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Abstract

Our society is facing overlapping crises of climate
change and systemic inequality. To respond to cli-
mate change, the energy system is in the midst
of its most foundational transition since its incep-
tion, from traditional fuel-based energy sources
to clean renewable sources. While the transition
to a low-carbon energy system is ongoing, there
is an opportunity to make the new system more
just and equitable than the current one which is
inequitable in many forms. Measuring inequity in
the energy system is a formidable task since it is
large scale and the data is coming from abundant
data sources. In this work, we lay out a plan to
leverage and develop scalable machine learning
(ML) tools to measure the equity of the current
energy system and to facilitate a just transition to
a clean energy system.

We focus on two concrete examples. First, we
explore how ML can help to measure the inequity
in the energy inefficiencies of residential houses
at the scale of a town or a country. Second, we
explore how deep learning techniques can help
to estimate the solar potential of residential build-
ings to facilitate a just installation and incentive
allocation of solar panels. The application of ML
for energy equity is much broader than the above
two examples and we highlight some others as
well. The result of this research could be used by
policymakers to efficiently allocate energy assis-
tance subsidies in the current energy systems and
to ensure justice in their energy transition plans.
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1. Introduction
The current energy system is steeped in inequities. Peo-
ple of color and people with low incomes are especially
vulnerable to serious negative impacts from the way we gen-
erate, store, transmit, use, and invest in energy (Jessel et al.,
2019). Polluting power plants are more likely to be located
in low-income and under-represented communities. In a
crisis, power is restored last for minority neighborhoods,
e.g., the recent blackout in Texas (Dobbins & Tabuchi, Feb
2021). High electricity and heating fuel bills due to poor en-
ergy efficiency are a major burden for low-income minority
households, and are becoming even more onerous during
the COVID-19 crisis (Graff & Carley, 2020).

As energy system transitions to a low carbon one to respond
to climate change, we must intentionally build an equitable
system that not only reduces harm but enables wealth cre-
ation in the communities that most need it. Planning for a
just transition requires negotiating between many compet-
ing demands and tradeoffs. Understanding the aggregate
economic, health and environmental impacts of energy deci-
sions is already difficult; when equity is a priority, this is an
even greater challenge.

There are signs that the underserved communities vulnerable
to adverse energy impacts today may be cut out of benefits of
the energy transition, or even further harmed. For example,
subsidies for rooftop solar installations disproportionately
benefit higher-income suburban homeowners; yet the sur-
charges to fund them raise everyone’s energy bills, further
burdening people who already spend a large portion of their
income on energy costs (Roth, June 2020). To mitigate this
inequity, there are nation-wide programs around the world,
such as Weatherization Assistance Program (WAP) (De-
partment of Energy, 2021b) or Low Income Home Energy
Assistance Program (LIHEAP) (Department of Energy, Ac-
cessed January 2021) both in the U.S., with fiscal budgets
above $3 billion (Department of Energy, 2021a).

However, according to DataKind (DataKind, 2021), a major
challenge in these programs is on how to efficiently allocate
these funds to the communities that most need it. To respond
this challenge, some organizations have begun to identify
measures of interest; the Energy Justice Scorecard from
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the Institute for Energy Justice (Institute for Energy Justice,
2021), for example, allows for the evaluation of individual
policies for their equitable process and impacts. In another
initiative, the policymakers in the New York State are insur-
ing benefits of clean energy initiatives reach disadvantaged
communities (NYSERDA, 2021). These solutions, however,
are labor-intensive and limited in scale. In this work, we lay
out initial ideas on how one can develop scalable, replicable,
and practical ML tools to improve the justice in the current
energy system and more importantly, ensure equitable tran-
sition of energy systems. Our vision is that this research will
inform policies to induce green growth, reduce pollution,
and encourage decentralized energy ownership and commu-
nity representation. The high availability of the public data
used in our approach allows the usage of machine learning
tools in energy equity in an expansive set of locations.

To highlight the potential of ML for scalable and replicable
enhancement of energy equity, in this work, we focus on two
concrete applications and explain the challenges of develop-
ing ML tools for both. First, as an application for measuring
energy equity in the current energy system, we present how
ML could be leveraged to detect the equity in energy in-
efficient residential houses at scale (Section 2). Secondly,
we focus on how ML (and especially deep learning) can
facilitate an equitable installation of residential solar panels
(Section 3). Finally, in Section 4, we present the impact of
this research for different stakeholders, and shed light on the
other potential impact of ML for energy equity in broader
domains beyond our target applications.

2. ML for Equity Analysis of Energy
Inefficient Buildings

Building infrastructure constitutes around 40% of total en-
ergy and 70% of the overall electricity usage in the United
States (US Energy Information Administration, 2020). Con-
sequently, residential energy-efficiency is a critical area that
can have a significant impact on how the energy system
is equitable. Our goal is to develop a ML model to auto-
matically characterize the least energy efficient residential
homes in a town and then classify these inefficient homes
into different demographic groups, based on the publicly
available data. We particularly focus to make our ML ap-
proach to be scalable and replicable such that it can be used
beyond our pilot town.

An essential first step for improving the energy-efficiency
of buildings in an equitable manner is to identify the least
efficient ones that have the greatest need for improvements.
However, naive approaches such as using the age of the
building or its monthly energy bill to identify inefficiencies
do not work well. While older buildings are usually less
efficient than newer ones, age alone is not an accurate in-
dicator since older buildings may have undergone energy

improvements. Similarly, the total energy usage is not well
correlated to energy inefficiency since larger buildings will
consume more energy than smaller ones. Even normaliz-
ing for size, the energy usage does not necessarily point to
inefficiencies. For example, two identical size house with
a different number of residents merely reflects a higher ac-
tual demand rather than inefficiency. Thus, finding truly
inefficient buildings from a large number of buildings is a
challenging problem.

In this work, we will develop a model-driven ML approach
for measuring the inequity of the inefficient residential
homes from a large population of buildings in a pilot town
in Massachusetts, U.S., and then use other publicly available
data to expand this analysis.

Datasets. To implement ML-based approach for measur-
ing inequity of inefficient residentials, We will use the fol-
lowing three datasets:

1) Town-level energy dataset: We use a dataset of energy
usage from smart meters of 10K+ homes in Massachusetts.
More than 70% of residential buildings in the United States
have smart meters, and hence, our prototype could be ex-
tended for other towns as well.

2) Nation-wide energy dataset: We use several nation-wide
publicly available data for the energy usage of buildings
from the U.S. Dept. of Energy provides the Building Per-
formance Database (Building Performance Database, 2021),
which is the nation’s largest information source for energy
efficiency of all types of buildings across various sectors.

3) The American Community Survey data: To measure the
energy inefficiency in low income and other different demo-
graphic groups, we use the publicly available census data.
This data is part of a large dataset that is publicly available
from multiple resources such as The American Commu-
nity Survey (ACS) (acs) or the American Housing Survey
(AHS) (ahs). This date is available in different categories in
tract level.

Why machine learning? While building energy models
have been extensively studied in the building science, and
practitioners such as energy auditors use them to analyze
a building’s energy performance, we believe that develop-
ing ML tools can bring unique advantages as compared to
traditional approaches. First, the current energy models
assume simple (manual) regression analysis over observed
energy data. In contrast, state-of-the-art ML tools will allow
using novel probabilistic estimates of energy use, leading
to more accurate energy efficiency analysis. Second, cur-
rent models incur several parameters that are often chosen
manually, based on intuition. With ML tools one can use
advanced optimization approaches to learn the “optimal”
values of these parameters so that they best explain the ob-
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Figure 1. A Map of racial demographics in a town in MA

served data. Third, current approaches typically tend to
be manual, which does not scale to modeling thousands of
nation-wide buildings to identify the most inefficient ones.
ML-based approaches are scalable and replicable, and can
fully automate this process.

The implementation plan. We will build our proposed
research based on the recent results WattHome (Iyengar
et al., 2018) (at town-scale) and WattScale (Iyengar et al.,
2020) (at nation-scale). While WattHome and WattScale are
designed for residential buildings, in our proposed research,
we will focus on extracting inequity patterns from the least
efficient buildings. In this previous work, it is found that
inefficient homes are geographically co-located. This is an
initial observation that motivates us to systematically focus
on how inequitable are the inefficient homes. Towards this,
we need additional datasets that enable this extension. This
is possible by using the dataset listed above. We did an ini-
tial investigation on extracting the demography information
of Holyoke, MA, using the ACS data, with a representative
sample shown in Fig 1 that shows the percentage of racial
demography in a particular regions. Based on the available
data, we will expand our solution to address racial justice
directly by estimating the distribution of residential energy
inefficiency by race and ethnicity.

3. ML For Equity Analysis of Residential
Solar Potential Estimation

In this section, we briefly explain another potential applica-
tion. Our goal is to develop a deep learning tool that is fed
by satellite images that can help to characterize the residen-
tial houses with the most solar potential in certain minority
neighborhoods. The result of this research proposal is a
scalable response to the challenges that are already notified
by social scientists on the inequitable allocation of clean
energy incentives. For example, an initial analysis shows
that that electric vehicles and rooftop solar installations in
California are way more common in wealthier neighbor-

hoods (Fournier et al., 2020). This is in conflict with the fact
that California tries to deploy climate policies that not only
green, but also spread the benefits of clean energy equitably.

This research extends DeepRoof (Lee et al., 2019), a convo-
lutional neural network (CNN) approach for solar potential
estimation, uses real estate data, solar irradiance data, and
satellite imaging to estimate size, orientation, and geome-
try of rooftops, classify shadow casting buildings and trees,
and provide a per-pixel generation potential of planar roof
segments. The accuracy result of DeepRoof substantially
outperforms alternative traditional approaches. The only
dataset needed for this work are satellite images, which are
widely available. Last, the socioeconomic data is available
through the sources that are mentioned in Section 2.

There are additional challenges to be resolved for the pur-
pose of equity analysis of solar potential estimation. More
specifically, the current DeepRoof project is location-based,
which means that one has to enter the exact location of a
building to return its solar potential. However, character-
izing the the buildings with the most solar potential in a
neighborhood needs a learning process to detect the build-
ings in a neighborhood and then estimate the solar potential.

4. Expected Impact and Future Directions
Beyond the research potential of this work for ML re-
searchers, and by integrating the developed ML tools for
energy equity into an interactive online visualization soft-
ware, the potential outcomes of our proposal could benefit
the following groups:

1) Government policymakers: Visualization of present in-
equalities in their community, leading to motivation for
new policies focused on fixing disparities in opportunity
present in the community. Some potential questions that
we expect our research could answer: What are common
demographics of energy inefficient residential houses? or
what communities have under-utilized solar energy?

2) Residents: An opportunity to contribute their own data
to make the analysis more accurate, thereby helping their
policymaker. Additionally, it will act as an insight tool for
residents to better understand their community.

3) Social and environmental scientists: To observe long-
standing trends and patterns in energy equity (or lack
thereof). Researchers will be able to use this tool to an-
swer important research questions in the fields of public
policy, environmental science, and social justice.

Last, we highlighted two concrete research topics at the
intersection of ML, energy, and equity. We believe that this
research is broad and can be expanded into other broader
topics as well. An example is measuring the inequity of the
carbon intensity of different geographical neighborhoods in
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cities and towns. The carbon intensity of different geograph-
ical neighborhoods is not publicly known, however, there
are plenty of publicly available data sources, such as time-
varying energy supply and demand, that could be fed into
ML tools to estimate the carbon intensity. A closely related
ML research is the emerging topic of carbon-intelligent com-
puting, which is a paradigm shift in the way that technology
companies operates their datacenters (Radovanovic, 2020;
Koningstein, 2021). In this approach, some ML tools have
been developed to shift the computing workload across tem-
poral and spatial domains such that the overall carbon foot-
print of the digital infrastructure is minimized. In doing so,
one need to estimate the time-varying carbon intensity of the
electric grids that supply datacenters. The carbon-intensity
estimation output, however, could be used to measure the
carbon intensity of different neighborhoods in a town from
an equity perspective.

Acknowledgment
This research is supported by NSF grants CAREER 2045641
and REU supplements of CNS 1908298.

References
American community survey. Census Reporter. URL
https://censusreporter.org/.

American housing survey. https://census.gov/
programs-surveys/ahs.html.

Building Performance Database, 2021. https://bpd.
lbl.gov/.

DataKind. DataKind partners with data.org on $10m in-
clusive growth & recovery challenge. https://bit.
ly/3wHFFmX , 2021.

Department of Energy. LIHEAP and WAP funding.
https://liheapch.acf.hhs.gov/Funding/
funding.htm, 2021a.

Department of Energy. Weatherization assistance program
for low-income persons. https://benefits.gov/
benefit/580, 2021b.

Department of Energy. Low income home energy assistance
program (liheap). https://www.benefits.gov/benefit/623,
Accessed January 2021.

Dobbins, J. and Tabuchi, H. Texas blackouts hit minority
neighborhoods especially hard. https://nyti.ms/
2Tl1rOP, Feb 2021.

Fournier, E. D., Cudd, R., Federico, F., Pincetl, S., Iles,
A., and Mulvaney, D. On energy sufficiency and the
need for new policies to combat growing inequities in

the residential energy sector. Elementa: Science of the
Anthropocene, 8, 2020.

Graff, M. and Carley, S. COVID-19 assistance needs to
target energy insecurity. Nature Energy, 5(5):352–354,
2020.

Institute for Energy Justice. Energy justice scorecard.
https://iejusa.org/, 2021.

Iyengar, S., Lee, S., Irwin, D., Shenoy, P., and Weil, B.
Watthome: A data-driven approach for energy efficiency
analytics at city-scale. In Proc. ACM SIGKDD, pp. 396–
405, 2018.

Iyengar, S., Lee, S., Irwin, D., Shenoy, P., and Weil, B.
Wattscale: A data-driven approach for energy efficiency
analytics of buildings at scale. ACM Transactions on
Data Science, to appear, 2020.

Jessel, S., Sawyer, S., and Hernández, D. Energy, poverty,
and health in climate change: a comprehensive review of
an emerging literature. Frontiers in public health, 7:357,
2019.

Koningstein, R. We now do more computing where
there’s cleaner energy. available at https://bit.ly/
3c9o27w/, 2021.

Lee, S., Iyengar, S., Feng, M., Shenoy, P., and Maji, S.
Deeproof: A data-driven approach for solar potential esti-
mation using rooftop imagery. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2105–2113, 2019.

NYSERDA. Climate leadership and community protec-
tion act (climate act), 2021. URL www.nyserda.ny.
gov/All-Programs/Programs/CLCPA.

Radovanovic, A. Our data centers now work harder when
the sun shines and wind blows. available at https:
//bit.ly/3wICF9O, 2020.

Roth, S. California’s clean energy programs are mainly
benefiting the rich, study finds. https://lat.ms/
3vCiavi, June 2020.

US Energy Information Administration, 2020. https:
//www.eia.gov/, accessed September 2020.

https://censusreporter.org/
https://census.gov/programs-surveys/ahs.html
https://census.gov/programs-surveys/ahs.html
https://bpd.lbl.gov/
https://bpd.lbl.gov/
https://bit.ly/3wHFFmX
https://bit.ly/3wHFFmX
https://liheapch.acf.hhs.gov/Funding/funding.htm
https://liheapch.acf.hhs.gov/Funding/funding.htm
https://benefits.gov/benefit/580
https://benefits.gov/benefit/580
https://nyti.ms/2Tl1rOP
https://nyti.ms/2Tl1rOP
https://iejusa.org/
https://bit.ly/3c9o27w/
https://bit.ly/3c9o27w/
www.nyserda.ny.gov/All-Programs/Programs/CLCPA
www.nyserda.ny.gov/All-Programs/Programs/CLCPA
https://bit.ly/3wICF9O
https://bit.ly/3wICF9O
https://lat.ms/3vCiavi
https://lat.ms/3vCiavi
https://www.eia.gov/
https://www.eia.gov/

