive counterparts. a day in the worst case.

Figure 7 : Evaluation of failure detection

7.5 Failure Detection 8 Related Work

Detecting sensor failure is critical in PRESTO since theln this section, we review prior work on distributed sen-
absence of pushes is assumed to indicate an accurager data management and time-series prediction.
model. Thus, failures are detected only when the proxy Sensor data management has received considerable at-
sends a pull request or a feedback message to the senstamtion in recent years. As we described in Section 1, ap-
and obtains no response or acknowledgment. proaches include in-network querying techniques such as
Figure 7 shows the detection latency using implicit Directed Diffusion [11] and Cougar [23], stream-based
heartbeats and random node failures. The detection laguerying in TinyDB [13], acquisitional query process-
tency depends on the gquery rate, the model precision anigig in BBQ [3], and distributed indexing techniques such
the precision requirements of queries. The dependencas DCS [20]. Our work differs from all these in that
on query rate is straightforward—an increased query ratave intelligently split the complexity of data management
increases the number of queries triggering a pull and rebetween the sensor and proxy, thereby achieving longer
duces failure detection latency. The relationship betweetifetime together with low-latency query responses.
failure detection and the model accuracy is more sub- The problem of sensor data archival has also been con-
tle. Model accuracy depends on two factors—the timesidered in prior work. ELF [2] is a log-structured file
since the last push from the sensor, and model uncewsystem for local storage on flash memory that provides
tainty that captures inaccuracies in the model. As thdoad leveling and Matchbox is a simple file system that

is packaged with the TinyOS distribution [10]. Our prior of Southern California for providing the James Reserve
work, TSAR [5] addressed the problem of constructingData. Thanks also to our shepherd, Matt Welsh, as well
a two-tier hierarchical storage architecture. Any of theseas the anonymous reviewers for their helpful comments
techniques can be employed as the archival frameworkn this paper.

for the techniques that we propose in this paper.

A key component of our work is the use of ARIMA References

prediction models. Most relevant to our work on predic- [y
tion models are the approaches proposed in BBQ [3], in[2
which multi-variate Gaussian models were used for ad-
dressing spatial correlations, and dynamic Kalman filters®!
for addressing temporal correlations. Our work differsin .,
that we propose model-driven push instead of pull, and
we split modeling complexity between proxy and sensor [5]
tiers rather than using only the proxy tier. ARIMA mod-

els for time-series analysis has also been studied exten!
sively in other contexts such as Internet workloads, for [7]
instance in [9].

(8]
9 Conclusions and Future Work

9
This paper described PRESTO, a model-driven predic-[!
tive data management architecture for hierarchical sensor
networks. In contrast to existing techniques, our work
makes intelligent use of proxy and sensor resources tQij
balance the needs for low-latency, interactive querying
from users with the energy optimization needs of the, ,
resource-constrained sensors. A novel aspect of our wor
is the extensive use of an asymmetric prediction techf13]
nigue, Seasonal ARIMA [1], that uses proxy resources
for complex model parameter estimation, but requires; 4
only limited resources at the sensor for model check-
ing. Our experiments showed that PRESTO yields an
order of magnitude improvement in the energy requireaIlS]
for data and query management, simultaneously building
a more accurate model than other existing techniques[m]
Also, PRESTO keeps the query latency within 3-5 sec-
onds, even at high query rates, by intelligently exploiting
the use of anticipatory pushes from sensors to build mod®”}
els, and explicit pulls from sensors. Finally, PRESTO 18]
adapts to changing query and data requirements by mod-
eling query and data parameters, and providing periodic
feedback to sensors. As part of future work, we plan;g,
to (i) extend our current models to other weather phe-
nomena beyond temperature and to other domains such
as traffic and activity monitoring, and (ii) design spatio-
temporal models that exploit both spatial and temporal
correlations between sensors to further reduce commys
nication costs. 22]

(23]
10 Acknowledgments
[24]
This research was supported, in part, by NSF grants
EEC-0313747, CNS-0546177, CNS-052072, and EIA{?%]
0080119. We wish to thank Ning Xu at University

G. E. P. Box and G. M. Jenkin3ime Series Analysi®rentice Hall, 1991.

H. Dai, M. Neufeld, and R. Han. ELF: an efficient log-structured flash file
system for micro sensor nodes.Pnoc. ACM SenSy2004.

A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networksPhoc. VLDB 2004.

P. Desnoyers, D. Ganesan, H. Li, and P. Shenoy. PRESTO: A predictive
storage architecture for sensor networksPtoc. HotOS X2005.

P. Desnoyers, D. Ganesan, and P. Shenoy. Tsar: A two tier storage archi-
tecture using interval skip graphs. Rroc. ACM SenSys2005.

Emstar: Software for wireless sensor networkgtp://cvs.cens.
ucla.edu/emstar/

A. Arora, et al. ExScal: Elements of an Extreme Scale Wireless Sensor
Network. InThe 11th International Conference on Embedded and Real-
Time Computing Systems and Applicatid?@05

L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson. A system for simu-
lation, emulation, and deployment of heterogeneous sensor networks. In
Proc. ACM SenSy2004.

J. Hellerstein, F. Zhang, and P. Shahabuddin. An Approach to Predictive
Detection for Service Management. Broc. the IEEE Intl. Conf. on Sys-
tems and Network Managemeh999.

10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System

architecture directions for networked sensorsPtac. ASPLOS-1X2000.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scal-
able and robust communication paradigm for sensor networl&olnn Mo-
bicom 2000.

] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for

wireless networks. liProc. Mobicom 2000.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: An acqusi-
tional query processing system for sensor networksAGM Transactions
on Database Systen2005.

A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wire-
less sensor networks for habitat monitoring. AGM International Work-
shop on Wireless Sensor Networks and Applicafiang?2.

G. Mathur, P. Desnoyers, D. Ganesan and P. Shenoy. Ultra-low Power Data
Storage for Sensor Networks. Broc. IEEE/ACM Information Processing

in Sensor Networks (IPSN) - Track on Platforms, Tools and Design Methods
for Networked Embedded Systems (SPOT®)6.

M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Pattersonl, D. Hahnel,
D. Fox, and H. Kautz. Inferring adls from interactions with obje¢EEE
Pervasive Computing(4):50-56, 2003.

J. Polastre, J. Hill, and D. Culler. Versatile low power media access for
wireless sensor networks. Rroc. ACM SenSy2004.

J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low power
wireless research. IRroc. IEEE/ACM Information Processing in Sensor
Networks (IPSN) - Track on Platforms, Tools and Design Methods for Net-
worked Embedded Systems (SPQEZ8(5.

J. Polastre, R. Szewczyk, C. Sharp, and D. Culler. The mote revolution:
Low power wireless sensor network devices. Rroc. Hot Chips 16: A
Symposium on High Performance Chig804.

] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and

S. Shenker. GHT - a geographic hash-table for data-centric storage. In
First ACM International Workshop on Wireless Sensor Networks and Ap-
plications 2002.

Stargate platformhttp://platformx.sourceforge.net/

Center for Embedded Networked Sensing (CENS) - James Reserve Data
Management Systenfttp://dms.jamesreserve.edu/

Y. Yao and J. E. Gehrke. The cougar approach to in-network query pro-
cessing in sensor networks. $igmod Record31(3), 2002.

W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for
wireless sensor networks. Rroc. IEEE Infocom2002.

J. Zhao and R. Govindan. Understanding packet delivery performance in
dense wireless sensor networks Pimc. ACM SenSy2003.

