
BenchLab: Benchmarking with Real Web Applications and Web Browsers

Emmanuel Cecchet, Veena Udayabhanu,
Timothy Wood, Prashant Shenoy

Fabien Mottet, Vivien Quema Guillaume Pierre

University of Massachusetts Amherst, USA
{cecchet,veena }@cs.umass.edu
{twood,shenoy}@cs.umass.edu

INRIA Rhone-Alpes, France
{first.last}@inria.fr

Vrije University, Netherland
gpierre@cs.vu.nl

Abstract

Popular benchmarks such as TPC-W and RUBiS that are commonly used for evaluation by the systems community
are no longer representative of modern Web applications. Many of these benchmarks lack the features such as Ja-
vaScript and AJAX that are essential to real Web 2.0 applications. Further, traditional benchmarks rely on browser
emulators that mimic the basic network functionality of real web browsers but cannot emulate their more complex
interactions. Rather than proposing a new benchmark with a web application and browser emulators that try to ap-
proximate real applications, we propose to use real browsers with real applications and datasets. We have rebuilt
the Wikipedia software stack with multiple real datasets (Wikibooks, Wikipedia in different languages) and collect-
ed real traces from the Wikimedia foundation. We propose BenchLab, an open source framework that allows replay-
ing these real traces using real web browsers (Firefox, IE, Chrome) deployed anywhere on the Internet. We provide
virtual machines containing applications, databases and web browsers for researchers to experiment with Internet
scale benchmarking of real applications using private or public clouds.

1. Introduction
The research community has relied on open-source
benchmarks such as TPC-W [6] and RUBiS [2] for a
number of years; however these benchmarks are out-
dated and do not fully capture the complexities of to-
day’s Web 2.0 applications as shown in Table 1 (com-
pare RUBiS to eBay.com or TPC-W to amazon.com).
To address this limitation, a number of new bench-
marks have been proposed, such as TPC-E,
SPECweb2009 or SPECjEnterprise2010. However, the
lack of open-source or freely available implementations
of these benchmarks has limited their use to commer-
cial vendors. CloudStone [4] is a recently proposed
open-source cloud/web benchmark that addresses some
of the above issues; it employs a modern Web 2.0 ap-
plication architecture. However, Cloudstone does not
capture or emulate client-side JavaScript or AJAX in-
teractions, an aspect that has implications on the server-
side load.
Benchmark HTML CSS JS Images Total

RUBiS 1 0 0 1 2
eBay.com 1 3 3 31 38
TPC-W 1 0 0 5 6

amazon.com 6 13 33 91 141
CloudStone 1 2 4 21 28

facebook.com 6 13 22 135 176
wikibooks.org 1 19 23 35 78
wikipedia.org 1 5 10 20 36
Table 1. Browser generated requests per type when
accessing the home page of benchmarks or real sites.

In this poster, we propose BenchLab, an open testbed
for realistic Web benchmarking that uses real Web ap-
plications, datasets, traces and real Web browsers.

2. BenchLab
BenchLab provides Virtual Appliances of the Wikipe-
dia software stack [9][10] along with real database
dumps of various Wikipedia web sites. Using modern
virtualization technology simplifies the deployment and
configuration of these server applications in laboratory
clusters and on public cloud servers.

Figure 1. Wikibooks experiment with BenchLab.

We also provide the real traces [7] from the Wikimedia
foundation to replay the authentic Wikipedia workload
from the date where the database snapshot was taken.

http://...
http://...
http://...
http://...

Real Wikibooks trace

Real Browsers

Real Wikibooks
Application

Real Browsers

We design BenchLab to use real web browsers, in con-
junction with automated tools, to replay existing web
traces as depicted in Figure 1.
BenchLab supports web performance benchmarking “at
scale” by leveraging modern public clouds---by using a
number of cloud-based client instances, possibly in
different geographic regions, to perform scalable load
injection. Cloud-based load injection is cost-effective,
since it does not require a large hardware infrastructure
and also captures Internet round-trip times.

3. Implementation
BenchLab is implemented using open source software
and is also released as open source software for use by
the community. The latest version of the software and
documentation can be found on our web site [1].
All components of BenchLab are implemented in Java
for portability. The web browser load injection is based
on the integration of Webdriver and Selenium [3]. It
supports Firefox, Internet Explorer and Chrome on al-
most all platforms where they are available (Linux,
Windows, MacOS). iPhone and Safari support is exper-
imental as well as Webkit based browsers for Android.
On Linux machines that do not have an X server envi-
ronment readily available, we use X virtual frame buff-
er (Xvfb) to render the browser in a virtual X server.
This is especially useful when running clients in the
cloud on machines without a display.
We use the HTTP Archive Format (HAR) v1.2 [5] for
storing traces and performance results from Web
browsers as illustrated on Figure 2.

Figure 2. Page loading time details in HAR format

We have built Xen Linux virtual machines with Firefox
to use on private clouds. We also built Amazon EC2
AMIs for both Windows and Linux with Firefox,
Chrome and Internet Explorer (Windows only for IE).
These AMIs are publicly available.

4. Preliminary Results and Challenges
Building BenchLab has exposed many challenges in
using real applications and browsers for benchmarks.
 Even the small Wikipedia sites that we have experi-

mented with such as the dawiki (Denmark, 700MB)
and nlwiki (Netherland 3.3GB) are larger than exist-
ing web benchmarks. The largest Wikipedia database
currently exceeds 5TB and special tools must be de-
veloped to load such large datasets in a reasonable
amount of time.

 Multimedia content is not publicly available due to
possible copyright issues, so we had to integrate mul-
timedia content generators that reproduce media (im-
ages, audio, video, …) similar to the original.

 The Wikipedia trace [8] includes all sites of the
Wikimedia foundation but only 10% of requests are
logged. This requires extensive processing to rebuild
a realistic trace for a specific site.

Our preliminary results illustrate that existing web cli-
ent emulators do not authentically generate requests and
may not place a realistic load on the server.
 We have compared simple HTTP replays (a la httperf)

running in a local cluster to deploying real Web
browsers in different Amazon EC2 regions over the
globe. While we need to investigate these results fur-
ther, realistic load injection with real Web browsers
seems to have a significant impact on application
server resource usage.

 Even small client behavior differences such as the
typing speed in search fields can generate a different
amount of requests to servers as many applications
provide suggestion lists based on the current key-
strokes.

We believe that BenchLab offers many new opportuni-
ties for realistic benchmarking and system testing. On
the server side, many configurations of replication (load
balancer, application server, database), caching (e.g.
memcached) and system (operating system, virtualiza-
tion, networking) can be tested. At Internet scale,
BenchLab can be used to evaluate Content Delivery
Networks (CDN), reproduce flash crowds or Slashdot
effects, disaster recovery solutions with wide area net-
work replication and failover mechanisms. Security is
also an open challenge at that scale. Finally by offering
a repository for applications, datasets, traces, experi-
ment definitions and results, BenchLab can offer a plat-
form for easy experiment reproducibility that has been
crucially lacking to the community up to now.

5. References
[1] BenchLab - http://lass.cs.umass.edu/projects/benchlab/
[2] RUBiS web site – http://rubis.ow2.org.
[3] Selenium - http://seleniumhq.org/
[4] Cloudstone –

http://radlab.cs.berkeley.edu/wiki/Projects/Cloudstone

[5] HAR v1.2 - http://groups.google.com/group/http-
archive-specification/web/har-1-2-spec

[6] TPC-W Benchmark, ObjectWeb implementation,
http://jmob.objectweb.org/tpcw.html

[7] G. Urdaneta, G. Pierre and M. van Steen – Wikipedia
Workload Analysis for Decentralized Hosting – Elsevier
Computer Networks, vol.53, July 2009.

[8] WikiBench - http://www.wikibench.eu/
[9] Wikibooks – http://www.wikibooks.org
[10] Wikipedia – http://www.wikipedia.org

 Upload traces / VMs
 Define and run experiments
 Compare results
 Distribute benchmarks,

traces, configs and results

http://...
http://...
http://...
http://...
http://...
http://...

Web Applications have changed, not Benchmarks
Web interactions too complex to emulate

o HTML 1.1, CSS, images, flash, HTML 5…
o Httperf does not execute Javascript, AJAX
o WAN latencies, caching, Content Delivery Networks…

 Real Web applications
o Rich client interactions and multimedia content
o Replication, caching…
o Large databases (few GB to multiple TB)

BenchLab
Benchmarking with Real Web Applications and Web Browsers

Emmanuel Cecchet, Veena Udayabhanu,
Timothy Wood, Prashant Shenoy Fabien Mottet, Vivien Quema Guillaume Pierre

University of Massachusetts Amherst, USA
{cecchet,veena }@cs.umass.edu
{twood,shenoy}@cs.umass.edu

INRIA Rhone-Alpes, France
{first.last}@inria.fr

Vrije University, Netherland
gpierre@cs.vu.nl

Load injection using real Web browsers
Firefox on Linux,
Windows and Mac OS X

Internet Explorer on
Windows

Chrome on Linux,
Windows and Mac OS X

WebKit on Linux, Windows,
Mac OS X, iPhone and Android

Real Applications and Workloads
Wikimedia foundation Wikis
o Wikipedia (different languages)
o Wikibooks

Real database dumps (up to 6TB)
Multimedia content
o Images, audio, video
o Generators (dynamic or static) to avoid

copyright issues
Real Web traces from Wikimedia
Packaged as Virtual Appliances

Test your own applications!

Benchmark HTML CSS JS Multimedia Total
RUBiS 1 0 0 1 2

eBay.com 1 3 3 31 38
TPC-W 1 0 0 5 6

amazon.com 6 13 33 91 141
CloudStone 1 2 4 21 28

facebook.com 6 13 22 135 176
wikibooks.org 1 19 23 35 78
wikipedia.org 1 5 10 20 36

Number of interactions to fetch the home page of various web sites and benchmarks

 BenchLab Client Runtime (BCR)
o Replay traces in Web browsers
o Multiplatform including headless servers
o Collect detailed response times
o Can record HTML and page snapshots
o Easy deployment in the cloud for Internet

scale benchmarks

 BenchLab WebApp
o JEE WebApp with embedded database
o Repository of benchmarks and traces
o Schedule and control experiment execution
o Results repository
o Can be used to distribute / reproduce

experiments and compare results

http://lass.cs.umass.edu/projects/benchlab/

Web Traces
o HTTP Archive (HAR) format
o Apache httpd recorder for

easy capture/replay
o HA Proxy recorder for

replicated configurations

Play
trace

Detailed Network and Browser timings

Web Frontend

Experiment scheduler

Traces (HAR or access_log)
Results (HAR or latency)

Experiment Config
Benchmark VMs

Traces (HAR or access_log)
Results (HAR or latency)

Experiment Config
Benchmark VMs

Upload
results

http://...
http://...
http://...
http://...
http://...
http://...

Ex
pe

rim
en

t
st

ar
t/

st
op

Tr
ac

e
do

w
nl

oa
d

Br
ow

se
r

re
gi

st
ra

tio
n

Re
su

lts

up
lo

ad

	benchlab eurosys poster v5.pdf
	BenchLabEurosysPoster v7

