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ABSTRACT
TCP is widely used in commercial media streaming systems, with
recent measurement studies indicating that a significant fraction of
Internet streaming media is currently delivered over HTTP/TCP.
These observations motivate us to develop analytic performance
models to systematically investigate the performance of TCP for
both live and stored media streaming. We validate our models
via ns simulations and experiments conducted over the Internet.
Our models provide guidelines indicating the circumstances under
which TCP streaming leads to satisfactory performance, showing,
for example, that TCP generally provides good streaming perfor-
mance when the achievable TCP throughput is roughly twice the
media bitrate, with only a few seconds of startup delay.

Categories and Subject Descriptors: C.2.2 [Network protocols]:
Application (video streaming)

General Terms: Performance.

Keywords: Performance modeling, Multimedia streaming.

1. INTRODUCTION
The rapid deployment of broadband connectivity to the home

via cable modem and ADSL technologies has resulted in a signif-
icant growth in streaming media usage. The conventional wisdom
for media streaming is to use UDP, rather than TCP, as the trans-
port protocol. The primary reason for not using TCP is that the
backoff and retransmission mechanisms in TCP can lead to unde-
sirable end-to-end delays that violate the timeliness requirement for
streaming media. Due to these limitations, much of the research
over the past decade focused on developing UDP-based streaming
protocols, providing mechanisms for TCP-friendliness and loss re-
covery [1, 2, 3].

Despite the conventional wisdom that TCP is not desirable for
streaming and the large body of literature on UDP-based stream-
ing, TCP is widely used in commercial streaming systems. For in-
stance, Real Media and Windows Media, the two dominant stream-
ing media products, both support TCP streaming. Furthermore,
a recent measurement study has shown that a significant fraction
of commercial streaming traffic uses TCP [4]. This study ana-
lyzed 4.5 million session-level logs for two commercial streaming
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servers over a four month period and found that 72% and 75% of
the on-demand and live streaming traffic, respectively, used TCP.
Moreover, 27% and 47% of the on-demand and live streaming traf-
fic, respectively, used HTTP. The wide use of HTTP streaming is
particularly interesting — HTTP streaming is perhaps the simplest
streaming protocol, since no rate adaptation is employed at the ap-
plication level, unlike other TCP streaming approaches [5, 6, 7,
8]; further, no additional mechanisms are necessary to ensure TCP
friendliness or to recover from loss, unlike UDP-based streaming.

In this paper, motivated by the wide use of TCP streaming in
commercial systems, we seek to answer the following question:
Under what circumstances can TCP streaming provide satisfactory
performance?To answer this question, we study a baseline stream-
ing scheme which uses TCP directly for streaming. This baseline
streaming scheme is similar to HTTP streaming and is henceforth
referred to as direct TCP streaming. We study the performance of
direct TCP streaming using analytical models. Our models enable
us to systematically investigate the performance of TCP streaming
under various conditions, a task that is difficult when using em-
pirical measurements or simulation alone. This paper makes the
following main contributions:

• We develop discrete-time Markov models for live and stored
video streaming using TCP. The models are validated using
ns simulation and Internet experiments. To the best of our
knowledge, our work is the first analytical study of using
TCP for streaming.

• Using these models, we explore the parameter space (i.e.,
loss rate, round trip time and timeout value in TCP as well
as video playback rate) to provide guidelines as to when di-
rect TCP streaming leads to satisfactory performance. Our
results show that direct TCP streaming generally provides
good performance when the available network bandwidth,
and thus the achievable TCP throughput, is roughly twice the
the video bitrate, with only a few seconds of startup delay.

Our study has the following important implication. Measure-
ment studies have shown that a large fraction of streaming video
clips on the Internet today are encoded at bit rates below 300 Kbps [9].
Moreover, most broadband connections support download rates of
750 Kbps - 1 Mbps. In the situations where the end-end avail-
able bandwidth is only constrained by the last-mile access link, our
performance study indicates that direct TCP streaming may be ad-
equate for many broadband users.

The rest of the paper is organized as follows. In Section 2, we
review related work on TCP-based streaming and TCP modeling.
Section 3 presents the models for live and stored video streaming
using TCP. Validation of the models using ns simulations and In-
ternet experiments is described in Sections 4 and 5 respectively.
Performance study based on the models is presented in Section 6.
Finally, Section 7 concludes the paper.
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2. RELATED WORK
TCP-based streaming has several advantages. First, TCP is by

definition TCP friendly. Second, reliable transmissions provided
by TCP remove the need for loss recovery at higher levels. Fur-
thermore, in practice, streaming content using TCP is more likely
to pass through firewalls. A number of existing research efforts
that use TCP for streaming [5, 6, 7, 8] combine client-side buffer-
ing and rate adaptationto deal with the variability in the avail-
able TCP throughput. Client-side buffering prefetches data into the
client buffer by introducing a startup delay in order to absorb short-
term fluctuations in the TCP throughput. Rate adaptation adjusts
the bitrate (or quality) of the video in order to deal with long-term
fluctuations. Direct TCP streaming does not deal with long-term
fluctuations and only employs client-side buffering. It is conse-
quently much simpler than TCP streaming techniques that employ
rate adaptation [5, 6, 7, 8]. Furthermore, it does not require lay-
ered video as in [7, 8]. In this paper, we focus on the performance
of direct TCP streaming. We expect the performance of more so-
phisticated approaches like [5, 6, 7, 8] to be better. However, the
performance of these approaches and the comparison of different
approaches are beyond the scope of this study.

The literature on TCP modeling is extensive, although no exist-
ing work has specifically focused on TCP streaming. Much of the
TCP modeling focuses on TCP performance for file transfers, as-
suming long-lived flows [10, 11, 12, 13, 14] or short-lived flows [15,
16]. In particular, [12] and [14] use Markov models to capture the
congestion control and avoidance mechanisms in TCP to study the
steady-state TCP throughput and the autocorrelation structure in
TCP traffic respectively. Our work differs from all past work in that
we consider real-time requirements when using TCP for stream-
ing. We use the TCP models in [12, 14] as a baseline to develop
Markov models for streaming. The motivation for using Markov
models is two fold. First, they capture the detailed congestion con-
trol and avoidance mechanisms in TCP. The timeout mechanism,
which leads to a drastic decrease in congestion window size, is
particularly important for modeling streaming using TCP (see Sec-
tion 6). Secondly, it is convenient to perform transient analysis
using Markov model, which is required for stored video streaming
(see Section 3).

An earlier study [17] combines TCP modeling and video trans-
mission. The study provides a model to obtain the probability dis-
tribution of TCP congestion window size, which is then applied
to determine a TCP-friendly transmission rate for non-TCP video
flows. Our work differs from the above study in that we study TCP-
based streaming instead of determining the TCP-friendly transmis-
sion rate for UDP-based streaming.

3. MODELS FOR STREAMING USING TCP
In this section, we describe the problem setting and then present

discrete-time Markov models for live and stored video streaming
using TCP. The key notation introduced in this section is summa-
rized in Table 1 for easy reference.

3.1 Problem setting
Consider a client requesting a video from the server. Corre-

sponding to the request, the server streams the video to the client
using TCP. Throughout the paper, we assume that the average TCP
throughput is no less than the video bitrate. This guarantees that, on
average, the throughput provided by TCP satisfies the requirement
for streaming the video. However, fluctuations in the instantaneous
TCP throughput can still lead to significant late packet arrivals. The
client allows a startup delay on the order of seconds, which is a
common practice in commercial streaming products. All packets
arriving earlier than their playback times are stored in the client’s

local buffer. This local buffer is assumed to be sufficiently large so
that no packet loss is caused by buffer overflow at the client side.
This assumption is reasonable since modern machines are equipped
with a large amount of storage.

Measurement studies show that most videos streamed over the
Internet are constant bit rate (CBR) videos [9]. We therefore con-
sider a CBR video with a playback rate of µ packets per second.
For simplicity, all packets are assumed to be of the same size. For
analytical tractability, we assume continuous playback at the client.
A packet arriving later than its playback time is referred to as a
late packet. We assume that a late packet leads to a glitch during
playback and use the fraction of late packets, i.e., the probability
that a packet is late, to measure the performance. Strictly speak-
ing, fraction of late packets does not correspond directly to viewing
quality, since human perception is tolerant to occasional glitches in
the playback. To the best of our knowledge, however, there is no
quantitive metric that directly corresponds to viewing quality for
videos. We therefore use fraction of late packets as a rough metric
of streaming performance.

We study two forms of streaming — live and stored video stream-
ing. In live streaming, the server generates video content in real
time and is only able to transmit the content that has already been
generated. The transmission is therefore constrained by the genera-
tion rate of the video at the application level. Hence we refer to this
form of streaming as constrained streaming. For a stored video,
the server is assumed to transmit the video as fast as allowed by the
achievable TCP throughput in order to fully utilize the available
network bandwidth. We refer to this form of streaming as uncon-
strained streamingsince the application does not impose any con-
straint on the transmission. Next, we discuss the characteristics of
constrained and unconstrained streaming. For ease of exposition,
each packet is associated with a sequence number starting from 1.

Constrained streaming is illustrated in Fig. 1(a). Without loss
of generality, we assume that the first packet is generated at time
0. Later packets are generated at a constant rate equal to the play-
back rate of the video. In the figure, G(t) represents the number
of packets generated at the server by time t. Then G(t) = µt. At
the client side, let A(t) denote the number of packets arriving at
the client by time t. Since the TCP transmission is constrained by
the generation rate at the server, we have A(t) ≤ G(t). Let B(t)
denote the number of packets played by the client by time t. The
playback of the video commences at time τ . That is, the startup
delay is τ seconds. Then B(t) = µ(t − τ ), t ≥ τ . Observe that
G(t)−B(t) = µτ . A packet arriving earlier than its playback time
is referred to as an early packet. At time t, let the number of early
packets be N(t). Then N(t) = A(t) − B(t). A negative value
of N(t) indicates that the packet arrival is behind the playback by
−N(t) packets. Since A(t) ≤ G(t) and G(t) − B(t) = µτ , we
have N(t) ≤ G(t) − B(t) = µτ . That is, there are at most µτ
early packets in constrained streaming at any time t, as shown in
Fig. 1(a).

Unconstrained streaming is illustrated in Fig. 1(b). As shown in
the figure, the packet transmission is only limited by the achievable
TCP throughput and no constraint is imposed from the application
level. Therefore, the number of early packets at time t, N(t), can
be larger than µτ .

As described above, a negative value of N(t) indicates that late
packets occur at time t. We need to model N(t) during the play-
back of the video in order to obtain the fraction of late packets. For
this purpose, we extend the model for TCP in [12, 14] to incorpo-
rate the specific characteristics of constrained and unconstrained
streaming. In Section 3.3.1, we construct a Markov model for
constrained streaming where the number of early packets is one
component in the model. In Section 3.3.2, we provide a transient
analysis technique for unconstrained streaming. Before describing
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(a) Constrained streaming.
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(b) Unconstrained streaming.

Figure 1: Video streaming using TCP: constrained and unconstrained streaming.

Notation Definition
µ Playback rate of the video (packets per second)
τ Startup delay (seconds)
Xi State of the TCP source in the ith round
Si Number of packets transmitted successfully

by TCP in the ith round
R Round trip time (seconds)
L Length of the video (measured in rounds)
f Fraction of late packets
Ni Number of early packets in the ith round
N l

i Number of late packets in the ith round
Y c

i State of the model for constrained streaming
in the ith round

Y u
i State of the model for unconstrained streaming

in the ith round
Pi Probability of having at least one late packet

in the ith round

Table 1: Key notation.

the models for constrained and unconstrained streaming, we first
briefly describe the model for TCP.

3.2 Model for TCP
TCP is a window-based protocol with several mechanisms used

to regulate its sending rate in response to network congestion. Time-
out and congestion avoidance are two mechanisms that have sig-
nificant impact on the throughput. For completeness, we give a
brief description of these two mechanisms. For every packet sent
by the source, TCP starts a retransmission timer and waits for an
acknowledgment from the receiver. The retransmission timer ex-
pires (times-out) when the ACK for the corresponding packet is
lost and there are no triple duplicate ACKs. When timeout occurs,
the packet is retransmitted and the window size is reduced to one.
Furthermore, the retransmission timer value for this retransmitted
packet is set to be twice the previous timer value. This exponential
backoff behavior continues until the retransmitted packet is suc-
cessfully acknowledged. In congestion avoidance, the window size
increases by one packet when all packets in the current window are
acknowledged. In most versions of TCP, such as TCP Reno and
TCP Sack, the window size is reduced by half when triple dupli-
cate ACKs are received. If timeout occurs before receiving triple
duplicate ACKs, the window size is reduced to one.

In [12, 14], the behavior of TCP is described by a discrete-time
Markov model, where each time unit is the length of a “round”.

A round starts with the back-to-back transmission of W packets,
where W is the current size of TCP congestion window. Once all
packets in the congestion window are sent, no more packets are
sent until ACKs for some or all of these W packets are received.
The reception of the ACKs marks the end of the current round and
the beginning of the next round. The length of a round is assumed
to be a round trip time (RTT). Packet losses in different rounds are
assumed to be independent and packet losses in the same round are
correlated: if a packet is lost, all remaining packets until the end of
the round are lost. Furthermore, the effect of lost ACKs is regarded
as negligible.

Let {Xi}∞i=1 be a discrete-time Markov model for the TCP source,
where Xi is the state of the model in the ith round. Following the
notation in [14], Xi is a tuple: Xi = (Wi, Ci, Li, Ei, Ri), where
Wi is the window size in the ith round; Ci models the delayed
ACK behavior of TCP (Ci = 0 and Ci = 1 indicate the first and
the second of the two rounds respectively); Li is the number of
packets lost in the (i − 1)th round; Ei denotes whether the con-
nection is in a timeout state and the value of the back-off exponent
in the ith round; Ri indicates if a packet being sent in the timeout
phase is a retransmission (Ri = 1) or a new packet (Ri = 0). Let
Si denote the number of packets transmitted successfully by TCP
in the ith round. Then Si is determined by Xi and Xi+1. For in-
stance, when there is no packet loss from state Xi = (w, c, l, e, r)
to Xi+1 = (w′, c′, l′, e′, r′), we have Si = w, the window size in
the ith round. A detailed description of Si can be found in [12, 14,
20].

3.3 Models for constrained and unconstrained
streaming

We now present discrete-time Markov models for constrained
and unconstrained streaming. Each time unit corresponds to the
length of a round, which is assumed to be a RTT of length R sec-
onds. We consider a video whose length is L rounds. The playback
rate of the video is µR packets per round.

Let f denote the fraction of late packets during the playback of
the video. Our goal is to derive models for determining f as a
function of various system parameters (including the loss rate, RTT,
the retransmission timer in the TCP flow and the video playback
rate). Let Ni denote the number of early packets in the ith round,
which is a discrete-time version of N(t) introduced earlier (see
Section 3.1) and Ni = N(iR). For simplicity of notation, we
assume the number of packets played back in a round, µR, to be an
integer. LetN l

i be the number of late packets in the ith round. Then
N l

i ∈ {0, 1, . . . , µR}, where N l
i = 0 indicates that no packet is

late in the ith round. Let the expected number of late packets in the
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ith round be E[Nl
i ]. Then

E[N l
i ] =

µRX
k=1

kP (N l
i = k) (1)

where P (N l
i = k) is the probability of having k late packets in the

ith round. The fraction of late packets is

f =

PL
i=1 E[N l

i ]

µRL
(2)

where the numerator and denominator correspond, respectively, to
the expected number of late packets throughout the playback of the
video and the total number of packets in the video.

In order to obtain P (Nl
i = k), we introduce Nb

i to be

Nb
i =

�
0, Ni ≥ 0
−Ni, Ni < 0

(3)

Nb
i can be thought of as the number of packets by which the arrival

falls behind the playback of the video in the ith round. Expres-
sion (3) follows directly from the definition of Ni and Nb

i . We
obtain P (N l

i = k) as

P (N l
i = k) =

�
P (Nb

i = k), k < µR
P (Nb

i ≥ µR), k = µR
(4)

Note that while the number of late packets Nl
i in the ith round is

at most µR, Nb
i can be larger than µR. When Nb

i ≥ µR, we have
N l

i = µR. Therefore, P (N l
i = µR) = P (Nb

i ≥ µR).
To summarize the above, the fraction of late packets can be ob-

tained from Ni, i = 1, 2, . . . , L, by applying (1), (2), (3) and
(4). Next we describe the models for constrained and unconstrained
streaming, with a focus on deriving Ni from the models.

3.3.1 Constrained streaming
Constrained streaming can be modeled as a producer-consumer

problem. The producer produces packets according to TCP and
stores them in a buffer. The consumer starts to consume the pack-
ets in the buffer from time τ at a constant rate of µR packets per
round. At any time, the number of packets in the buffer is no more
than Nmax, Nmax = µτ . This is from an earlier observation that
Ni ≤ Nmax (i = 1, 2, . . . , L) due to the constraint of the video
generation rate (see Section 3.1). To satisfy this constraint, the pro-
ducer stops producing packets when there are Nmax packets in
the buffer. We therefore use the following model for constrained
streaming.

Let {Y c
i }L

i=1 be a discrete-time Markov model for constrained
streaming, where Y c

i is the state of the model in the ith round. Y c
i

is a tuple represented as (Xi, Ni), where Xi and Ni are the state
of the TCP source and the number of early packets in the ith round
respectively. The evolution of Ni follows

Ni+1 = min(Nmax, Ni + Si − µR)

where Si is the number of packets transmitted successfully by TCP
in the ith round, which is determined by Xi and Xi+1. In order to
satisfy the condition that Ni ≤ Nmax for i = 1, 2, . . . , L, the TCP
source does not send out any packet in the (i+ 1)th round if Ni =
Nmax. A detailed description of the state transition probabilities
for the Markov chain {Y c

i }L
i=1 and the time taken for each state

transition can be found in [20].
We consider videos of lengths significantly larger than the RTT.

In this case, the fraction of late packets can be approximated by the
limiting case, where the length of the video, L, approaches infinity.

That is, the fraction of late packets can be approximated by the
steady state probability

lim
L→∞

PL
i=1 E[N l

i ]

µRL
= lim

i→∞
E[N l

i ]

µR

We solve for the stationary distribution of Ni using the steady state
analysis in the TANGRAM-II modeling tool [18]. We then com-
pute the stationary distribution of Nl

i using (3) and (4). Finally, the
fraction of late packets is computed from (2).

3.3.2 Unconstrained streaming
Unconstrained streaming can also be modeled as a producer-

consumer problem. It differs from constrained streaming in that
the number of packets in the buffer can be more than Nmax. There-
fore, it appears that solving unconstrained streaming is simpler than
solving constrained streaming. This is not true for the following
reason. In unconstrained streaming, the fraction of late packets de-
pends heavily on the position of the round. This is because, under
the assumption that the average TCP throughput is higher than the
video bitrate, as the length of the video goes to infinity, the number
of early packets approaches infinity and, hence, the fraction of late
packets approaches 0. The fraction of late packets in the steady
state (when the video is regarded as infinitely long) is thus triv-
ial (equal to 0). To obtain the fraction of late packets over a finite
video, we therefore resort to transient analysis, which is, in general,
much more complex than steady state analysis.

We develop the following model for unconstrained streaming.
Let {Y u

i }L
i=1 be a discrete-time Markov model for unconstrained

streaming, where Y u
i is the state of the model in the ith round. Here

Y u
i only contains the state of the TCP source in the ith round, that

is, Y u
i = Xi. The number of early packets in the ith round, Ni, is

excluded from the state space to reduce the size of the state space,
and thus the computational overhead. We introduce an impulse re-
ward into the model to obtain the transient distribution of Ni. An
impulse reward associated with a state transition is a generic means
to define measure of interest (see [19] for references on reward
models). We associate an impulse reward of ρyy′ to a transition
from state Y u

i = y to state Y u
i+1 = y′, defined to be the difference

between the number of packets received and played back during
this transition. Denote the accumulation of this impulse reward up
to the ith round as N′

i . The TANGRAM-II modeling tool [18] pro-
vides a functionality to solve for the transient distribution of N′

i

based on the algorithm in [19].
We then obtain the transient distribution of Ni from that of N ′

i

as follows. Observe that N ′
i is the total number of early packets in

the ith round when the transmission and playback both start at time
0. Recall that Ni is the number of early packets in the ith round
when the playback starts at time τ instead of 0. We therefore have
the following relationship between Ni and N ′

i

Ni = N ′
i + µτ

This relationship allows us to obtain the transient distribution of Ni

from that of N ′
i . The detailed description of the impulse reward can

be found in [20].
To compute the fraction of late packets, we first solve for the

transient distribution ofNi using the TANGRAM-II modeling tool [18].
Next, the transient distribution ofN l

i is calculated using (3) and (4).
Finally, the fraction of late packets is computed from (2).

For convenience, let Pi denote the probability that the ith round
has at least one late packet. Then

Pi = P (Ni < 0) = P (N ′
i < −µτ ) (5)
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Figure 2: Validation setting in ns: packet losses are caused by
buffer overflow on the link from router r0 to r1.

4. MODEL VALIDATION USING NS SIMU-
LATIONS

In this section, we validate our models for constrained and un-
constrained streaming using nssimulations. The topology is shown
in Fig. 2. Multiple TCP and HTTP sources are connected to router
r0 and their corresponding sinks connected to router r1. Each
HTTP source contains 16 connections. The HTTP traffic is gener-
ated using empirical data provided by ns. The bandwidth and queue
length of a link from a source/sink to its corresponding router are
100 Mbps and 1000 packets, respectively. The propagation delay
of the link from a source/sink to its corresponding router is uni-
formly distributed in [10, 20] ms.

One of the TCP flows is used to stream video, and is referred to
as the video stream. For this video stream, let D denote the round
trip propagation delay; p denote the average loss rate; R denote the
RTT and RTO denote the value of the first retransmission timer.
For simplicity, RTO is rounded to be a multiple of R. We further
define TO = RTO/R. Since RTO is based on the average and the
variance of round trip times, TO reflects the variation of the RTTs.
For constrained and unconstrained streaming, we assume the video
length to be 7000 and 80 seconds respectively. We vary the video
length in Section 6.1. In particular, we show that the model for
constrained streaming is accurate for a wide range of video lengths.
We also show that, in unconstrained streaming, it is sufficient to
model a relatively short video and we provide a method to obtain
the fraction of late packets for longer videos.

The link from router r0 and r1 forms a bottleneck link where
packet losses occur due to buffer overflow. We create different set-
tings by varying the bandwidth, buffer size and the propagation
delay of the bottleneck link as well as the number of flows (TCP
and HTTP) traversing the bottleneck link. For each setting, we run
multiple simulations to obtain a confidence interval. For a fixed
setting, we found the values of R and TO among different runs are
close. However, due to the randomness in the background traffic,
the loss (packet drop) rate for the video stream in different runs may
vary significantly, especially in unconstrained streaming, where the
video length, and hence, the simulation run is short. We thus face
the problem of validating a model with a given loss rate against
multiple simulation runs with varying loss rates. Since our goal is
to validate our model for a given value of p, we select simulation
runs with loss rate close to p. In particular, we select the runs with
loss rate in the range of (1±ε)p, where ε < 15%, for model valida-
tion. The 95% confidence intervals for the simulations are obtained
from the selected runs.

In each setting, we obtain the fraction of late packets from the
model and the simulation, denoted as fm and fs respectively. We
say the model and the simulation have a good match if fm falls
within the confident interval from the simulation or 1

5
≤ fm

fs
≤ 5.

The reason for the second “loose” criterion can be explained as fol-
lows. We use the fraction of late packets to roughly measure the
viewing quality. When fm and fs satisfy the above criterion, they
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Figure 3: Model validation using ns.

correspond to similar viewing experience. For instance, fraction of
late packets as 0.1 and 0.5 both correspond to bad viewing experi-
ence; fraction of late packets as 10−4 and 5×10−4 both correspond
to good viewing experience, etc.

4.1 Validation for constrained streaming
We validate the model for constrained streaming in four set-

tings [20]. In the interest of space, we only describe the results for
one setting. In this setting, 10 TCP sources and 40 HTTP sources
are connected to router r0. The video stream has a playback rate
of 25 packets per second. The round trip propagation delay of this
video stream, D, is 120 ms. We generate 60 simulation runs, each
run lasting for 7000 seconds. The video length is 7000 seconds.
The average loss rate of all the runs is 1.9%. We use p = 1.9%
in the model and select runs with loss rates in the range of 1.7%
to 2.1%. Among the selected 39 runs, the values of R and TO

are close with the average of 210 ms and 2 respectively. These
values are used in the model to obtain the fraction of late packets.
Fig. 3(a) depicts the fraction of late packets versus the startup de-
lay predicted by the model and obtained from the simulation. As
shown, we observe a good match between the model and the simu-
lation.

4.2 Validation for unconstrained streaming
We validate the model for unconstrained streaming in four set-

tings [20] and only describe one setting in detail. In this setting, 5
TCP sources and 30 HTTP sources are connected to router r0. We
generate 1000 simulation runs. Each run lasts for 200 seconds. We
assume the length of the video to be 80 seconds, corresponding to
approximately the initial 80 seconds of a simulation run. The aver-
age loss rate of the video stream in the 1000 runs is 1.4%. We use
p = 1.4% in the model and select the runs with loss rate between
1.2% to 1.6%. There are a total of 554 such runs. For the selected
runs, the average RTT and TO are 110 ms and 3 respectively; the
average TCP throughput is 71.4 packets per second. We set the
playback rate of the video to be 65 packets per second. That is, the
available TCP throughput is 10% higher than the video playback
rate. Fig. 3(b) depicts the fraction of late packets versus startup de-
lays. Both the results predicted by the model and measured from
the simulation are shown in the figure. Again, we observe a good
match between the model and the simulation.

5. MODEL VALIDATION USING EXPERI-
MENTS OVER THE INTERNET

In this section, we validate the models for constrained and un-
constrained streaming using experiments conducted over the Inter-
net. In each experiment, we stream a video using TCP from one site
to another site and use tcpdump[21] to capture the packet times-
tamps. The average loss rate p, average RTT R and TO of this TCP
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Figure 4: Model validation using experiments over the Inter-
net.

flow are estimated from the tcpdumptraces. We use Linux-based
machines for all the experiments.

5.1 Validation for constrained streaming
We first focus on constrained streaming. A CBR video is trans-

mitted using TCP from University of Southern California (USC) to
a client in a resident house in Amherst, Massachusetts. The play-
back rate of the video is 40 or 50 packets per second and each
packet consists of 1448 bytes. That is, the bandwidth of the video
is approximately 480 or 600 Kbps. We conducted 22 experiments
from February 19 to March 7, 2003 at randomly chosen times; each
experiment lasted for one hour. For each experiment, we plot the
time series of the TCP throughput, where each point is the aver-
age throughput over a 10-second interval. Based on the through-
put series, we choose segments of length 500 to 1000 seconds that
exhibit variations in throughput, implying the occurrence of con-
gestion [20]. Each segment is treated as a separate video. The loss
rate, RTT and TO are obtained from the data segment and used in
the model.

We obtained a total of 12 segments from the experiments. The
startup delay varies between 4 to 10 seconds. Fig. 4(a) presents a
scatterplot showing the fraction of late packets for various startup
delays obtained from the measurements versus that predicted by the
model. The 45 degree line starting at the origin represents a hypo-
thetical perfect match between the measurements and the model.
Along the upper and lower 45 degree lines, the fraction of late
packets from the model is respectively 5 times higher and lower
than that from the measurements. All but 7 scatterplot points fall
within the upper and lower 45 degree lines, indicating a match be-
tween the model and the Internet experiments. We speculate that
the 7 bad matches are due to insufficient number of samples in the
data segment.

5.2 Validation for unconstrained streaming
We next compare model prediction to measurements taken over

the Internet for unconstrained streaming. In each experiment, we
run 8 parallel TCP connections to obtain a group of runs with sim-
ilar TCP parameters (loss rate, RTT and TO). Since the bandwidth
for a cable modem connection is too low to benefit from paral-
lel TCP connections, we chose a high-bandwidth university path.
The server is at UMass and the client is at Universita’ dell’Aquila,
Italy. Each experiment lasts for 1 hour. We then divide the trace
for each TCP flow into multiple segments, each of 100 seconds.
Each 100-second segment is treated as a 100-second video. We
use p = 3.1% in the model and select 266 segments having loss
rate between 2.7% and 3.5%. For the selected segments, the RTT
is 300 ms and TO = 1. The average throughput is 15.2 packets
per second. We set the playback rate of the video to be 14 pack-
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Figure 5: Effect of video length on performance.

ets per second. Correspondingly, the available TCP throughput is
9% higher than the playback rate of the video. Fig. 4(b) plots the
fraction of late packets for various startup delays. The fraction of
late packets predicted by the model is slightly higher than that from
the measurements. This might be because, at the beginning of the
video streaming, the window size is always one in the model while
it may be larger than one in the measurement data segment.

6. EXPLORING THE PARAMETER SPACE
In this section, we vary the model parameters in constrained and

unconstrained streaming to study the impact of these parameters on
performance. In doing so, we provide guidelines as to when TCP
streaming leads to satisfactory performance.

We set the values of the parameters in TCP (i.e., loss rate, R
and TO) to represent a wide range of scenarios. The loss rate is
varied in the range of 0.4% to 4%. Previous work shows that the
median RTT between two sites on the same coast in the US is 50
ms, while the median RTT between west-coast and east-coast sites
is 100 ms [22]. Consequently, we vary R in the range of 40 ms to
300 ms. We vary TO from 1 to 4, based on several measurements
from Linux machines in [11] and our measurements.

In the following, we first explore how the performance of con-
strained and unconstrained streaming varies with the length of the
video. We then identify the conditions under which TCP streaming
provides a satisfactory viewing experience. At the end, we summa-
rize the key results.

6.1 Effect of video length on performance
We first use the setting in Section 4.1 to illustrate the effect of

the video length on the performance in constrained streaming. The
startup delay is set to 6 seconds and the length of the video ranges
from 500 to 7000 seconds. Fig. 5(a) plots the fraction of late pack-
ets versus the video length from the model and the ns simulation.
The model provides a good prediction for various video lengths.
For videos longer than 2000 seconds, the fraction of late packets
for different video lengths from the simulation is similar and closer
to the prediction from the model than for shorter videos. Through-
out this section, we assume the video for constrained streaming is
sufficiently long so that stationary analysis can be used to obtain
the fraction of late packets.

We next use the setting in Section 4.2 to investigate how the frac-
tion of late packets varies with the video length in unconstrained
streaming. The startup delay is set to 4 seconds. The playback
rate is 51 packets per second. Correspondingly, the available TCP
throughput is 40% higher than the video playback rate. We ob-
tain Pi (i = 1, . . . , L), the probability that the ith round has at
least one late packet (see Section 3.3.2). Fig. 5(b) plots Pi over
the length of the video from the model and the simulation. In the
figure, the fraction of late packets is low at the beginning of the
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Figure 6: The fraction of late packets versus the startup delay
for p = 2%, TO = 4 and µ = 25 packets per second.

video, increases to a peak value and then decreases over time. This
can be explained as follows. At the beginning of the playback, the
probability of having a late packet in a round is low due to the pack-
ets accumulated in the client local buffer during the startup delay.
Subsequently, packets are played out while at the same time be-
ing accumulated in the client buffer. The number of early packets
in the buffer increases with time since, on average, the achievable
throughput is higher than the playback rate of the video. Therefore,
the probability of having late packets in a round reaches a peak
value and then decreases over time as the number of early packets
in the buffer increases.

In Fig. 5(b), the probability of having late packet in the 730th
round (i.e., 80th second) decreases to 10−4. This indicates that,
after 730 rounds, the fraction of late packets is approximately in-
versely proportional to the length of the video, since the probability
of having late packet after 730 rounds is close to 0. This is con-
firmed by the simulation results. In general, to obtain the fraction
of late packets, f , for a video of L rounds, it is sufficient to obtain
the fraction of late packets in the initial l rounds of the video, de-
noted as fl, such that Pl is close to 0. Then f = lfl/L. Throughout
this section, we use videos of 80 seconds for unconstrained stream-
ing.

6.2 Conditions for satisfactory performance
In general, viewing quality is satisfactory when the fraction of

late packets is low for a short startup delay. People can usually tol-
erate a few seconds of startup delay. Studies show that the video
quality drops when the packet loss rate exceeds 10−4 (e.g., [23]).
Consequently, we assume that the performance of direct TCP stream-
ing is satisfactory when the fraction of late packets is below 10−4

for a startup delay of around 10 seconds.
Denote the achievable TCP throughput as T packets per second.

Then T/µ represents how much the achievable TCP throughput
is higher than the video playback rate. The performance of TCP
streaming improves as T/µ increases [20]. This is intuitive since
packets are accumulated in the client’s local buffer faster relative
to the playback rate of the video as T/µ increases. We choose
p = 0.4%, 2% or 4%, corresponding to low, medium and high loss
rates respectively, and choose TO = 1, 2, 3 or 4. Let TR denote
the achievable TCP throughput in one RTT. Then TR is determined
by p and TO, and T = TR/R. Since TR is fixed once p and TO

are fixed, the value of T/µ = TR/(µR) is varied by varying the
product of µ and R. We next explore quantitively the impact of
T/µ on the performance of TCP streaming.

6.2.1 Constrained streaming
We first fix the playback rate of the video, µ, to be 25 packets

per second and vary the value of RTT such that T/µ ranges from
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Figure 7: Constrained streaming: the required startup delay
such that f ≤ 10−4 (a) when µ = 25 packets per second, TO ≥
2; (b) when p = 4% and T/µ = 2.

1.2 to 2.4. We observe a diminishing gain by increasing T/µ on
the performance: the performance improves dramatically as T/µ
increases from 1.2 to 1.6 and less dramatically as T/µ increases
from 1.6 to 2.4. One example is shown in Fig. 6, where p = 2%
and TO = 4. This diminishing gain indicates that, to achieve a
low fraction of late packets, the required startup delay is very long
when T/µ is only slightly higher than 1 and reduces quickly as
T/µ increases. However, the reduction becomes less dramatic for
large values of T/µ. Fig. 7(a) shows the required startup delay such
that the fraction of late packets, f , is below 10−4 as a function of
T/µ for various loss rates and TO ≥ 2 (the required startup delay
when TO = 1 is much lower for the same loss rate and T/µ).
We observe that under various settings, the performance becomes
satisfactory when T/µ is roughly 2.

We next set the value of RTT to 50, 100, 200 or 300 ms and
vary the playback rate of the video such that T/µ ranges from 1.2
to 2.4. We again observe a dramatic performance gain when T/µ
increases from 1.2 to 1.6 and less dramatic gain afterwards. Next,
we investigate the required startup delay such that the fraction of
late packets is below 10−4 when T/µ = 2. Fig. 7(b) shows the
required startup delay when p = 4%. The required startup delay
for lower loss rates is lower (figures omitted). When R = 50 ms
(corresponding roughly to two sites on the same coast in the US),
the required startup delay is no more than 10 seconds under all
settings. When R = 100 ms (corresponding roughly to two sites
on the two coasts in the US), the required startup delay is no more
than 10 seconds under all settings except for very high loss rate
(p = 4%) and high TO values (TO ≥ 3). However, for a long
RTT, high loss rate and timeout value, the required startup delay is
in tens of seconds, as shown in Fig.7(b).

6.2.2 Unconstrained streaming
We again first fix the playback rate of the video to 25 packets per

second and vary the value of RTT such that T/µ ranges from 1.2
to 2.4. The results are similar as in constrained streaming: dimin-
ishing performance gains are observed when increasing T/µ and
the performance becomes satisfactory when the achievable TCP
throughput is twice the video bitrate. Fig. 8(a) shows the required
startup delay such that the fraction of late packets is below 10−4

as a function of T/µ for various loss rates and TO = 4 (the re-
quired startup delay for lower TO values is lower). We observe that
the required startup delay is bounded within 10 seconds when T/µ
increases to 2.

We next set the value of RTT to 50, 100, 200 or 300 ms and
vary the playback rate of the video such that T/µ ranges from 1.2
to 2. We obtain the required startup delay such that the fraction
of late packets is below 10−4 when T/µ = 2. Fig. 8(b) shows
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Figure 8: Unconstrained streaming: the required startup delay
such that f ≤ 10−4 (a) when µ = 25 packets per second, TO =
4; (b) when p = 4% and T/µ = 2.

the required startup when p = 4% for various values of RTT. The
required startup delay for lower loss rates is lower (figures omitted).
Under relatively short RTT, i.e., R = 50 or 100 ms, the required
startup delay is within 10 seconds for all the settings. However, for
a long RTT, high loss rate and timeout value, the required startup
delay is in tens of seconds, as shown in Fig.8(b).

6.3 Summary of results
The key results from our exploration of parameter space are:

• The fraction of late packets when the video is beyond a cer-
tain length is similar in constrained streaming while it de-
creases with the video length in unconstrained streaming (af-
ter an initial increasing trend at the beginning of the play-
back).

• The performance of TCP streaming improves as the value of
T/µ increases. Furthermore, increasing T/µ beyond a point
yields diminishing performance gain.

• The performance of TCP streaming is not solely determined
by T/µ but is sensitive to the values of the various param-
eters in the models. However, the performance is generally
good when the achievable TCP throughput is roughly twice
the video bitrate, when allowing a few seconds of startup de-
lay.

• For large RTTs, high loss rates and timeout values, to achieve
a low fraction of late packets, either a long startup delay or a
large T/µ (greater than 2) is required.

7. CONCLUSIONS
In this paper, we developed discrete-time Markov models for

constrained and unconstrained streaming that correspond to live
and stored video streaming, respectively. Our validation using ns
and Internet experiments showed that the performance predicted
by the models are accurate. Using the models, we studied the ef-
fect of various parameters on the performance of constrained and
unconstrained streaming. In doing so, we provided guidelines as
to when direct TCP streaming renders satisfactory performance,
showing, for example, that TCP generally provides good stream-
ing performance when the achievable TCP throughput is roughly
twice the media bitrate, with only a few seconds of startup delay.
Note that our model can be easily extended to the setting where loss
rate varies during the playout of the video by incorporating the var-
ious loss rate values into the Markov models. Last, we use fraction
of loss rate as the performance metric throughout the paper. Per-
formance study using more complicated and user-oriented metrics
is left as future work.
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