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Abstract. Camera sensor networks—wireless networks of low-power imaging
sensors—have become popular recently for monitoring applications. In this pa-
per, we argue that traditional vision-based techniques for calibrating cameras are
not directly suitable for low-power sensors deployed in remote locations. We pro-
pose approximate techniques to determine the relative locations and orientations
of camera sensors without any use of landmarks or positioning technologies. Our
techniques determine the degree and range of overlap for each camera and show
this information can be exploited for duty cycling and triggered wakeups. We im-
plement our techniques on a Mote testbed and conduct a detailed experimental
evaluation. Our results show that our approximate techniques can estimate the
degree and region of overlaps to within 10% of their actual values and this error
is tolerable at the application-level for effective duty-cycling and wakeups.

1 Introduction

1.1 Motivation

Wireless sensor networks have received considerable research attention over the past
decade, and rapid advances in technology have led to a spectrum of choices of image
sensors, embedded platforms, and communication capabilities. Consequently, camera
sensor networks— networks consisting of low-power imaging sensors [18, 19]—have
become popular for applications such as environmental monitoring and surveillance.

Regardless of the end-application, camera sensor networks perform several common
tasks such as object detection, recognition, and tracking. While object detection in-
volves determining when a new object appears in range of the camera sensors, recog-
nition involves determining the type of the object, and tracking involves using multiple
camera sensors to continuously monitor the object as it moves through the environment.
To effectively perform these tasks, the camera sensor network needs to be calibrated at
setup time. Calibration involves determining the location and orientation of each cam-
era sensor. The location of a camera is its position (3D coordinates) in a reference
coordinate system, while orientation is the direction in which the camera points. By
determining these parameters for all sensors, it is possible to determine the viewable
range of each camera and what portion of the environment is covered by one or more
cameras. The relationship with other nearby cameras, in particular, the overlap in the
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viewable ranges of neighboring cameras can be determined. This information can be
used by applications to determine which camera should be used to sense an object at a
certain location, to triangulate the position of an object using overlapping cameras, and
to handoff tracking responsibilities from one camera to another as the object moves.
Calibration of camera sensors is well-studied in the computer vision community and
a number of techniques to accurately estimate the location and orientation of cameras
have been proposed [8, 22, 24]. These techniques assume coordinates of few landmarks
are known a priori and use the projection of these landmarks on the camera’s image
plane, in conjunction with principles of optics, to determine a camera’s coordinates and
orientation.! In certain cases locations of landmarks are themselves determined using
range estimates from known locations; for instance, a positioning technology such as
Cricket can be used to determine the coordinates of landmarks from known beacon loca-
tions. However, these techniques are not feasible for deployments of ad-hoc low power
camera sensors for the following reasons: (i) Resource constraints: Vision-based tech-
niques for accurate calibration of cameras are compute intensive. Low-power cameras
do not have the computation capabilities to execute these complex mathematical tasks.
Further, images of low-power cameras are often of low fidelity and not well suited for
high precision calibration, (ii) Availability of landmarks: In many scenarios, ad-hoc
camera sensor networks are deployed in remote locations for monitoring mountainous
and forest habitats or for monitoring natural disasters such as floods or forest fires. No
landmarks may be available in remote inhabited locations, and infrastructure support
such as positioning technologies may be unavailable or destroyed, making it difficult to
define new landmarks.

One solution that eliminates the need to use landmarks is it to equip each camera sensor
with a positioning device such as GPS [4] and a directional digital compass [6], which
enable direct determination of the node location and orientation. However, today’s GPS
technology has far too much error to be practical for calibration purposes (GPS can
localize an object to within 5-15m of its actual position). Ultrasound-based positioning
and ranging technology [16] is an alternative which provides greater accuracy. But use
of additional hardware with low-power cameras both consumes more energy and in
some cases, can be prohibitive due to its cost. As a result, accurate calibration is not
always feasible for initialization of resource-constrained camera sensor networks with
limited or no infrastructure support.

Due to these constraints, in this paper we ask a fundamental question: is it possible
to initialize camera sensors without the use of known landmarks or without using any
positioning technology? In scenarios where accurate camera calibration may not always
be feasible, determining relative relationships between nearby sensor nodes may be the
only available option. This raises the following questions:

— How can we determine relative locations and orientations of camera sensors with-
out use of known landmarks or positioning infrastructure?

— What kind of accuracy can these approximate initialization techniques provide?

— What is the performance of applications based on approximate initialization?

! Vision-based calibration techniques can also determine a camera’s internal parameters such as
the camera focal length and lens distortion, in addition to external parameters such as location
and orientation.



1.2 Research Contributions

To address the above challenges, in this paper, we propose novel approximate initial-
ization techniques for camera sensors. Our techniques rely only on the inherent picture-
taking ability of cameras and judicious use of on-board computational resources to ini-
tialize each camera relative to other cameras in the system. No infrastructure support for
beaconing, range estimation or triangulation is assumed. Our initialization techniques
are computationally lightweight and easily instantiable in environments with little or no
infrastructure support and are well suited for resource-constrained camera sensors.
Our techniques rely on two key parameters—the degree of overlap of a camera with
other cameras, and the region of overlap for each camera. We present approximate tech-
niques to estimate these parameters by taking pictures of a randomly placed reference
object. To quantify the accuracy of our methods, we implement two techniques—duty-
cycling and triggered wakeup—that exploit this initialization information.

We have implemented our initialization techniques on a testbed of Cyclops [18] cameras
and Intel Crossbow Motes [14] and have conducted a detailed evaluation using the
testbed and simulations. Our experiments yield the following results:

— Our approximate initialization techniques can estimate both k-overlap and region
of overlap to within 10% of the actual values.

— The approximation techniques can handle and correct for skews in the distribution
of reference point locations.

— The application-level accuracy using our techniques is 95-100% for determining
the duty-cycle parameter and 80% for a triggered wakeup application.

2 Problem Formulation

We consider a wireless network of camera sensors deployed in an ad-hoc fashion with
no a priori planning. Each sensor node is assumed to consist of a low-power imaging
sensor such as the Cyclops [18] or the CMUCam [19] connected to an embedded sensor
platform such as the Crossbow Mote [14] or the Telos [15]. No positioning hardware is
assumed to be present on the nodes or in the environment. Given such an ad-hoc camera
sensor network, our goal is to determine the following parameters for each sensor node:

— Degree of overlap, which is the fraction of the viewable range that overlaps with
other nearby cameras; specifically we are interested in the k-overlap, which is the
fraction of the viewable region that overlaps with exactly k other cameras.

— Region of overlap, which is the spatial volume within the viewable region that over-
laps with another camera. While the degree of overlap indicates the extent of the
viewable region that overlaps with another camera, it does not indicate which por-
tion of the viewable range is covered by another camera. The region of overlap
captures this spatial overlap and is defined as the 3D intersection of the viewable
regions of any pair of cameras.

Our goal is to estimate these parameters using the inherent picture-taking capability of
cameras. We assume the presence of a reference object that can be manually placed
at different locations in the environment; while the coordinates of the reference object
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Fig. 2. k-overlap estimation with distribution of reference points.

are unknown, the sensors can take pictures to determine if the object can be viewed
simultaneously by two or more cameras from a particular location. Our goal is to design
techniques that use this information to determine the degree and region of overlap for
the various nodes. The physical dimensions of the reference object as well as the focal
length f of each camera is assumed to be known a priori.

3 Approximate Initialization

In this section, we describe approximate techniques to determine the degree of overlap
and region of overlap for camera sensors.

3.1 Determining the Degree of Overlap

As indicated earlier, degree of overlap is defined by the k-
overlap, which is the fraction of the viewing area simul-
taneously covered by exactly k cameras. Thus, 1-overlap
~—___cames 18 the fraction of a camera’s viewable region that does not
P overlap with any other sensor; 2-overlap is the fraction of
region viewable to itself and one other camera, and so on.
This is illustrated in Figure 1 where k; denotes the region
covered by a single camera, ko and k3 denote the regions
covered by two and three cameras, respectively. It follows
that the union of the k-overlap regions of a camera is ex-
actly the total viewable range of that camera (i.e., the sum
of the k-overlap fractions is 1). Our goal is to determine the k-overlap for each camera,
k =1...n, where n is the total number of sensors in the system.
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Fig. 1. Different degrees of
overlap (k-overlap) for a
camera.

Estimating k-overlap Our approximate technique employs random sampling of the
three-dimensional space to determine the k-overlap for each camera sensor. This is
done by placing an easily identifiable reference object at randomly chosen locations
and by having the camera sensors take pictures of the object. Let each object location be
denoted as a reference point (with unknown coordinates). Each camera then processes
its pictures to determine which reference points are visible to it. By determining the
subset of the reference points that are visible to multiple cameras, we can estimate the k-
overlap fractions for various sensors. Suppose that r; reference points from the total set



are visible to camera ¢. From these r; reference points, let rf denote the reference points
that are simultaneously visible to exactly k cameras. Assuming an uniform distribution
of reference points in the environments, the k-overlap for camera 7 is given by
k
Of =+ (1)
ri
Depending on the density of reference points, error in the estimate of O can be con-
trolled. The procedure is illustrated in Figure 2(a), where there are 16 reference points
visible to camera 1, of which 8 are visible only to itself, 4 are visible to cameras 1 and
3 and another 4 to cameras 1, 2, and 3. This yields a 1-overlap of 0.5, 2-overlap and 3-
overlap of 0.25 for camera 1. k-overlaps for other cameras can be similarly determined.

Handling skewed reference point distributions The k-overlap estimation technique
presented above assumes uniform distribution of reference points in the environment. In
reality, due to the ad-hoc nature of the deployment and the need to calibrate the system
online in the field, the placement of reference objects at randomly chosen locations
will not be uniform. The resulting error due to a non-uniform distribution is illustrated
in Figure 2(b), where our technique estimates the 1-, 2- and 3-overlap for camera 1
as 2,2, 1 as opposed to the true values of %, fand} respectively. Thus, we need to
enhance our technique to correct for skews in the reference point distribution.

The basic idea behind our enhancement is to assign a weight to each reference point,
where the weight denotes the volume that it represents. Specifically, points in dense
populated region are given smaller weights and those in sparely populated regions are
given higher weights. Since a higher weight can compensate for the scarcity of ref-
erence points in sparely populated region, we can correct for skewed distributions of
reference points. Our enhancement is based on the computational geometry technique
called Voronoi tessellation [5]. In two dimensions, a Voronoi tessellation of a set of
points is the partitioning of the plane into convex polygons such that all polygons con-
tain a single generating point and all points within a polygon are closest to the corre-
sponding generating point. Figure 2(c) shows a skewed distribution of reference points
in the 2D viewing area of a camera and the corresponding Voronoi tessellation. Each
reference point in the camera is contained within a cell, with all points in a cell closest
to the corresponding reference point. Given a skewed distribution of reference points,
it follows that densely situated points will be contained within smaller polygons, and
sparsely situated points in larger polygons. Since the size of each polygon is related to
the density of the points in the neighborhood, it can be used as an approximation of the
area represented by each point. Voronoi tessellations can be extended to points in three
dimensions, with each point contained with a 3D cell instead of a polygon.

Using Voronoi tessellation, each reference point is assigned a weight that is approxi-
mately equal to volume of the cell that it lies in. The k-overlap is then computed as

oF =2 @)
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where w is the cumulative weight of all reference points that are simultaneously visible
to exactly k cameras and w; is the total weight of all the cells in the viewable region



of camera 7. Observe that when the reference points are uniformly distributed, each
point gets an equal weight, and the above equation reduces to Equation 1. Note that
Voronoi tessellation requires the coordinates of reference points in order to partition
the viewable region into cells or polygons. Section 3.2 describes how to approximately
estimate this in .

Approximate Tessellation Since tessellation is a compute-intensive procedure that
might overwhelm the limited computational resources on a sensor node, we have devel-
oped an approximation. Instead of tessellating the 3D viewing region of a camera into
polyhedrons, a computationally expensive task, the viewing region is discretized into
smaller cubes. For each cube, the closest viewable reference point from the center of
the cube is calculated. The volume of the cube is added to the weight of that reference
point. When all cubes are associated and their volumes added to the respective refer-
ence points, the weight of each reference points is in proportion to the density of points
in the vicinity—points in less dense regions will have higher weights than points in less
dense regions, thereby yielding an approximation of the tessellation process.

3.2 Determining the Region of Overlap

Since k-overlap only indicates the extent of overlap but does not specify where the
overlap exists, our techniques also determine region of overlap for each camera. Like
before, we assume a reference object placed at randomly chosen locations. Using these
points, first a Voronoi tessellation of the viewing area is obtained for each camera.
The region of overlap for any two cameras C; and C is simply the the union of cells
containing all reference points simultaneously visible to the two cameras. Figure 3(c)
shows the Voronoi tessellation of the 2D viewing region of camera 1, the reference
points viewable by cameras 1 and 2, and the approximate region of overlap (shaded
region) for (C, Cy). Thus, our approximate tessellation (described in Section 3.1) can
be used to determine the region of overlap for all pairs of cameras in the system.

Estimating reference point locations As indicated before, the tessellation process re-
quires the locations of reference points. Since no infrastructure is available, we present
a technique to estimate these locations using principles of optics. A key insight is that
if each camera can determine the coordinates of visible reference points relative to it-
self, then tessellation is feasible—absolute coordinates are not required. Assuming the
origin lies at the center of the lens, the relative coordinates of a point are defined as
(d,,v,), where d, is its distance from the origin, and v, is a vector from the origin in
the direction of the reference point that defines its orientation in 3D space.

We illustrate how to determine the distance d,. from the camera in 2-dimensions. We
have assumed that the size of the reference object is known a prior, say s. The focal
length f is also known. Then the camera first estimates the size of the image projected
by the object—this is done by computing the bounding box around the image, deter-
mining the size in pixels and using the size of the CMOS sensor to determine the size of
those many pixels. If s’ denotes the size of the image projected by the reference object
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on the camera, then from Figure 3(a) , the following condition holds
/
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Since s, s’ and f are known, d,. can be computed. A similar idea holds in 3D space
where instead of size, area of the object has to be considered.

Next, to determine the orientation of the reference point relative to the camera, assume
that the reference object projects an image at pixel coordinates (z, y) on the image plane
of the camera. Then the vector v,. has the same orientation as the vector that joins the
centroid of the image to center of the lens (i.e., the origin). As shown in Figure 3(b), the
vector PO = (z,y, f) has the same orientation as v,., where O is the origin and P is the
centroid of the image with coordinates (—z, —y, — f). Since (z,y) can be determined
by processing the image and f is known, the relative orientation of the reference point
can be determined.

4 Applications

In this section, we describe how camera that are initialized approximately can satisfy
application requirements.

4.1 Duty-Cycling

Duty-cycling is a technique to operate sensors in cycles of ON and OFF durations to in-
crease lifetime while providing the desired event-detection reliability and also to bound
the maximum time to detect an event. The duty-cycling parameter d is commonly de-
fined as the fraction of time a sensor is ON. An important criteria in deciding the duty-
cycle parameter is the degree of overlap. Sensors with high coverage redundancy can be
operated at low duty cycles to provide desired event detection probability, whereas those
with lower redundancy will require higher duty cycles. One of the several techniques to
estimate the duty-cycle parameter based on degree of overlap is as follows,

n 1
d; = Ofxf 4
; - @)

where, d; is the duty-cycle parameter of camera 4, OF the fraction of k-overlap with the
neighboring cameras and 7 the total number of cameras. The intuition is to duty-cycle
each camera in proportion to its degree of overlap with neighboring cameras.



4.2 Triggered Wakeup

Object tracking involves continuous monitoring of an
object—as the object moves from the range of one camera
to another, tracking responsibilities are transferred via a Distance

. threshold
handoff. Since cameras may be duty-cycled, such a hand- . 7
off involves a triggered wakeup to ensure that the destina- Jf\‘ ~—— 1
tion camera is awake. A naive solution is to send triggered |t T "l !
wakeups to all overlapping cameras and have one of them Pr°"e°|}in°e” Object
take over the tracking. While doing so ensures seamless
handoffs, it is extremely wasteful in terms of energy by Fig.4. Region of overlap
triggering unnecessary wakeups. A more intelligent tech- for triggered wakeup.
nique is to determine the trajectory of the object and using
the region of overlap determine which camera is best po-
sitioned to take over tracking duties and only wake it up. However, since the object’s
location cannot be calculated without knowledge of accurate camera parameters, its tra-
jectory can not be accurately determined. The only known information about the object
is its image on the camera’s image plane—the object is known to lie along a line that
connects the image to the center of the lens. As shown in Figure 4, we refer to this line
as the projection line, the line on which the object must lie. We can exploit this infor-
mation to design an intelligent triggered wakeup technique. Any camera whose region
of overlap intersects with the projection line can potentially view the object and is a
candidate for a handoff. To determine all such cameras, we first determine the set of
reference points within a specific distance threshold of the line (see Figure 4). To de-
termine these reference points, equidistant points along the length of the projection line
are chosen and reference points within the distance threshold are identified. Next, the
set of neighboring cameras that can view these reference points is determined (using
information gathered during our initialization process). One or more of these camera
can then be woken up. Depending on the extent of overlap with the projection line, can-
didate cameras are prioritized and woken up in priority order—the camera with highest
overlap has the highest probability of detecting the object on wakeup and is woken up
first. Two important parameters of the scheme are the distance threshold and the maxi-
mum number of cameras to be woken up. A large distance threshold will capture many
reference points and yield many candidates for wakeup, while a small threshold will
ignore overlapping cameras. The maximum number of cameras to be woken up bounds
the redundancy in viewing the same object by multiple cameras—a small limit may
miss the object whereas a large limit may result in wasteful wakeups. We discuss the
effect of these parameters as part of the experimental evaluation.

S Prototype Implementation

System Design The approximate initialization procedure involves taking pictures of
reference points (or objects). Reference points are objects like a ball with a unique color
or a light source, that can be easily identified by processing images at each camera. Each
camera after taking a picture, processes the image to determine if it can view a reference
point. If a reference point is visible, it calculates the location of the reference point on its
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image plane and if possible estimates the location of the reference point. The location
can be estimated using an approximation of the distance of the reference point from
the camera. The distance can be determined if dimensions of the reference object are
known a priori along with the size of it’s image on the camera’s image plane. The image
location and distance of object information is exchanged with all other cameras in the
network. The data recorded at each camera can be stored as table of tuples,

< Ry : C’i,ui,vi,di,C’j,uj,vj,dj... >

where, R, is the k'" reference point visible to camera i, (u;, v;) is the projection loca-
tion of the reference point in the image plane and d; is the distance of the reference point
from the camera. The tuple also stores information from each camera that can view the
reference point simultaneously. Multiple reference points are generated by placing the
reference object at several locations.

The network setup for our prototype implementation is shown in Figure 5(a). The net-
work consists of 8 cameras covering a region of 8ft x 6ft x 17ft. The camera are
equidistantly placed on the longest side, each at a height of 3¢ facing each other and
viewing inside the cubical volume. The depth-of-view for each camera is 8f¢ and the
horizontal and vertical viewing regions are 7ft and 6ft respectively. The setup is used
to estimate and compare k-overlap and region of overlap for each camera.

Hardware Components We used the Cyclops [18] camera sensor in our prototype im-
plementation to evaluate the approximate initialization techniques. The Cyclops camera
sensor consists of a ADCM 1700 CMOS camera module, and supports image resolu-
tions of 32x32, 64x64 and 128x128. Image resolution of 128x128 is used in the ex-
perimental evaluation. The Cyclops node also has an on-board ATMEL ATmegal28L
micro-controller, 512 KB external SRAM and 512 KB Flash memory. The on-board
processing capabilities of the Cyclops are used for object detection and to detect the
size of object’s image. Each Cyclops sensor is connected to a Crossbow Mote (referred
to as the HostMote) and they communicate via the 12C interface. The HostMote is
also used to receive and send wireless messages and store initialization information on
behalf of the Cyclops. A mote is also used as a remote control to send synchronized
sampling triggers to detect reference points during the initialization process. A glowing
ball (a translucent ball fitted on a light bulb) is used as a reference object and is manu-
ally placed at several locations to generate reference points for initialization.



Software Components: Both the Cyclops sensors and the Motes run TinyOS [21].
Each Cyclops communicates with it’s attached mote using the I2C interface and the
motes communicate with each other via their wireless interface (see Figure 5(b)).
Cyclops Onboard Tasks: Each Cyclops is responsible for taking images and processing
them locally to detect the reference objects. On receiving a trigger from the HostMote
each Cyclops takes a picture and processes it to detect and recognize reference objects.
The results are communicated back to the HostMote.

HostMote Tasks: The HostMote drives each Cyclops to detect reference objects and
stores all the initialization information for each camera. Once an reference object is de-
tected, the HostMote estimates the distance of the object from the camera and transmits
a broadcast message indicating visibility of the reference object, coordinates of the ob-
ject on it’s image plane and distance of object from the camera. Further, the HostMote
receives similar broadcasts from other nodes and maintains the ViewTable, a table of
tuples representing viewability information of each reference point.

Trigger Mote Tasks: The trigger mote is used as a remote control for synchronized
detection of the reference object. Once a reference object is placed in a location, the
trigger mote sends a wireless broadcast trigger to all HostMotes, which in turn trigger
the attached Cyclops sensors.

6 Experimental Evaluation

In this section we present a detailed experimental evaluation of the approximate ini-
tialization techniques using both simulation and implementation based experiments.
Specifically, we evaluate the accuracy of the approximate initialization procedure in es-
timating the degree of overlap and region of overlap of camera sensors. In addition, we
evaluate the effect of skew in location of reference points on the accuracy of estimation.
Further, we also evaluate the performance of an triggered wakeup application which
demonstrates effective use of the region of overlap information.

6.1 Simulation Setup

The simulation setup used for evaluation consisted of a cubical region with dimensions
150x150x150. Two cases, one with 4 cameras and the other with 12 cameras are used.
In the first case, 4 cameras are placed at locations (75,0,75), (75,150,75), (0,75,75),
(150,75,75), oriented perpendicular to the side plane looking inwards. The k-overlap
at each camera is as follows: 1-overlap: 0.54, 2-overlap: 0.23, 3-overlap: 0.07 and 4-
overlap: 0.16. In the second case, additional 8 cameras are placed at the 8 corners of
the cube and each of them is oriented inwards with the central axis pointing towards the
center of the cube.

An uniform distribution of reference points was simulated by uniformly distributing
points in the cubical viewing region. To simulate a skewed distribution, a fraction of
reference points were distributed in a smaller region at the center of the viewing region
and the rest were distributed in the entire viewing area. For example, a region of size
25x25x25 at the center of the viewing region, in different cases, had atleast 25%, 33%,
50%, 66% and 75% of total points within its boundary. We also used restricted regions
of sizes 50x50x50 and 75x75x75 with varying fractions of skew in our evaluation.

10
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Fig. 6. Evaluation of k-overlap estimation scheme with uniform distribution of reference points.

6.2 Degree of overlap estimation

In this section we present evaluation of the techniques used to estimate k-overlap, the
degree of overlap metric, and its use to estimate the duty-cycling parameter.

Initialization with uniform distribution of reference points Figure 6 plots the er-
ror in k-overlap estimation using the four camera setup with uniform distribution of
reference points. The absolute difference in the approximate estimation and the exact
k-overlap fraction averaged over the 4 cameras is reported as error. The error in k-
overlap estimation using both the non-weighted and weighted techniques is similar.
Figure 6 also plots the effect of number of viewable reference points— reference points
viewable by atleast a single camera— on k-overlap estimation. The error in k-overlap
estimation decreases with increase in number of reference points for both the non-
weighted and weighted schemes. Error in 1-overlap estimation with the weighted scheme
decreases from 0.075 to 0.04 with 50 and 150 reference points respectively.

Initialization with skewed distribution of reference points Figure 7 plots the k-
overlap estimates with non-uniform distribution of reference points. The results are
averaged for the different fractions of skew within a restricted region of 25x25x25.
As seen from the figure, the weighted scheme accounts for skew better than the non-
weighted scheme—with most benefits for 1-overlap and 4-overlap estimation. The non-
weighted scheme performs poorly as it only counts the number of simultaneously view-
able points, while the weighted scheme accounts for the spatial distribution of the
points. Further, with increase in number of reference points, the error with the weighted
scheme decrease, whereas that with the non-weighted scheme remains the same. Fig-
ure 8(a) plots the k-overlap with 150 reference points, and it shows that the weighted

11
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scheme performs better than the non-weighted scheme. The error with the non-weighted

scheme for 1 and 4 overlap is worse by a factor of 4 and 6 respectively.

Figure 8(b) plots error in estimation of 1-overlap with 150 reference points and vary-
ing skew. As skew increases, so does the error in both non-weighted and weighted
schemes—error with the weighted scheme being smaller than the non-weighted scheme.
The increase in error is also more gradual with the weighted scheme as compared to the
non-weighted scheme. The error with the non-weighted scheme increases from 0.26 to
0.49 with increase in skew fraction from 25% to 75% and the corresponding values for

the weighted scheme are 0.045 and 0.09 respectively.

Duty-Cycling The percentage error in duty-cycle parameter estimation (see Section 4.1)
using the k-overlap estimates is shown in Figure 8(c). As seen from the figure, error us-
ing the non-weighted scheme is close to 24% and remains unchanged with increase in
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Fig. 9. Region of overlap estimation and wakeup heuristic performance.

reference points. Whereas, error with the weighted scheme is 5% even with only 50
points and decreases very close to zero with more than 150 points.

From the results presented above, we conclude that the weighted k-overlap estimation
scheme is well suited to estimate degree of overlap of cameras. The scheme performs
identical to the non-weighted scheme with uniform distribution of reference points and
significantly better with non-uniform distributions. The application-level error in deter-
mining the duty-cycle parameter using the weighted scheme is close to zero.

6.3 Region of overlap estimation

In this section we present evaluation of region of overlap estimation and the triggered
wakeup heuristic that uses this estimate. Figure 9(a) plots results evaluating the effect
of number of reference points on region of overlap estimation. The percentage error
reported is the absolute error in estimated volume corresponding to a region of overlap
and the exact volume. As seen in Figure 9(a), with uniform distribution of reference
points, the percentage error of all four cameras follows a similar trend. With 50 refer-
ence points the percentage error for the four cameras is between 21-23% and with 100
reference points is 12-14%. With higher number of reference points the error decreases
and so does the standard deviation. With 200 reference points the error is 7-8% and
with 250 points is 6-7%. The above results show that region of overlap between pair of
cameras can be estimated with low error—6-7% with uniform distribution in our setup.

Wakeup Heuristic Next, we evaluate effectiveness of the wakeup heuristic based on
the region of overlap estimates with the 12-camera setup. Figure 9(b) plots the effect of
maximum number of cameras triggered on the fraction of positive wakeups, i.e., frac-
tion of cases when atleast one of the triggered cameras could view the object. As seen
from the figure, with increase in maximum number of cameras triggered per wakeup,
the fraction of positive wakeups increases. Further, the fraction also increases with in-
crease in total reference points in the environment. The fraction of positive wakeups
with a maximum of 2 cameras to be triggered is 0.7 and 0.88 for 100 and 300 refer-
ence points respectively with a distance threshold (see Section 4.2) of 20 inches. With
a maximum of 5 cameras to be triggered the corresponding fractions are 0.77 and 0.93
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Fig. 10. Initialization using prototype implementation.

respectively. The fraction of positive wakeups is over 0.8 with a maximum of 2 wake-
ups per trigger. The result shows that the wakeup heuristic based on region of overlap
estimate can achieve high fraction of positive wakeups—close to 80% accuracy with 2
cameras woken up per trigger.

Another parameter that influences the performance of the heuristic is the distance thresh-
old—the distance along the projection of the object’s image used to approximate over-
lapping cameras. As shown in Figure 9(c), with increase in distance threshold from 10
to 20 with 200 reference points, the fraction of positive wakeups increases and remains
relatively constant for a maximum 2, 3, 4 and 5 triggered cameras. With just one camera
to be woken up for each trigger, the fraction of positive wakeups decreases with further
increase (beyond 20) in distance threshold. This indicates that the distance threshold
is an important factor affecting the performance of the heuristic and for our setup a
threshold of 20 yields best performance.

6.4 Implementation Results

In this section, we evaluate the estimation of k-overlap and region of overlap using
our prototype implementation. As described in Section 5, we used 8 cameras in our
setup and a glowing ball(1.5 inches in diameter) as a reference object. The object was
manually placed at several locations to approximate an uniform distribution of reference
points. Table 10(a) shows the average k-overlap percentage error at each camera. The
percentage error in k-overlap estimation over all cameras is 2-9%.

We also evaluate the accuracy of region of overlap estimate between pairs of cameras in
the 8-camera setup. Figure 10(b) tabulates the average percentage error estimating the
region of overlap between pairs of cameras. The average error in estimating the region
of overlap between pairs of cameras varies form 1-11% for our setup. An important
factor that affects the region of overlap estimate is the distance estimate of the object
from the camera. Figure 10(c) plots the percentage error in estimating the distance of
the object from the camera based on its image size. As can been from the figure, the
error is varies from 2-12%. For our setup, the region of overlap estimates show that the
error is below 11% inspite of the error in distance estimation of the object.

Our results show that the approximate initialization techniques are feasible in real-
world deployments and for our setup had errors close to 10%.
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7 Related Work

Several techniques have been developed by the vision community for accurate camera
calibration that use a set of reference points with known locations [22,24]. In sen-
sor networks, techniques like [9, 10, 23] are specialized to estimate only the extrinsic
parameters of cameras in an exact manner, typically using additional infrastructure or
hardware. Further, distributed techniques proposed in [20, 13] are suited to calibrate
networked cameras. In [20], cameras collaborate to track an object and reason about
consistent camera location and orientations for observed images. The technique simul-
taneously solves both the object tracking and camera calibration problem. Examples
of systems that use accurately calibrated cameras for video surveillance and tracking
are [12,17]. All the above techniques estimate exact parameters of camera, whereas
our work focuses on approximate initialization of camera networks with no or limited
infrastructure support and camera nodes with limited resources.

Positioning and locationing techniques for sensor nodes other than cameras have also
been well studied. These techniques depend on a beaconing infrastructure and use sev-
eral modalities—Active Badge [1] uses IR signals, Active Bat [2] and Cricket [16] use
ultrasound signals and RADAR [3] uses RF signals. Further, GPS [4] is an example
of an outdoor localization system, which can localize object to within 5-15 meters of
their actual location. While these methods can be used to localize cameras and in some
cases to estimate their orientation, they either have high error or are not suitable for
low-power resource constrained camera sensor networks.

There exist several types of camera sensor nodes, each with different resources and
capabilities. The Cyclops [18] and CMUCam [19] are examples of low-power nodes
capturing low-resolution images with limited computation capabilities. XYZ [11] is a
power-aware sensor platform which can be equipped with image sensors. Panoptes [7]
is a camera sensor node comprising of a webcam capturing high-resolution images and
a Intel StrongARM PDA processor for reasonably high computation resources. Even
more sophisticated camera nodes are those with pan-tilt-zoom capabilities connected to
PDA or laptop-class devices. In this work, we are interested in developing techniques
for low-power resource constrained camera nodes, and our solutions can be applied to
more powerful nodes as well.

8 Conclusions

In this paper, we argued that traditional vision-based techniques for accurately calibrat-
ing cameras are not directly suitable for ad-hoc deployments of sensors networks in
remote locations. We proposed approximate techniques to determine the relative loca-
tions and orientations of camera sensors without any use of landmarks or positioning
technology. By randomly sampling the environment with a reference object, we showed
how to determine the degree and range of overlap for each camera and how this infor-
mation can be exploited for duty cycling and triggered wakeups. We implemented our
techniques on a Mote testbed. Our experimental results showed that our approximate
techniques can estimate the degree and region of overlaps to within 10% of their actual
values and this error is tolerable at the application-level for effective duty-cycling and
wakeups.
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