
AMPS: A Flexible, Scalable Proxy Testbed for
Implementing Streaming Services∗

Xiaolan Zhang, Michael K. Bradshaw, Yang Guo§ †
, Bing Wang,

Jim Kurose, Prashant Shenoy, Don Towsley
University of Massachusetts §The MathWorks
Amherst, MA 01003-9264 Natick, MA 01760-2098
{ellenz,bradshaw,bing, yguo@mathworks.com

kurose,shenoy,towsley}@cs.umass.edu

ABSTRACT
We present the design, implementation, and performance
evaluation of AMPS — a flexible, scalable proxy testbed
that supports a wide and extensible set of next-generation
proxy streaming services. AMPS employs a modular archi-
tecture and is built on top of a commodity Linux system.
We study the performance of AMPS proxy using a server-
proxy-client configuration in a switched-Gigabit LAN envi-
ronment. We identify the CPU to be the system bottleneck.
Through profiling study, we further identify the kernel net-
work protocol processing and the Network Reception Mod-
ule inside the proxy to be the most CPU-intensive compo-
nents. We also quantify the maximum achievable through-
put for two of the principal components of the proxy - the
control plane and data plane, and characterize the end-to-
end performance along the server-to-proxy-to-client path.
We discuss lessons learned and the various optimizations
made in the course of our study to improve system perfor-
mance.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance
of Systems; C.5.5 [Computer Systems Organization]:
Computer System Implementation—servers

General Terms
Measurement,Performance, Design, Experimentation

∗This research was supported in part by the National Sci-
ence Foundation under Grants ANI-9977635, CCR-9984030,
EIA-0080119. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the fund-
ing agencies.
†The work of this author was conducted when he was at the
University of Massachusetts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’04, June 16-18, 2004, Cork, Ireland.
Copyright 2004 ACM 1-58113-801-6/04/0006 ...$5.00.

Keywords
Multimedia Streaming, Proxy, Testbed

1. INTRODUCTION
The rapid growth of broadband users has led to a sub-

stantial increase in streaming media usage over the Internet.
Proxies are commonly used, often in content distribution
networks, to deliver high-quality streaming media to broad-
band users. Today’s proxies support services such as caching
and content forwarding that exploit the proxy’s proximity
to the clients to protect clients from poor throughput, delay
and loss over the long-haul server/proxy path. Future prox-
ies will support a wide variety of services such as content
insertion, on-the-fly protocol and format translation, Tivo-
like interactive operations, localized broadcasting (such as
periodic broadcast [5, 10]), proxy prefix caching [25], proxy
caching strategies [28, 10, 22, 1, 6], cooperating proxies [21],
and streaming CDNs [27].

In this paper, we present the design, implementation, and
evaluation of AMPS (Active Multimedia Proxy Services)
— a flexible, scalable proxy research platform designed to
support a wide, composable, and extensible set of next-
generation streaming services. AMPS is tailored for rapid
prototyping of new multimedia protocols and proxy services.
The platform’s design is governed by two principles. First,
it is highly modular with well-defined communication inter-
faces among modules so that all modules can be replaced and
reordered to create new systems and/or services. Further-
more, the platform supports dynamic sharing which allows
the proxy to reuse ongoing sessions to satisfy new session
requests at run-time (see Section 2.1 for details). Secondly,
the platform is not tied to any signaling protocol, streaming
protocol, or stream format. All signaling messages and mul-
timedia streams, on entering the platform, are converted
to the internal request protocol and stream format. This
design feature enables the support for translation between
different control signaling protocols and streaming formats
in the AMPS proxy [30].

We have implemented AMPS on top of a commodity Linux
system, and performed performance studies of the AMPS
proxy using a server-proxy-client configuration in a switched-
Gigabit LAN. We measure the proxy’s performance when
handling high client request rates and sustaining high data
throughput, and identify the bottleneck resource in the proxy
to be the CPU. A detailed profiling study allows us to iden-

116

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1005847.1005873&domain=pdf&date_stamp=2004-06-16

tify the CPU load imposed by various system operations and
proxy components. We find that network protocol process-
ing and Network Reception Module in proxy are the most
CPU intensive modules. The performance impact of various
design decisions is also examined.

Previous work does not provide such a flexible multime-
dia proxy research platform. While there are a number of
commercial (e.g., Darwin, RealServer, and Windows Me-
dia Server) and experimental streaming servers [2, 8, 16,
26, 5, 14], there is considerably less research on the design
and implementation of streaming proxies. Existing proxy
design and implementation work [11, 23, 13, 3] and com-
mercial streaming proxies primarily support stream recep-
tion/forwarding and/or a small set of proxy services, us-
ing specific media formats and streaming protocols. There
is also considerable work on developing multimedia system
platforms, including the Berkeley Continuous Media Toolkit [19],
Dali multimedia software library [17], the open source project
GStreamer [12], and commercial platforms such as Windows
Media and RealMedia. Although all these systems adopt
modular, reusable and composable design, the manner in
which these modules are composed together is determined
at compile time and these systems generally cannot dynam-
ically exploit ongoing sessions to satisfy new sessions. Fur-
thermore, to the best of our knowledge, there is no previous
performance study of streaming proxies.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the architecture design and implementation
of the AMPS platform. Section 3 discusses the experimen-
tal setup and performance metrics. Section 4 presents our
performance study results. We present the analysis of the
proxy profiling result in Section 4.1, summarize the perfor-
mance result of the control plane, the data plane and the
overall system in Section 4.2, discuss the performance im-
pact of various design decisions in Section 4.3, and list other
issues studied in Section 4.4. Finally, Section 5 concludes
the paper.

2. ARCHITECTURE

2.1 Architecture Overview
As shown in Figure 1, AMPS is composed of a collection

of modules organized into three planes: the service plane,
the control plane and the data plane. The service plane pro-
vides system-wide services such as public services (database
lookup, event dispatching), resource management (thread-
pool, buffer manager), and a request-processing module known
as graph manager (GM). The control plane is composed of
server control modules (SCMs) and client control modules
(CCMs). Each of these modules performs control signal-
ing between the proxy and servers (from which the video
is retrieved) and clients (to which the video is being de-
livered). Each control module communicates with external
hosts, translating signaling messages into an internal format
and passing stream requests to the graph manager in the ser-
vice plane. The data plane consists of stream graph modules
(SGMs) and stream pipes (henceforth simply referred to as
pipes). Each SGM provides a specialized operation, taking
zero or more streams as input and producing zero or more
streams as output. A multimedia stream is abstracted into
a stream of frames each identified by a frame pointer. Pipes
pass streams by reference (i.e., the frame pointer) between
SGMs. The stream graph represents the flow of streams

Figure 1: The control, service and data planes in
the AMPS proxy.

among the SGMs in the data plane. In the stream graph,
each SGM is represented as a node and each pipe is repre-
sented as an edge.

Figure 1 depicts how modules in an AMPS proxy interact
with each other. Note that the proxy uses multiple SCMs,
one for each protocol used by the proxy in proxy-client sig-
naling. An SCM translates requests from the client into an
internal format and passes the requests to the graph man-
ager (GM) in the service plane. The GM serves requests
by configuring the stream graph, choosing which SGMs to
use and the order to connect them. In addition, the GM
is able to fork the output of existing pipes to satisfy new
requests (as illustrated in the lower right region of the data
plane in the figure) without disrupting the service of exist-
ing streams. If the video needed to satisfy a client request
is not locally available, the GM passes the request to the
CCM that implements the signaling protocol of the origin
server. The CCM negotiates with the server to receive the
stream and informs the GM if the stream will be delivered
and how the stream should be received.

2.2 Implementation
For the service plane, we have implemented all modules

except the graph manager (which is the subject of our on-
going work). For the control plane, we have implemented
an SCM and a CCM using the RTSP [24] protocol based
on the komproxyd [3] RTSP parser. The RTSP SCM uses
the service plane event-dispatcher to monitor all client TCP
connections for new requests. Upon the arrival of a re-
quest, a thread from a thread-pool is dispatched to parse
and process the request. For the data plane, we have im-
plemented three SGMs, each run by a thread. The Memory
Loader Module (ML) loads video data from disks and passes
streams of frame pointers to the output pipes. Its design
is derived from our previous multimedia streaming server
work [5]. The Network Reception Module (NRM) receives
streams from network and passes streams of frame point-
ers to the output pipes. The Network Transmission Module
(NTM) retrieves streams from upstream pipes and trans-
mits the packets to specified network addresses. To reduce
context switches and thread overhead, there is one instance
of each type of SGM in memory serving all streams.

For the performance study presented in this paper, we
composed a streaming server, proxy, measuring client and
workload generator from these modules, making use of a
simple graph manager.

117

video file frame rate bitrate pkt rate
file (fps) (Kbps) (pkts/sec)

V10 10 12.5 10
V100 10 102.5 10
V300 15 307.4 30
V1024 30 1054 120

Table 1: video files used in experiments

3. EXPERIMENT SETUP AND
PERFORMANCE METRICS

All experiments are performed on a Gigabit Ethernet LAN
connected with a DELL PowerConnect 2508 8-port Gigabit
switch. The proxy, server, workload generator and data sink
applications are each run on a Dell OptiPlex GX260 (with
a 1.8GHz P4 processor) running Redhat Linux 2.4.22. The
proxy machine has 1GB RAM and two Intel Pro1000 MT
Desktop Gigabit cards (the driver version is 5.2.20) connect-
ing to a 33MHz/32bits PCI bridge. The server, data sink,
and workload generator machine each have 512MB RAM
and one NIC. The measuring client runs on a Dell OptiPlex
GX1 (with a 448MHz P2 processor, 376MB RAM, and a
3Com 100Mbps NIC) running Linux 2.4.22.

Experiments are conducted using the following two config-
urations: a signaling configuration that is used to examine
the performance of the control plane and the system as a
whole, and a data configuration that is used to examine the
throughput of the data plane. For both configurations, the
server-proxy traffic and the proxy-client traffic are isolated
on the two separate NICs in the proxy.

In the signaling configuration, the workload generator gen-
erates client session arrivals according to a Poisson process,
with each session lasting a fixed amount of time (referred
to as client session duration). The measuring client gener-
ates client session arrivals in sequence, and logs the signaling
delay and the reception times of data packets. Each client
session (generated by the workload generator or the mea-
suring client) requests a video located at the server through
the proxy using the RTSP protocol. The mute mode of this
configuration, in which no data streaming is performed, is
used to exclusively study the control plane performance.

The data configuration consists of the server, proxy and
datasink. The proxy internally simulates arrivals of stream
requests, sends the requests via a single TCP connection to
the server, receives data packets from the server, and dumps
the data packets to the data sink.

The video files used in our experiments, listed in Table 1,
have different frame/bit rates meant to represent the range
of video characteristics seen in practice. In each experiment,
requests are for the same video, but the proxy treats each
request equally by forwarding the streaming request to the
server, and receiving and forwarding the video to the client.

We use sar and netstat to collect system resource usage
and network performance information at one second inter-
vals, and call ifconfig and ethtool before and after each
experiment to collect network statistics on the proxy and
server.

We report the system-wide CPU usage and data through-
put of the proxy. As the proxy is the only application run-
ning on the system (except for Linux daemons), the system-
wide CPU usage directly reflects the CPU overhead of the

Interrput Handling
7%

Networking
20%

e1000 driver
8%

Kernel memory copy
7%

System call
5%

Misc
5%

Reception
19%

Transmission
5%

Synchronization
5%

gettimeofday
2%

printf
2%

Control Plane
1%

Proxy Misc
3%

Proxy
48%

memcpy
6%

Pipe Operation
5%

Figure 2: Proxy CPU Profiling

proxy. The data throughput is the amount of video data
being received and forwarded by the proxy per unit time.
For the end-to-end performance, the frame inter-arrival time
and signaling delay observed by the measuring client are re-
ported. Variability in the frame inter-arrival time reflects
delay jitter experienced by the client. The signaling delay is
the time from when the client sends a RTSP request to the
time when it receives the response back from the proxy. It
reflects the control signaling latency.

4. PERFORMANCE RESULTS
In this section, we describe selected performance results.

To understand the CPU usage within the proxy, we per-
formed a profiling analysis on the proxy to characterize CPU
usage of the various components in the proxy. We then re-
port the system performance of the control plane, the data
plane and the overall system. We close this section by pre-
senting several design and implementation issues in the data
plane modules and highlighting their performance impacts.

4.1 Proxy Profiling Analysis
We profiled the proxy using the OProfile [15] profiling

system, where the timer interrupt is used to sample the PC
(Program Counter) value. A summary is generated, in which
the number of samples and the percentage for each routines
(system/library/application) are reported. We ran an ex-
periment using the signaling configuration. In the experi-
ment, the workload generator generates client arrivals with
a rate of 5 clients/second, where each client requests the
V300 video, and have a client session duration of 120 sec-
onds. Under this workload, the average number of sessions
in the proxy is 600 and the average data plane throughput is
180Mbps. The breakdown of CPU active time among var-
ious operations for the proxy is shown in Figure 2, where
the left side pie chart shows the system level CPU time
breakdown, and the right side pie chart further depicts the
breakdown of CPU time within the proxy application. The
percentage of CPU idle time (spent in default idle) is 34%.

Compared to the profiling results for the streaming server
reported in [14], where disk access was found to be the bot-
tleneck, the streaming proxy shows a different system bot-
tleneck. We observed that kernel network protocol process-
ing takes up a significant percentage of CPU time (20%).
As the proxy handles the reception and transmission of a
large amount of network data packets, both the sending
and receiving path of the network protocol processing are
stressed. For example, the top routine in this category (ac-
counting for over 1/5 of the CPU time in this category) is

118

udp v4 lookup longway. This routine looks up UDP socket
for an incoming UDP packet, making use of a hash table of
128 entries that map destination port numbers to the socket
structures. This shows that fine tuning the network protocol
processing for streaming workload is important in improving
the proxy performance.

Similar to the streaming server studied in [14], a substan-
tial amount of CPU of the proxy system is spent in system
calls (5%) and kernel memory copying (7%, due to the copy-
ing between user and kernel space). This demonstrates the
overhead of user-kernel context switches, and the benefit of
adopting schemes that eliminate data copying [9, 18].

Within the proxy application, the Network Reception Mod-
ule (NRM) is the most CPU intensive (using 19% of the total
CPU time). This is due to the functionality of NRM (i.e.,
receiving packets and introducing frames into pipes), and
the complexity associated with handling potential packet re-
ordering and losses for the incoming UDP streams. Stream-
ing servers, which serve multimedia streams from local disks,
don’t need to handle these cases.

The profiling result also quantifies the overhead of using
pipes to pass streams among SGMs. Pipe operations, which
include querying the schedule of a pipe, popping/pushing
frames into a pipe, takes up 5% of the CPU time. This
is a reasonable amount of overhead to enable such high
level modularization and data sharing. The AMPS proxy
avoids the expensive memory copying operations by passing
streams among SGMs by frame pointers. Each data packet
is copied twice within the proxy: first by the NRM from a
temporary packet receiving buffer to the internal buffer, and
then by the NTM from the internal buffer to a temporary
packet sending buffer. The overhead of user level memory
copy (memcpy) is only 6% of the total CPU time.

The synchronization cost due to having multiple, yet a
fixed number of, threads, including thread locking and sleep-
ing operations, is 5%. Furthermore, the kernel process/thread
scheduling overhead (which is counted as part of Misc) is
around 0.09%. This suggests that adopting a single thread
event-driven architecture probably would not yield a signif-
icant performance improvement.

Note that the overhead of the gettimeofday and printf sys-
tem calls, which are mainly due to data logging (for perfor-
mance evaluation purpose), is around 5%.

4.2 Performance Results Summary
In this section, we summarize the performance evaluation

of the control plane, the data plane, and the overall system;
detailed results can be found in [29].

For the control plane, we performed a set of experiments
using the signaling configuration in mute mode with vary-
ing client arrival rate (with client duration of 120 second).
Figure 3 plots the proxy CPU usage under various client
arrival rates. The median and 95-th percentile of client-
observed signaling delay are bounded by 56 ms and 120 ms,
respectively, for all cases. Note that when the client arrival
rate increases from 1 to 20 clients/sec, the CPU overhead
increases only by 5%. In contrast, when the arrival rate in-
ceases from 20 to 30 clients/sec, the CPU overhead increases
by a factor of 6. Profiling analysis showed that this increase
resulted from the increased overhead in TCP/IP processing
and in the event-dispatcher that monitors all TCP connec-
tions.

For the data plane, we identified the maximum through-

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

C
P

U
 U

sa
ge

 (
%

)

Client Arrival Rate (clients/sec)

Figure 3: Control plane CPU usage under various
client arrival rates

video number of bitrate pkt rate
file stream (Mbps) (pkt/sec)

V10 2060 25.14 20,600
V100 1580 161.95 15,800
V300 710 213.13 21,300
V1024 280 288.2 33,600

Table 2: maximum data plane throughput

put achieved for different videos through data configuration
experiments in which the proxy is configured to increase the
number of streams until it is saturated. Table 2 summarizes
the result. The proxy achieves maximum data throughput
of 288.2Mbps and 33,600 packets per second when it receives
and forwards a total of 280 V1024 video streams. The data
throughput (bit/packet rate) sustained for lower rate videos
is smaller due to the increased per-stream overhead.

We studied the overall system performance through the
signaling configuration experiments with V300 videos. Client
requests were generated at different rates, with each client
requesting the first 120 seconds of the video. We found
the proxy could sustain client arrival rates that result in an
average of 600 simultaneous streams, generating an aggre-
gate data throughput of 180Mbps. Analysis of client traces
demonstrated that the proxy achieves smooth streaming un-
der this load. Figure 4 plots the histogram of the frame
inter-arrival time observed by the measuring clients. The
mean of the frame inter-arrival time is 66.67 ms, which is
consistent with the frame rate of the video (15fps). The
maximum is 144.07 ms, within 2.2 times of the mean. We
further analyzed the frame arrival time traces, and found
that a pre-buffering of 52 ms at the client was enough to
ensure smooth playback (no buffer underflow).

4.3 Impact of Various Design Decisions
In this section, we investigate design and tuning issues

concerning two data plane modules within the proxy: the
Network Reception Module (NRM) and the Network Trans-
mission Module (NTM).

Network Reception Module Optimizations: The NRM op-
erates in rounds with each round divided to two phases of
operation: (i) receiving packets from the network and stor-
ing them in a staging area, and (ii) assembling frames from
staged packets and putting the frames into the output pipes.

Our earlier profiling results indicated that the NRM is
the most CPU-intensive component within the proxy. We

119

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140 160

F
ra

ct
io

n

Frames interarrival time (ms)

Figure 4: Frame inter-arrival times
at the client

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 U

sa
ge

 (
%

)

Number of 300kbps streams

polling based NRM
select-based NRM

Figure 5: Polling vs. select
based NRM

0

20

40

60

80

100

400 600 800 1000120014001600180020002200

C
P

U
 U

sa
ge

 (
%

)

Number of 10kbps streams

NTM: Microround
NTM: 15ms

Figure 6: CPU saving from the
use of microrounds

have taken several approaches to speed up NRM operations.
First, we designed a more efficient data structure for stag-
ing received packets. Secondly, we avoided the system over-
head of memory allocation and deallocation by maintain-
ing free lists for the constantly allocated/deallocated data
structures. The third optimization is on the method with
which the NRM performs the first phase operation. We
originally made a select call on all receiving sockets to de-
termine when packets were available (referred to as select-
based NRM). Due to the well-known scalability problem of
the select call [4, 7], we implemented another method that
exploits the periodic nature of video data— the NRM simply
reads each receiving socket in every round in a non-blocking
fashion (referred to as polling-based NRM). We conducted
the data configuration experiment requesting V300 videos to
compare the efficiency of these two implementations. Fig-
ure 5 plots the CPU usage based on the number of streams
that the proxy is serving. We observed that the polling
method reduces CPU usage by as much as 30%, and when
the number of streams is increased to above 700, the two
methods achieve similar performance.

Network Transmission Module Tuning: The NTM also
works in rounds. Suppose a round length of Ts ms is used.
In each round, the NTM sends out all packets that are sched-
uled for delivery over the next Ts ms, and then goes to sleep
for Ts ms. On wakeup, the NTM conducts the next round of
transmission. Since the operating system provides no guar-
antee that the NTM will regain use of the processor at its
requested time. the NTM detects when it has overslept and
simply delays sleeping until it “catches up” with the delayed
work.

Due to the 10 ms scheduling granularity of Linux 2.4.22,
using a round length of less than 15 ms results in consistent
oversleeping by the NTM thread. Given this constraint, we
implemented two different solutions. In one implementation,
we set the round length of the NTM to be 15 ms (the smallest
sustainable round length). The other implementation uses
the concept of a microround. In the microround scheme, the
NTM uses a 33 ms round length and makes use of two 15 ms
microrounds. The NTM serves half of the streams in each
microround.

We conducted a data configuration experiment with V10
videos using these two schemes, and compared the proxy
CPU usage of the proxy in Figure 6. The microround scheme
provides a CPU saving of up to 30%, and is able to deliver
one third more V10 streams than the round-based scheme.
Under the same load, both schemes serve the same number
of video streams at each 15 ms interval. The difference lies

in the fact that the microround scheme only calculates the
schedule and retrieves stream data for half of the clients,
while the 15 ms round scheme performs the same operations
(while handling a half of the video data) for all clients. This
leads to a saving in CPU utilizing for schedule calculation
and moving memory into the L1 (CPU) cache.

4.4 Other Issues Studied
In this section, we summarize additional experimental re-

sults. Interested readers should refer to the technical re-
port [29] for more details.

• Substantial amount of system tuning is required to
support a large number of client sessions and sustain
the high data throughput reliably. This includes in-
creasing per-process limit on the number of opened
files, and various buffer size in the networking stack [20].

• We have compared the overhead and dispatching la-
tency for several different implementations of the ser-
vice plane event dispatcher. We found that traditional
select-based implementation does not scale [4, 7], and
a periodic polling-based implementation achieves up
to 99% reduction in the CPU overhead, at the cost of
the increased client signaling delay (by 30ms) - which
is likely to be acceptable to streaming applications.

• We have studied the impact of our control plane thread-
ing model, showing that it provides a nice trade-off
between efficiency and complexity.

5. CONCLUSIONS
We have designed and implemented a multimedia stream-

ing research platform for supporting a wide range of proxy
services. We evaluated our design and implementation through
a series of experiments using a server/proxy/client configu-
ration in a switched-Gigabit LAN setting.

We identified the CPU to be the bottleneck resource at
the proxy, performed profiling to understand the overhead
of various system components, and found the system net-
work protocol processing and the NRM to be the most CPU-
intensive components. The system performance studies showed
that the control plane can handle a high arrival rate and a
large number of concurrent client sessions, and quantified
the maximum data throughput (up to 188.2Mbps) that can
be supported by the proxy’s data plane. For the end-to-
end performance, the proxy is able to provide good quality
of service (as measured by delay jitter) to the client even
under a relatively heavy load.

120

In addition to these performance results, we also learned
several lessons from our studies. First, system tuning is
important in avoiding configuration-induced system bottle-
necks and packet loss. Secondly, to handle a large number of
simultaneous sessions efficiently, efficient event (and packet)
dispatching is needed; the periodic nature of multimedia
stream can be exploited in the packet dispatching. Thirdly,
the 10 ms Linux scheduling granularity must be taken into
account for important system decisions, such as the choice
of the round length.

Our ongoing work includes the implementation of the graph
manager and several selected proxy services.

6. REFERENCES
[1] J. M. Almeida, D. L. Eager, and M. K. Vernon. A

hybrid caching strategy for streaming media files. In
Prom. SPIE/ACM Conference on Multimedia
Computing and Networking, January 2001.

[2] K. Almeroth and M. Ammar. An alternative paradigm
for scalable on-demand applications: Evaluating and
deploying the interactive multimedia jukebox. In IEEE
Transactions on Knowledge and Data Engineering
Special Issue on Web Technologies, July/August 1999.

[3] Multimedia Communications Lab (KOM)
at Darmstadt University of Technology. KOMproxyd
open source project. http://dmz02.kom.e-technik.tu-
darmstadt.de/KOMproxyd/.

[4] G. Banga, J. C. Mogul, and P. Druschel. A scalable
and explicit event delivery mechanism for UNIX. In
USENIX Annual Technical Conference, pages
253–265, June 1999.

[5] M. K. Bradshaw and et al. Periodic broadcast and
patching services - implementation, measurement, and
analysis in an Internet streaming video testbed. In
Proc. of ACM Multimedia System, 2001.

[6] Y. Chae, K. Guo, M.Buddhikot, S. Suri, and
E. Zegura. Silo, rainbow, and caching token: Schemes
for scalable, fault tolerant stream caching. In Journal
of Selected Area in Communications, 2000.

[7] A. Chandra and D. Mosberger. Scalability of Linux
event-dispatch mechanisms. In USENIX Annual
Technical Conference, June 2001.

[8] S.F. Chang, A. Eleftheriadis, and D. Anastassiou.
Developement of columbia’s video on demand testbed.
Image Communication Journal:Special Issue on Video
on Demand and Inerative TV, 1996.

[9] P. Druschel. Operating systems support for highspeed
networking. University of Arizona Ph.D. Dissertation
CS-94-24, August 1994.

[10] D. Eager and M. Vernon. Dynamic skyscraper
broadcasts for video-on-demand. In Proc. 4th Intl.
Workshop on Multimedia Information Systems,
September 1998.

[11] S. Gruber, J. Rexford, and A. Basso. Protocol
considerations for a prefix-caching proxy for
multimedia streams. Computer Networks, 1999.

[12] GStreamer Team. GStreamer: open source multimedia
framework. http://www.gstreamer.net.

[13] V. Kahmann and L. Wolf. A proxy architecture for
collaborative media streaming. In Multimedia Systems,
December 2002.

[14] J. Lemon, Z. Wang, Z. Yang, and P. Cao. Stream
Engine: A new kernel interface for high-performance
internet streaming servers. In Web Content Caching
and Distribution Workshop (IWCW), 2003.

[15] J. Levon and et al. OProfile.
http://oprofile.sourceforge.net.

[16] C. Martin, P. S. Narayan, B. Ozden, R. Rastogi, and
A. Silberschatz. The Fellini multimedia storage server.
Multimedia Information Storage and Management,
1996.

[17] W.-T. Ooi, B. Smith, S. Mukhopadhyay, H.H. Chan,
S. Weiss, and M. Chiu. The Dali multimedia software
library. In Proc. SPIE/ACM Conference on
Multimedia Computing and Networking, January 1999.

[18] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a
unified I/O buffering and caching system. In ACM
Transactions on Computer Systems, volume 18, pages
37–66, 2000.

[19] K. Patel and L.A. Rowe. Design and performance of
the Berkeley Continuous Media Toolkit. In Proc.
SPIE/ACM Conference on Multimedia Computing
and Networking, February 1997.

[20] C. Perkins, L. Gharai, T. Lehman, and A. Mankin.
Experiments with delivery of HDTV over IP networks.
In Proc. of the 12th Intl. Packet Video Workshop,
2002.

[21] R. Rejaie and J. Kangasharju. Mocha: a quality
adaptive multimedia proxy cache for Internet
streaming. In ACM Intl Workshop on Network and
Operating Systems Support for Digital Audio and
Video, 2001.

[22] R. Rejaie, H. Yu, M. Handley, and D. Estrin.
Multimedia proxy caching mechanism for quality
adaptive streaming applications in the Internet. In
INFOCOM, 2000.

[23] S. Roy, J. Ankcorn, and S. Wee. Architecture of a
modular streaming media server for content delivery
networks. In IEEE Intl. Conference on Multimedia
and Expo, 2003.

[24] H. Schulzrinne, A. Rao, and R. Lanphier. Real time
streaming protocol (RTSP), rfc 2326, April 1998.

[25] S. Sen, J. Rexford, and D. Towsley. Proxy prefix
caching for multimedia streams. In Proc. IEEE
INFOCOM, April 1999.

[26] M. Vernick, C. Venkatramini, and T. Chiueh.
Adventures in building the stony brook video server.
In Proc. of ACM Multimedia, 1996.

[27] B. Wang, S. Sen, M. Adler, and D. Towsley. Optimal
proxy cache allocation for efficient streaming media
distribution. In INFOCOM, 2002.

[28] Y. Wang, Z.L. Zhang, D. Du, and D. Su. A network
conscious approach to end-to-end video delivery over
wide area networks using proxy servers. In Proc. IEEE
INFOCOM, April 1998.

[29] X. Zhang and et al. AMPS: A flexible, scalable proxy
testbed for implementing streaming services. Technical
Report 04-08, Department of Computer Science,
University of Massachusetts Amherst, 2004.

[30] X. Zhang, D. Towsley, and J. Wileden. Towards
interoperable multimedia streaming systems. In Proc.
of the 12th Intl. Packet Video Workshop, 2002.

121

