Chameleon: Application Level Power Management with
Performance Isolation

Xiaotao Liu
Computer Science Dept.
University of Massachusetts
Amherst, MA 01003

xiaotaol@cs.umass.edu

ABSTRACT

In this paper, we present Chameleon—an application-leveiep

Prashant Shenoy
Computer Science Dept.
University of Massachusetts
Amherst, MA 01003

shenoy@cs.umass.edu

Mark Corner
Computer Science Dept.
University of Massachusetts
Amherst, MA 01003

mcorner@cs.umass.edu

The situation is exacerbated by the resource-hungry nafunany
applications, such as movie players and batch compilations

management approach for reducing energy consumption iflenob Modern mobile devices use energy judiciously by incorpogat

processors. Our approach exports the entire respongitifilfower
management decisions to the application level. We propospa
erating system interface that can be used by applicatioashieve

energy savings. We consider three classes of applicatienft—

real-time, interactive and batch—and design user-lewsbponan-
agement strategies for representative applications ssiehnaovie

player, a word processor, a web browser, and a batch compiler

We also design a user-level power manager base@raceOS us-

a number of power management features. For instance, modern
processors such as Intel's XScale and Pentium-M and Traa&me
Crusoe incorporate dynamic voltage and frequency scdlNgS).
DVFS enables dynamically variable CPU speed which can educ
energy consumption during periods of low utilization [12, 24].

In general, such techniques must be carefully designedeteept

the processor slowdown from degrading the responsiverfegs- o
plications.

ing Chameleon. We implement our approach in the Linux kernel 1NiS paper explores anew approach, namely applicaticet-muwer

running on a Sony Transmeta laptop. Our experiments show tha

compared to the traditional system-wide CPU voltage sgadio-

management. We argue that applications know best whatrieir
source and energy needs are, and consequently, applEai#n

proaches, Chameleon can achieve up to 32-50% energy SaNingg’mplement better power management policies than the apgrat

while delivering comparable or better performance to ajapions.
Further, Chameleon imposes small overheads and is vetieéfe
at scheduling concurrent applications with diverse eneagds.

Categories and Subject Descriptors

D.4.1 [Process Management Scheduling; D.4.7 Qrganization
and Desigr: Real-time systems and embedded systems

General Terms
Algorithms, Design, Experimentation

Keywords

Power Management, Mobile Computing, Multimedia

1. INTRODUCTION

Recent technological advances have led to a proliferatfan®
bile devices such as laptops, personal digital assistBitag), and
cellular telephones with rich audio, video, and imagingatzaly
ties. While the processing, storage, and communicatioakibp
ities of these devices have improved significantly, thesauacks
have outpaced the improvements in battery capabilitiesns€o
quently, energy continues to be a scarce resource in suitedev

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

MM’ 05 November 6-12, 2005, Singapore.

Copyright 2005 ACM 1-59593-044-2/05/0011%$5.00.

system. We propose an approach where applications are given
complete control over their CPU power settings—an appboat
is allowed to specify its CPU power setting independentlptber
applications, and the operating system isolates an apipliciiom
the settings used by other applications. Our approach tdesm
the philosophy of theexokernel, where the OS grants complete
control of various resources to the applications and onfgrees
protection to prevent applications from harming one anofbp
The Exokernel project successfully demonstrated the hsnefi
application-level networking, application-level memananage-
ment, application-level file systems and CPU scheduling (&jr
work extends this notion to application-level power mamaget.
Research Contributions: The notion of application-level power
management opens up a realm of possibilities that are ibfeas
using existing approaches.

e Performance: Our approach enables each application to make
local power management decisions based on its processor de-
mand and processor availability. We experimentally show
that local decisions by individual applications can gldpal
optimize system-wide energy usage and are better than-choos
ing a single system-wide power setting for all applications

e Flexibility: Such an approach enables each application to
implement a power management policy that closely matches
its energy and performance requirements. Different applic
tions can choose different policies and yet coexist with one
another concurrently. Legacy applications or those applic
tions that do not wish to implement their own strategy can
delegate this task to a user-level power manager that choose
appropriate settings based on observed behavior.

e Generality: Our approach is general and unlike some exist-
ing approaches, does not make specific assumptions about

the nature of applications. Any application can use the powe

management interface to manage its energy needs, and we

demonstrate such strategies for several different apjgita

e Modest implementation costs. We show that user-level power

management policies can be implemented at a modest cost.

For applications considered in this work, the cost of imple-
menting our policies varied from 40 to 239 lines of code,
a relatively minor modification to applications hundreds of
thousands of lines of code.

At first glance, it may appear that an application-level powen-
agement approach loses the ability to couple the power neanag
ment strategy with the CPU scheduling algorithm. At least
cent approach has advocated such an integrated approgudwier
management and scheduling [26, 27]. Contrary to intuitiea,
show that it is indeed possible to implement such couplings b
tween the scheduler and the power manager using our appficat
level framework. We demonstrate the feasibility of doingbso
implementingGraceOS [26, 27] as a user-level power manager in
our system. By carefully exporting resource usage stesigtom
within the kernel and using a flexible power managementfiater,

User—level
Power Manager
Monitor [\ Speed
Processor settings
Demands 9

‘ Chameleon

Query Speed
CPU usage| settings

0s

Interface ‘

Speed
Adapter

b Speed
settings

Kernel Space ! User Space

V
CPU Scheduler

I
per—process speed setting

Schedule
processes

‘ DVFS-enabled Processor ‘

Figure 1: The Chameleon Architecture.

query the kernel for resource usage statistics and to cotmesy
desired power settings to the kernel. The details of thefate
are presented in Section 5. In general, a user-level power ma
agement strategy combines OS-level resource usageistatisth
application domain knowledge to determine a desirable C&ikp
setting. This can be achieved in two ways. An applicationusm
the Chameleon interface to directly modify its own powetisgs.
Alternatively, an application can delegate the task of pomean-
agement to a user-level power manager. Such a power marager ¢

we show how the power management policy can be implemented in use resource usage statistics and any application-sdppfierma-

user-space while retaining the ability to interact with sisbeduler.
Chameleon, our application-level power management approan-
sists of three components: (i)cammon OS interface that can be
used by power-aware applications to measure their CPU sisagk
adjust their CPU speed settings, (ii) a modified ke@eU sched-

tion to adjust the application’s power settings on its behal

Second, Chameleon implements a modified CPU scheduler that
supports per-process CPU power settings and applicatitatiisn.

The scheduler maintains the current power settings for pagh
cess and conveys these settings to the underlying procebsor-

uler that supports per-process CPU speed settings and ensures peever the process is scheduled for execution (i.e., at coateitch

formance isolation among processes, and (igpeed adapter that
maps these CPU speed settings to the nearest speed actymlly s
ported by the hardware.

We consider three classes of applications—soft real-timerac-
tive, and batch—and show how soft real-time applicatiorchsas
movie players, interactive applications such as word msoe and
web browsers, and batch applications such as “make” canigach
plement a different power management strategy. We spdbifica
demonstratéiow these applications can coexist concurrently and

yet globally optimize system-wide energy consumption.

We implement a prototype of Chameleon in the Linux kernel and
evaluate its effectiveness on a Sony laptop equipped widimsFr
meta’s Crusoe TM5600-667 processor [23]. Our experiments ¢
pare Chameleon with three existing OS-level DVFS appraache
namely PAST [24], PEAK [12] anddV G, [11] and with Lon-

time). The application’s power settings can be modified gtane
via system calls, either by the application itself or by ardseeel
power manager acting on its behalf. An application’s povedr s
tings take effeconly when it is scheduled, and further, applications
get the same share of the CPU regardless of their power gttin
Consequently, applications are isolated from one anottefram
the settings used by malicious or misbehaving applicatidfes-
nel support for per-process power settings and applicémation
does not require any direct modifications to the CPU scheduali-
gorithm itself, and as a result, Chameleon is compatiblé aity
scheduling algorithm.

Third, Chameleon implements a speed adapter that mapsaibqti-
specified power settings to the nearest CPU speed actuglly su
ported by the hardware. In particular, an application djgecthe
desired CPU speed as a fractigh of the maximum processor

gRun, a hardware-based DVFS approach. Our experiments withspeed. The speed adapter maps this fraction to the neagest su

individual power-aware applications show that Chameleamex-

ported CPU speed; since different processors supporteliffelis-

tract up to a 32% energy savings when compared to LongRun andcrete speeds, such an approach ensures portability aenaisare.
up to 50% savings when compared to OS-based DVFS approachesalthough this work considers applications that manager ttein

without any performance degradation to time-sensitivetimek
dia and interactive applications. Our experiments vatncur-

energy needs, in practice, it may not be feasible to modignev
single application to make it power-aware. Thus, legacyliegp

rent applications show that local power management decisions in tions will coexist with power-aware applications in Chaewei. For
Chameleon yield 20-50% energy savings over LongRun and ©S ap such applications, Chameleon can either delegate them sera u

proaches that use a single power setting for all applicatitirereby
demonstrating the benefits of allowing each applicationde a
custom power setting that is most appropriate to its needs.
The rest of this paper is organized as follows. Section 2gmssan
overview of the Chameleon. Sections 3 and 4 present ourdexselr-
power management strategies. Section 5 discusses ounirapie-
tion. Section 6 presents our experimental results. Findkgtions
7 and 8 presents related work and our conclusions.

2. CHAMELEON ARCHITECTURE

Chameleon consists of three key components (see Figurerd), F
Chameleon consists of @Sinterface that enables applications to

level power manager or revert to a hardware DVFS techniqae. |
the former case, the manager determines power settingd base
external observations of application behavior. In theetatiase,
whenever a power-unaware application is scheduled on thé CP
Chameleon dynamically switches to a system-controlled Bt4eh-
nique (our current prototype uses LongRun [7]). This hardwa
DVFS technique is disabled when a power-aware applicason i
scheduled for execution. Both techniques enable legackcapp
tions to extract some power savings while permitting poaweare
applications to maximize these savings.

processor availability e

processor demand ¢
- s

t d
(event arrival) (deadline)
(@t+c>d
processor availability e
_—=

- =
processor demand ¢
(©)t+c<d,c<e

|

t— - d
processor demand ¢
(bye<c

Figure 2: Three scenarios for task execution.

3. APPLICATION-LEVEL POWER
MANAGEMENT

Regardless of the actual application, our user-level pongrage-
ment policies consist of three key steps.Hgimate processor de-
mand: In this step a combination of application domain knowledge
and past CPU usage statistics is used to estimate procesaand

in the near future. (ii)Estimate processor availability: This step
explicitly accounts for the impact of other concurrent égggions.

It estimates the amount of CPU time that will be availablehi® t
application in the presence of other applications. Q@igtermine
processor speed setting: The third step chooses a speed setting that
“matches” the processor demand to the processor avatiatior
instance, if the actual demand is only half of the availabRUC
time, then the application can run the processor at halfcsped
spread its CPU demand over the available time. In contriatste i
processor demand and the processor availability are rpegfulal,
the application may choose to run the processor at full speed

In the rest of this section, we show how these ideas can bemitist
ated for four specific applications that belong to threeedéht ap-
plication classes—soft real-time, interactive bestsffand batch.

3.1 MPEG Video Decoder

An MPEG video decoder is an example of a soft real-time applic
tion. Many multimedia applications such as DVD playbacldiau
players, music synthesizers, video capture and editonbeto
this category. A common characteristic of these applioatie that
data needs to be processed with timeliness constrainténdtance

the situation. In such a scenario, the appropriate polity choose
the full processor speed for this task.

The next two scenarios assume that case 1 is not true and ihat i
possible to meet the task deadline.

Case 2: If e < ¢, then the processor demand exceeds processor
availability for this task (see Figure 2(b)). Although itfesasible

to meet the deadline by allocating sufficient CPU time to #ekt
the CPU scheduler is unable to do so due to presence of other co
current applications. Since application performance suiffer due

to insufficient processor availability, the power manageinstrat-
egy should not further worsen the situation. Thus, the appbtn
should run at full processor speed for this task. Any othettetyy
would violate our goal of isolation.

The final scenario assumes that neither cases 1 or 2 are true..
Case 3: If t + ¢ < d then task can finish before its deadline
at full processor speed (see Figure 2(c)). In this case, thieyp
should slow down the CPU such that the demarisl spread over
the amount of time the task will execute on the CPU, whild stil
meeting the deadline. The CPU frequenfcghould be chosen as

“ fmaa 1
)f (@)

- min(e,d —t

where f.q. IS the maximum processor speed (frequency).

This strategy is applicable to a variety of soft real-timplagations,

so long as the notion of a task is defined appropriately. Irdaoi
decoder, (i) decoding of each frame represents a task,dépotes

the time to decode the next frame at full speed e(denotes the es-
timated duration for which the decoder will scheduled onGifrJ

until the frame deadline, and (iig) denotes the playback instant of
the frame (as determined by the playback rate of the vided)len

d is known, parametersande need to be estimated for each frame.
Estimating processor demand:Processor demand is determined
by estimating frame decode times. We consildéliayer an open-
source video decoder that supports both MPEG-2 and MPEG-4
playback. Note that MPEG-2 is widely used for DVD playback,
while MPEG-4 is used by commercial streaming systems such as
QuickTime and Windows Mediamplayer is representative of these
applications. A number of MPEG-2 and MPEG-4 video clips with
different bit rates and spatial resolutions were decodedrbyn-
strumentedmplayer that measured and logged the decode time of

in a video decoder frames need to be decoded and rendereal at theach frame at full processor speed. We analyzed the regtitices

playback rate—in a 25 frames/s video, a frame needs to balddco
once every 40ms. The inability to meet timeliness condsam-
pacts application correctness; playback glitches will beeoved in
a video decoder, for example.

A soft real-time application can use the following genetedtegy
for user-level power management. Assume that the appica-

by studying the first and second order statistics of the detiotes
and frame sizes for each frame type (i.E.,P, B). Our analy-
sis, the details of which may be found in [13], shows a pietsew
linear relationship between the decode times and the frames s
for each frame type. These results corroborate the findifigs o
prior study on MPEG-2 where an approximate linear relatigms

ecutes a sequence of tasks; the decoding of a single framre is a between frame size and decode times was observed [1]. Uwsrgt

example of a task. Letdenote the amount of CPU time needed to
execute this task at full processor speed. d.denote the deadline
of this task and let denote the task begin time. Further, dede-
note the amount of CPU time that will actually be allocatedhi®
application for this task before its deadline. The parametsap-
tures processor demand, whdeaptures processor availability by
accounting for the presence of other concurrent tasks isytsiem.

In a time sharing scheduler, for instance, the larger thebaurof
runnable tasks, the smaller the valueeofin a QoS-aware sched-
uler that allows a fixed fraction of the CPU to be reserved for a
application, the value of will be independent of other tasks in the
system.

Given the processor demaagorocessor availability and deadline

d, the processor speed can be chosen as follows.

Case l: If t + ¢ > d thenitis impossible to meet the task deadline
(see Figure 2(a)). Essentially, the task started “too’late] neither
the CPU scheduler not the power management strategy cafly rect

insights, we constructed a predictor that uses the type iaedo$
each frame to compute its decode time. A key feature of our pre
dictor is that the prediction model is parameterized attimme to
determine the slope and intercept of the piece-wise lingaatfon.

To do so, the video decoder stores the observed decode tfriies o
previousn frames, scales these values to the full-speed decode time
(since the observed decode times may be at slower CPU speeds)
and uses these values to periodically recompute the slopktha
intercepts of the piece-wise linear predictor. This noy@iables

the predictor to account for differences across video ¢bps., dif-
ferent bit rates require different linear predictors),l#caaccounts

for variations within a video (e.g., slow moving scenes usriast
moving scenes in a video). The parameterized predictores th
used to estimate the decode time of each frame at full process
speed. Additional details of our predictor including itpermen-

tal validation may be found in [13].

Estimating processor availability: Using the Chameleon inter-

event process

face, the application can obtain the start and end timesegbrtvi- arival - funs oo

ousk instances where the application was scheduled on the CPU. M—‘
This history of quantum durations and the start times of thentp

provide an estimate of how much CPU time was allocated to the = oventprocessing
application in the recent past. An exponential moving ayeraf | - mSSO-ﬁ

these values can be used to determine the amount of CPU tithe th
is likely to be allocated to the application per unit timedahis
yields the processor availability over the néxt ¢ time units.
Determining processor speedGiven an estimaté of the frame a strategy can be quite complex for applications such asdaev
deCOde t|me ané Of_the pI’OCGSSOI‘ aVaiIability, the aCtUaI CPU fl’e- or a word processors that support a |arge number of evem_type
quencyf is chosen inmplayer as follows: Instead we propose a different technique that can meet timeuhu

Figure 3: Event processing in a word processor

P ftrée>d perception threshold without requiring explicit knowledgf vari-
f= { fmaa . ife<e @) ous events types. Our technique referred tgraslual processor
min(4255 fmaes) Otherwise acceleration (GPA) accounts for the processor demand and the pro-

cessor availabilitymplicitly.

Upon the arrival of any event, the word processor is confidjtioe
run under at a low CPU speed, and a timer is set (the timer value
is less that the perception threshold). If the processirtgetvent
finishes before the timer expires, then the application kimgaits

for the next event. Otherwise, it increases the CPU speedtg s
amount and sets another timer. If the event processingroati
beyond the timer expiration, the CPU speed is increasedggh a
and a new timer is set. Thus, the processor is gradually exccel
ated until either the event processing is complete or theémar
CPU speed is reached. In order to ensure adequate interpetiv
formance, the maximum CPU speed is always used when the event
processing time exceeds the perception threshold.

To understand how to instantiate this policy, suppose tieevent
arrives at timet and the application is actually scheduled on the
CPU at timet’ (although the application becomes runnable as soon
as the event arrives, other concurrent applications caaydéle
scheduling of this application). From the perspective ef tiser,
3.2 Word Processor a response is desirable from the application no later thans0

ms. Since the application actually starts executing at timét
needs to process the event within the remaisifig- 8 ms, where

B = t' —t (see Figure 3). To do so, we choost@imers, which have
valuesty, tz2, ..., tn, andZ;’:1 t; = 50 — B. After the expiration

of the ith timer, the processor speed is increased;tovhere f;
denotes a fraction of the maximum speed. The valueg; afre
chosen such that the processor speed increases progresside
frn = fmaz = 1. Thus, the application runs at full processor speed
if the event processing continues beyditd— 8 ms. Observe that,
rather than explicitly estimating the processor demanti@gwvent,
the GPA technique monitors the progress of the event primzess
and adjusts the processor speed accordingly. Furshienplicitly
captures the impact of other concurrent applications irsylstem.
Analysis: It is possible to bound the maximum slowdown incurred
by an application in the GPA technique by carefully choosinger
values and CPU speeds. To see how, observe that if the poocess
were running at full speed, the amount of work done in therviatle
[t',t" + >, ti] will take only 3=, fit: at full processor speed.

If the actual full-speed processing time of the event is snéhan
this value the event finishes before #ite— 8 ms perception thresh-
old in the GPA technique, and thus the user does not percaive a
performance degradation. For any event requiring more thian
amount of full speed execution time, the maximum possible pe
formance degradation under our strategy is given by:

whereg is a correction factor that is used to account for past errors
in frame decode times. It the actual decode times are censlist
overestimated or underestimated by the predictor, therfggctan

be used to correct this error. The Chameleon speed adapter th
maps the computefl to the closest supported CPU speed that is no
less than the requested speed.

Implementation: We modifiedmplayer to implement the frame
decoding time predictor and the speed setting strategyn{difi-
cations were primarily restricted to the beginning and effdaane
decoding method implayer. We usedget t i neof day to mea-
sure the frame decoding time and the Chameleon interfacs-to e
timate the processor availability. Other modificationolmed us-

ing the Chameleon interface to set the CPU speed using Bquati
2. In all, the implementation of frame decoding time preatich-
volved 221 lines of C code, and the implementation of spettshge
strategy involved 18 lines of C code. This indicates that-leseel
power management strategy can be implemented at modest effo

A word processor from an Office suite is an example of an inter-
active best-effort application. Many applications suchedsors,
shell terminals, web browsers and games fall into this catedVe
considerAbiWord, a popular open-source word processor from the
Gnome Office suite. AbiWord is an event-driven applicatibatt
works as follows. After an event such as a mouse click or key
stroke, the word processor must handle the event. For exampl
when the user clicks on a menu item, the application mustalisp

a drop-down menu of choices. When the user types a sentence
each character representing a keystroke needs to be disptay
the screen. The window needs to be redrawn whenlthe event
arrives. The speed at which these events are processed Wwyittie
processor greatly impacts the user’s experience.

Studies have shown that there exists a human perceptioshtiice
under which events appear to happen instantaneously [2]is,Th
completing these events any faster would not have any p&rcep
ble impact on the user. While the exact value of the perceptio
threshold is dependent on the user and the type of task being a
complished, a value dfoms is commonly used [2, 6, 14, 15]. We
also use this perception threshold in our work.

An event-driven interactive application should choose Gipeed
settings such that each event is processeliter than the human
perception threshold. One possible strategy to do so is to (i) esti-
mate the processor demand of an event, (ii) estimate thegsoc
availability in the next 50 ms, and (iii) choose a speed shahthe

demand is spread over the available CPU time while still mget degrade =50 — 8 — > fi - t; 3)
the 50 ms perception threshold. Since an event-based apptic i=1
may process many different types of events, estimatinggssmr since the processor will run at full speed once the execuiina

demand for each event will require the approach to be exlplici exceeds the perception threshold.
aware of different event types and their computational ae8dch To illustrate, suppose that the maximum degradation ios2dmns

over full processor speed. LBt= 0 for simplicity. If we choose
five timers with values30ms, 5ms, 5ms, 5ms, andsms, and the
processor speeds during these timer intervalés&s, 60%, 80%,
90%, and100%, respectively, then, from Equation 3, the maximum
possible user-perceived degradation for any eve2@iiss. This is
the maximum slowdown for any event requiring more tisams

of processing time.

Implementation: We implemented GPA into AbiWord, a sophis-
ticated word processor with a code base of hundreds of thdssa
lines of C code. Our implementation was straight-forwvarde W
added code at the beginning of the AbiWord event handler to im
plement the GPA technique. The X11-server assigns a tiamagst

A similar strategy can be used for choosing CPU speed sstting
We implemented a utility callegnice that enables the end-user
to specify a particular CPU speed setting for a new process. F
instance, the user can invoke the commandce -n N nake

to specify that make and all compilations spawned by its kshou
run at a fixed CPU speed setting A lower speed setting enables
energy savings at the expense of increasing the completia t
whereas a higher setting lowers the completion time at therese

of higher energy consumption.

Implementation ofpnice was straightforward. The pnice process
first changes its own speed setting to the specified valugsing
the Chameleon interface. Next, it invokegec to run the speci-

to each new user event such as mouse click or key-stroke. We ex fied command. This ensures that the application inheritspleed

tracted this time-stampand usedyet t i neof day to determine
the execution start timg. The parametes is computed as the dif-
ference betweetl andt. This took only 17 lines of C code while
setting timers and invoking the Chameleon interface tookrgss
of C code. In all, the implementation of GPA took only 40 lirafs
C code—a fairly modest change.

3.3 Web Browser

A web browser is another example of an event-driven inteact
application that needs to process various events such asisemo
click or a keystroke. When the user types a URL or data intola we
form, the keystrokes need to be displayed on the screen. \iken
mouse is positioned over a hyperlink, visual feedback neztie

setting of thepnice process. The Chameleon kernel implementa-
tion ensures that any procdssked by a parent process inherits the
CPU speed setting of the parent. Tamece utility was implemented

in 125 lines of C code, again demonstrating that implemamtaf
user-level power management policies take modest effort.

4. USER-LEVEL POWER MANAGER

The previous section demonstrated how many commonly used ap
plications can implement their own power management sgfyate
However, implementing a user-level power managementegfyat
requires modification to the source code, which may not bgifea
ble for legacy applications. Such applications can detetia task

of power management to a user-level power manager. The power

provided by changing the shape of the mouse cursor. When themanager can use CPU usage statistics and any applicatipfiesi

user clicks on a link, the browser needs to construct and sena
HTTP request; when data arrives from the remote serveredsito
parse and display the incoming data. Although the netwol&yde
is beyond the control of the browser, all other “local” exesiould
be processed within the human perception threshold for good
teractive performance. The GPA technique can be directd fsr
power management in such a browser.

knowledge to modify CPU speed settings on behalf of the appli
cations. A simple user-level power manager may choose #esing
speed setting for all applications based on current utina the
speed setting is varied with observed changes in systeiatitin.
A more complex strategy is to choose a different speed gefiin
each individual application based on its observed behadiming
SO requires usage statistics to be maintained for eachcafiph.

We choseillo, a compact, portable open-source browser that runs \ytiple user-level power managers can coexist in the syst®
on desktops, laptops and PDAs and implemented the GPA tech-|ong as each manages a mutually exclusive subset of thecappli

nigue into this browser. Like in the case of the word processa
modifications were restricted to the event handler in DHivst, we
extracted the event arrival time and the execution staw timthe
event handler to compute. We then added code to set timers and
increase the processor speed upon timer expiration. Ithalim-
plementation of GPA into Dillo involved 46 lines of C code aag
demonstrating the modest nature of our modifications.

3.4 Batch Compilations

Compilations usingnake is an example of a batch application. Un-
like interactive applications where the response time igartant,
the throughput is important for batch applications. Tyfycanake
spawns a sequence of compilation tasks, one for each soodlee ¢
file. One possible user-level power management strategyssti-
mate the processor demand for each compilation task andtseh
an appropriate speed setting. However, since each coipitask

is relatively short-lived, gathering CPU statistics foclke@rocess is
difficult. Instead, a better strategy is to allow the endriisespec-
ify the desired speed setting. System defaults can be used thi
user does not specify a setting.

Most Unix-like operating systems support thiee utility, which
allows the end-user to specify a CPU scheduling priorityefoew
process. For instance, the user can invoke the command - n

N meke to specify thaimake should run at priorityNV. A low pri-
ority enables the batch application to run in the backgrowitlout
interfering with foreground interactive applications. Agh prior-

ity can also be chosen if the new application is more impoittzam
current applications.

tions. Thus, it is feasible to implement a different powemager

for each class of application.

The Chameleon interface enables the entire range of thesse- po
bilities. To demonstrate the flexibility of our approach, ta&e a
recently proposed DVFS approach—GraceOS [26, 27] —and show
how it can be implemented as a user-level power manager using
Chameleon. Our objective is two-fold. First, we show thanhgna
recently proposed approaches such as GraceOS that emplay an
kernel implementation can be implemented as user-level power man-
agers in our approach. Second, GraceOS advocates a coaperat
application-OS approach, where applications periodicslipply
information to the OS and the OS chooses the processor speed s
ting based on this information and usage statistics. We gheiv
such interactions between the application and the CPU stdred
are feasible using Chameleon.

Implementation: We begin with a brief overview of the GraceOS [26,
27]. GraceOS is designed for periodic multimedia applaratithat
belong to the soft real-time class. GraceOS treats suchicappl
tions differently from traditional best-effort applicatis. Whereas
best-effort applications are scheduled using the Linuetsharing
scheduler and do not benefit from DVFS, soft real-time applic
tions are scheduled using a QoS-aware soft real-time stdveghd
benefit from DVFS.

To handle soft real-time applications, GraceOS employs keyo
components: (i) a real-time scheduler and (ii) a DVFS atbari

The CPU scheduler is vanilla earliest deadline first (EDEns
dard EDF theory is used to perform admission control of set-r

time tasks based on their worst case CPU demands. Admitfed so The system-wide utilization is reported videv/sysdvfs, whereas
real-time tasks have strict priority over best-effort msReadlines the CPU cycles consumed by individual tasks are reportefdigizsyscpu.
derived from the application-specified periods are usedEidF Process control block enhancementdn order to allow Chameleon
scheduling of these tasks. Three system calisiter SRT, Exit- to implement techniques such as PACE [14, 15] and GraceQS [26
SRT, and FinishJob—are used to convey start and finish time of 27] as user-level power managers, we borrowed several gsoce
tasks (e.g., frame decode) to the scheduler. control block attributes from the GraceOS implementatigncy-

The DVFS algorithm maintains a histogram of CPU usage and de- cle counter, which measures the CPU cycles used by a tapk, (ii
rives a probability distribution of processor demand. Traepssor cycle budget, which stores the number of allocated cyclad, a
demand and the application-specified periods are used inantlg (i) speed schedule, which stores a list and schedule adspeal-
programming algorithm to derive a list of speed scaling f®in ing points. Whereas these three attributes are meaningfylfor
Each point(z,y) specifies that a job should runs at the spged Chameleon processes managed by user-level power managers,
when it has used cycles. The DVFS algorithm monitors the cycle also added three more attributes that are applicable toadegses
usage of the task. If the usage increases beygrile next speed in the system: (i) Chameleon-driven-flag, which indicatiethée
settingy is chosen. Observe that this technique has similarities process is directly modifying its speed settings; (ii) entrspeed,
with our GPA technique where the progress of a task is magdtor ~ which specifies the current CPU speed setting of the pro¢iéss;
and the speed is increased gradually. The key differentaishe inheritable-flag, which indicates if the speed setting teehitable
durationsz and speedg are computed at run-time using dynamic by its children.

programming, whereas in GPA, they are statically chosen. DVS kernel module: The DVS kernel module is actually respon-
To implement GraceOS as a user-level power manager, we mustsible for interfacing with the hardware in order to modifetpro-
distinguish between the DVFS component and the CPU schedule cessor speed. This is done by writing the frequency andgelta
The DVFS algorithm is fully implemented in user space andguse two machine special registers (MSR) [26, 27]. Chameleonbgan
the Chameleon interface to query usage statistics and angmagress. applied to any DVFS-enabled processor by implementing a DVS
The CPU scheduler and any interactions between the applicat kernel module specific to that processor.

and the scheduler must be implemented separately from Géame Linux scheduler enhancementsWe modified the standard sched-
Since Chameleon does not make any specific assumptionstabout uler to add per-process speed settings and cycle charginglas
underlying scheduler, it is compatible with any CPU schiedudl- to our process control block enhancements, cycle chargiogly
gorithm, including EDF. necessary to implement other techniques as user-levelrpoae-
Consequently, our implementation of the GraceOS inclubdeset agers, and is directly inspired by the GraceOS implememt4#6,
components: (i) a user-level daemon to calculate the saffttime 27]. Whenever the schedule() function is invoked, the medifi
task’s demand distribution, cycle budget, and speed stdeding scheduler will do the following: (i) in the case of no contentitch,
dynamic programming (300 lines of C code); (ii) use of Chaals it may change the speed of the current task according to ésdsp
/dev/syscpu interface driver to query the actual usage of each soft schedule; (ii) in the case of a context switch, the scheghdeforms
real-time task (109 lines of C code); and (iii) three systeatisc some book-keeping only for the previous task with a speeddsch
Enter SRT, ExitSRT, andFinishJob that allow an application to con- ule (e.g., update its cycle counter, decrement cycle buddeance
vey the beginning and end of each soft real-time task (23% lofe speed schedule, etc.); (iii) then the scheduler sets the $}feed

C code). Observe that the first two components relate to theV for the new task based on its current-speed attribute.

algorithm, while the third component is used by the CPU sehed Ourimplementation of Chameleon runs on a Sony Vaio PCG-\KLCP
uler in GraceOS. The GraceOS user-level power manager tuns alaptop with Transmeta Crusoe TM5600-667 processor [23]e Th
the highest CPU priority in our system. All soft real-timepépa- Transmeta TM5600 processor supports five discrete freguemt
tions run at the next highest CPU priority, and best effdosjoun voltage levels (see Table 1) and implementsltbegRun [7] tech-

at lower priorities. EDF scheduling is emulated by manipota nology in hardware to dynamically vary the CPU frequencyebas
priorities of tasks; the task with the earliest deadlinelésated in on the observed system-wide CPU utilization. LongRun gattie
priority (analogous to the implementation of EDF in GracéOS CPU frequency between a user-specified maximum and minimum
values—these values can be set by users by writing to two ma-
chine special registers (MSR). By default, these valuesatdo

300 MHZ and677 MHz, enabling the full range of voltage scaling.

5. IMPLEMENTATION

Our prototype of Chameleon is implemented as a set of modules

and patches in the Linux kernel 2.4.20-9.

New system calls:We added four new system calls to implement
the Chameleon OS interface: §gt-speed, which returns the cur-
rent CPU speed of the specified process or process groupetfii)
speed, which sets the CPU speed of the specified process or pro-
cess group; (iiiget-speed-schedule, which returns processor bud-
get and speed schedule of the specified process, armkifis)eed-

schedule, which sets the processor budget and speed schedule of

the specified task. The latter two system calls enable stiqtisd
speed setting strategies, where an application can spatéypri-
ori schedule for changing the speed as it executes.
Chameleon-enhanced /proc interfaceWe enhanced thiproc in-
terface by adding a /proc/Chameleon sub-tree. This dingtimlds
one file for each Chameleon-driven process and allows agijalits
to query their CPU quantum allocations in the recent past.
Chameleon /dev interfaces: To support user-level power man-
agers, we added two new /dev interfadelsv/sysdvfs and/dev/syscpu.

LongRun can be disabled by setting the minimum and maximum
register values to the same frequency (e.g., setting b&BBidHz
does not allow any leeway in changing the CPU frequencygceffe
tively disabling LongRun). This feature can be used to imaat
voltage scaling irsoftware—the power-aware application can de-
termine the desired frequency and set the two registerssodtue.

Freq. (MHz) || Voltage (V) | Power (W)
300 1.2 1.30
400 1.225 1.90
533 1.35 3.00
600 15 4.20
667 1.6 5.30

Table 1: Characteristics of the TM5600-667 processor

6. EXPERIMENTAL EVALUATION

nificantly across the various configurations (see Figur®) 4f&g-

We evaluated Chameleon on a Sony PCG-V1CPK laptop equippedure 4(a) shows that: (i) neither PAST ndi/G,, can outperform
with a Transmeta Crusoe processor and 128MB RAM. The operat- LONgRun; (ii) LongRun can achieve significant energy sasifigm

ing system was Red Hat Linux 9.0 with a modified version of kérn
2.4.20-9. To compare Chameleon with other DVFS approagies,
implemented three OS-based DVFS techniques proposed lit-the
erature: (i) PAST [24], (ii)) PEAK [12], and (iiAV G, [11], all of
which are interval-based system-wide DVFS techniques. eéur
periments involve running applications under six différeonfigu-
rations: (i) with DVFS disabled—the CPU always runs at thexma
imum speed (denoted as FULL), (ii) using the hardwired LamgR
technology, (iii) using PAST, (iv) using PEAK, (v) usigVG,,,
and (vi) using Chameleon (where LongRun is disabled for powe

aware applications but enabled for legacy applications).
The energy consumption of the processor during an intéfvial
computed as

energy — Zpiti

i=1

Q]

wheren is the number of available frequency/voltage combina-
tions on the processop,; denotes the power consumption of the
processor when running at thth frequency/voltage combination,
andt; represents the time spent at ttle frequency/voltage com-
bination during the interval’. We modified the Linux kernel to

27.36% t057.26%) when compared to FULL; (iii) the Chameleon-
awaremplayer can achieve an addition20.52% t031.99% energy
savings when compared to LongRun.

Although there are no user-perceived playback problemg(ins

of dropped frames or playback freezes) under the five corfigur
tions, we do observe jitter in the playback quality at therfea
level. Such small inter-frame jitter is inevitable in a tirslearing
CPU scheduler, although its effects are not perceptiblbeatiser-
level. mplayer provides statistical measurements of late frames—
the number of frames that are behind their deadline by mae th
20% of the frame interval. As shown in Figure 4(b), the number
of late frames in Chameleon is mostly comparable to PAST and
AV @G,, and typically better than LongRun (while consuming the
least energy). FULL has the least—although not zero—lat@&s

at the expense of the highest energy consumption. The nuofber
late frames is small)(2 — 2.3%) in all configurations.

6.1.2 Web Browser and Wbrd Processor

We ran the web browser and the word processor and measuied the
average power consumption, the average response timehand t
percentage of late events (where event processing timedsdtee

record the energy consumption of the TM5600 processor using 50ms threshold).

Equation 4 and Table 1. Given the energy consumption of the pr
cessor during an intervdl, the average power consumption of the
processor during this interval is computedpaser,.,g = “2%.

To eliminate the impact of variable network delays, our expe
ments with the web browser consisted of a client requestisg-a
guence of web pages from a web server on a local area network;

Our experiments showed that PEAK always consumed the leastthe requested web pages consist of actual web content thsat wa

processor energy among all DVFS techniques. However,desra
its energy savings with an unacceptably high performangeadia-
tion for time-sensitive multimedia and interactive apgtions. For
example, video decoding of 2 minutes clip took an extra 16.6
minutes, resulting in poor performance. Therefore, we thneitre-
sults of PEAK in the rest of this paper and refer the readef$3p
for these results.

6.1 Chameleon-aware Applications

We first evaluate our four Chameleon-aware applications. eQu
periments assume a lightly-loaded system that runs a samylg-
cation with the typical background system processes.

6.1.1 Video Decoder

We encoded several DVD movies at different bit-rates and-res
lutions using Divx MPEG2/MPEG4 video codec and MP3 audio
codec The characteristics of six such movies are listed lneT2.

The bit-rates are depicted in the foifa + b)Kbps, wheres is the
video and is the audio bit-rate. We recorded the energy consumed
by the processor during playback of these movies at fulldgpeith
LongRun, with Chameleon, with PAST, and witt G,,.

Res. Length | Frames]| Bit-Rate(Kbps)
Movie 1 || 640x272| 3360s | 80387 | 1290.9 + 179.2
Movie 2 || 640x272| 612s 14577 757.2+128.0
Movie 3 || 640x352| 7168s | 179168| 679.7 +128.0
Movie 4 || 640x352| 602s 15003 | 861.9+128.0
Movie 5 || 640x352| 1755s 42040 | 2456.9 + 192.0|
Movie 6 || 640x480| 2394s | 57355 1674.6 + 384.0

Table 2: Characteristics of MPEG 4 Videos
Our experiments show that all five configurations handle movi
playback very well. The same playback quality is observed un
der: identical execution times which equal the length oftlozies,
identical frame rates, no dropped frames, and no usereatile
delays. However, the average CPU power consumption dfgrs

saved from a variety of popular web sites. Each experiment co
sists of a sequence of requests to these web pages with amlyifo
distributed “think-time” between successive requestse &xperi-
ments differ in the requested web pages and the chosen titiek;t
each experiment is repeated under the five configuratiomsyven
measure the mean for each experiment.

The workload for the word processor emulates a user editsgs a
qguence of documents. Each experiment contains a scriphidiats

a sequence of editing requests to these documents witharmnhyf
distributed “think-time” between successive requestse &xperi-
ments differ in the edited documents and the chosen thinksim
each experiment is repeated under the five configuratiomsyven
measure the mean for each experiment.

Figure 5(a) shows that LongRun consumes a factor of three les
power than FULL. Chameleon is able to extract an additiof&l7%
energy savings when compared to LongRun, while PAST is worse
than LongRun. We also note that the average power consumptio
under Chameleon is only.03W and0.06W higher than the power
consumption at the slowest CPU spegdoMHz) for the browser
and the word processor, respectively. Further, most efigdgs in
Chameleon without any performance degradation. The pergen

of late events is only 0.24% and 0.22% in the word processor an
the browser, respectively, and is comparable to other agpes.
Finally, the increase in processing times of late event®imore
than 20ms (obtained by substituting the chosen timer veadnels
CPU speeds in Equation 3).

6.1.3 Batch Compilations

We compiled a portion of thaes-2 network simulator usingnake
and ourpnice utility. We chose different values of the CPU speed
and measured the power consumption and completion tinreaket
As expected, our results, depicted in Table 3, show that tep
consumption can be traded for completion time by approgsiat
choosing a speed setting.

Average Power Consumption of Movie Playback
T T T

Average Power Consumption in Watts

Movie 1

Movie 2 Movie 3

Movie:

Movie 4 Movie 5 Movie 6
S

(a) Average CPU Power Consumption

Performance of Movie Playback
T T

b T
Il Chameleon|
Il LongRun
[EWPAST
[JAVGn
[JFuULL

@
8

2.29%

Percentage of Late Frames
N
x

,a
8
T

Movie 1

Movie 2 Movie 3

Movie:

Movie 4 Movie 5 Movie 6
S

(b) % of Late Frames

Figure 4: Average CPU power consumption and percentage of fmes that are late by more than 8ms (20% of the 40ms deadline).

Average Power Consumption of Interactive Applications % of Late Events in Interactive Applications

[Chameleon [l Chameleon
LongRun BLongRun
EEPAST
Claven
CJFuLL

b
']
5
F
%
g

)
=

530
530

°
2
=

Percentage of Late Events
0.22%

0.24%

0.23%

°
=
0.18%
0.20%
0.13%
0.12%
0.16%

Average Power Consumption in Watts
3
4

0.11%
0.12%

0 o
Web Browser ‘Word Processor
Interactive Applications

Web Browser Word Processor
Interactive Applications

(a) Average Power Consumption (b) % of Late Events

Figure 5: Average CPU power consumption and % late events.

Freq. || Completion | Mean Power
(MHz) Time Consumed
300 1376s 1.38W
400 1066s 1.96W
533 910s 3.00W
600 812s 4.14W
667 776s 5.15W

Table 3: Completion times and CPU power (batch).

6.2 Isolation in Chameleon

We claim that Chameleon isolates an application from thegoow
settings of other applications. To demonstrate this igmatve ran
mplayer with a misbehaving background application. The back-
ground application rapidly switches its CPU speeds from sate
ting to another every few milliseconds. We ran mplayer witis t
application when it was well-behaved (it used a fixed CPU dpee
throughout) and then with the misbehaving version of thdiegp
tion. We measured its impact on the progress of the mplayer. O
results show that the progress made by mplayer is unaffegtdee
rapid changes of CPU speed by the misbehaving applicatiog—a

(mix M3), and (iv) batch compilations and word processorx(mi
M4). Note that, from the perspective of the video decodeg, th
background load increases progressively from mix M1 to M3.
Table 4 and Figure 6 show the average power consumption and th
performance of these applications under various power gena
ment strategies. Table 4 shows that Chameleon always ca@ssum
the least energy among the five configurations. The enerdygsav
range froml19.81% to 31.19% when compared to LongRun, which
itself extracts up tat1.89% reduction when compared to FULL.
The performance degradation, depicted in Figure 6(a), stibat
interactive application performance in Chameleon is coalgla to

the other techniques. For instance, the average eventgsiaoge
time of the word processor under mix M2 increases from 4.4ms
in LongRun to 5.96ms in Chameleon and is well under the human
perception threshold of 50ms. A similar result is seen ferweb
browser under mix M1. The percentage of late events remagtis w
under 1% under all mixes (see Figure 6(b)).

Figure 6(c) plots the percentage of late frames in the video d
coder for different mixes. The figure shows that the pergmta
of late frames in Chameleon is comparable to other apprsache
As the background load increases from mix 1 to mix 3, we see
that the percentage of late frames increases from arourid th4
more than 22%. For mix M3, all techniques, including FULL;, in
cur 22% deadline misses. Decoding of ttieminute clip takes

an extra 20 seconds under all techniques, resulting in pedomp
mance. This is primarily due to insufficient processor alality

at higher loads, as opposed to deficiencies in the power reanag
ment technique. Due to the background load imposed by thod bat
compilations in mix M3, the time sharing scheduler is unable
allocate sufficient CPU time to the video decoder.

Figure 7 shows the fraction of time spent by the video decatler
different CPU speed settings. In the absence of any backdrou
load, the decoder is able to lower its speed setting to thedow
speed for more than 90% of the time. As the load increases, the
fraction of time spent at higher speeds increases. For mixid3e
than 80% of the time is spent at the highest speed (recalirtbiaf-

change to the CPU speed by an application only impacts its own ficient processor availapility causes the video decodeurct full
progress and has no impact on the CPU shares of other applica-speed—Case 2 in Section 3.1).

tions.

6.3 Impact of Concurrent Workloads

To demonstrate that applications can make locally- andadipb
optimal power management decisions in the presence of concu
rent applications, we considered four application mixésvifleo
decoder and web browser (mix M1), (ii) video decoder and word
processor (mix M2), (iii) video decoder and batch compiliasi

Under mix M3, the only possible solution is to use a QoS-aware
scheduler that guarantees a fixed fraction of the CPU to ttheovi
decoder regardless of the background load. We ran mix M3 with
Chameleon on a proportional-share scheduler, namely tdlgcal
Start Time Fair Queue (HSFQ) CPU scheduler [10]. In this expe
iment, we assignetl/14 fraction of CPU time to the batch compi-
lations,12/14 fraction of CPU time to the video decoder and the
X server, and the remaininy/14 to the other tasks. As expected,

Average Response Time of Interactive Applications

"
[

% of Late Events in Interactive Applications

% of Late Frames in Movie Playback
30.0

Il Chameleon
Bl LongRun
EPAST
[CJAVGn
CrPULL

Il Chameleon
lLongRun

»—\
g
X

o e
Q N
kS E

Percentage of Late Events
o
@
=

Average Response Time in milliseconds

e
@
b3

o

Mix M1 Mix M4

Mix M2
Concurrent Workloads

(a) Average Response Time (Milliseconds)

Figure 6: Performance of concurrent applications: averagegesponse

Fraction of Time at Each Frequency Level

I300MHz
I 400MHz
[EI533MHz
[1600MHz
[1667MHz

100%|

80%

Percentage of Time

60%

20%

Ro Background Load Mix M2 Mix M3 Mix M3 with H-SFQ
Concurrent Runs

Figure 7: Fraction of time at each frequency leveimplayer

the percentage of late frames in the video decoder fell tora ve
small value. Further, since processor availability is gntged in

Mix M2
Concurrent Workloads

(b) % of Late Event

Il Chameleon
llLongRun
[EPAST
[CJaven
CIFuLL

23.58%
23.30%

22.57%
]23.93%
]23.59%

25.0%

20.0%

15.0%

10.0%

Percentage of Late Frames

o
=)
X

2.11%

1.87%

0.41%

=z §0.42%

0.31%

=[lo.4s%

0.21%
1.34%
1.40%
[Jo.85%

Mix M4 Mix M3

=

Mix M2
Concurrent Workloads

(c) % of Late Frames

time of interactive applications and % of late eves and frames.
Movies || AVG. Power | Eng. Sav. to LongRur{ to Chameleon
Movie 1 2.11W 7.05% —27.88%
Movie 2 1.64W 13.68% —9.33%
Movie 3 2.11W 15.94% —24.12%
Movie 4 2.76W 3.50% —41.54%
Movie 5 3.09W 8.58% —33.77%
Movie 6 3.14W 18.44% —13.69%

Table 5: GraceOS CPU power consumption for movie playback

16,000 cycles reported for an HP laptop used in the Grace®S ex
periments [26, 27]; however, both incur minimal overheadaky,

the overhead values of the video decoder, GPAmmicE strategies
are2738, 1149, and127 CPU cycles, respectively, which is in the
order of a few micro-seconds.

7. RELATED WORK

HSFQ, as shown in Figure 7, the video decoder was able to spendRecently, power management techniques for mobile deviaes h

73.73% of its execution time at the lowest frequency (300MHz)
(compared t07.74% under time-sharing CPU scheduler). This
causes the mean power consumption to fall to 2.1W, a 44.8% re-
duction when compared to the time-sharing scheduler.

Chameleon| LongRun | PAST | AVG, | FULL
Mix M1 2.25W 3.27TW | 3.98W | 4.42W | 5.3W
Mix M2 2.47TW 3.08W 3.79W | 3.83W | 5.3W
Mix M3 3.81W 5.27TW 5.26W | 5.27TW | 5.3W
Mix M4 3.71W 5.22W 5.23W | 5.23W | 5.3W

Table 4: Average CPU Power Consumption for various mixes.

6.4 User-level Power Manager Experiments

We modifiedmplayer to use the GraceOS system calls and used it
to decode the movies in Table 2. The GraceOS user-level power

received increasing research attention. The proposeditps ei-
ther use dynamic voltage and frequency scaling (DVFS) [3116
19, 26, 27] or application/middleware-based adaptatioro[@1,
22] for energy savings. DVFS approaches extract energygavi
by varying the processor speed; the techniques do not dffect
amount of processing performed by the application—the ggec
ing is merely spread over longer time periods by lowering CPU
speeds. In contrast, middleware-based adaptation apgmeaary
quality or data fidelity and thus, the amount of processing pe
formed by the application to extract energy savings. Weexvi
related work in both categories.

Application or middleware-based adaptation techniquadetithe
computational overhead for application quality; energyiregs are
extracted by reducing video quality [21, 22], document iy 8]

or data fidelity [9], and thus, the processing overheads.xyPro

manager was used to make power management decisions oh behabased adaptation for reducing video quality has been eagblior

of mplayer. We measure the energy consumed by mplayer ahd plo
it in Table 5. Our results show that GraceOS can achiye%
to 18.44% energy savings when compared to LongRun. However,

[21, 22]. Puppeteer adapts document quality (i.e. pictaselu-
tion, color depth) for energy savings of office applicati¢ts8].
The impact of adapting the data fidelity on energy savingewef s

Chameleon outperforms GraceOS by 9-41%. This is because theeral applications has also been demonstrated in Odyssey [9]

Chameleon-enhanced mplayer is able to estimate decods time
individual frames based on domain-knowledge, while Gr&2e®
lies on external observations of the CPU usage of mplayers Th
domain knowledge yields an extra 9-41% in Chameleon.

6.5 Implementation Overhead

Animportant consideration is the overhead caused by fretqrnges
in the CPU speed setting. Using the CPU cycle counter regigee
measure the cost a425 cycles (abouB.75 us under300 MHz
and 1.69 ps under667 MHz). Due to better DVFS support in
the Transmeta processor, this is considerably lower thaB 000-

In contrast, DVFS techniques do not reduce the amount of pro-
cessing overhead imposed by an application; instead thgytive
CPU speed to match the CPU load and extract energy savings [3,
16, 17, 19, 26, 27]. DVFS techniques fall into four categarie
hardware-based, OS-based, cooperative applicationa®&dband
application-directed methods. Hardware-based appreasieh as
LongRun [7] measure system utilization in hardware and sh@
system-wide speed setting based on the current utilizafiaron-

line hardware approach for voltage and frequency controtuti-

ple clock domain microprocessors has been proposed in (25].
based approaches determine a system-wide CPU setting biased

the processor demands of the currently active tasks [6,5,20]. (5]
In this approach, individual applications do not have amedi
control over the CPU power settings. A single system-wid&CP 6]
setting is determined, typically based on the needs of thet mo
resource-hungry application, even when a mix of applicetis 71
executing on the processor. Furthermore, the OS neddfetche
processing needs of applications and can incur measuremers. (6]
In cooperative application-OS approaches, the applicatiovides
some domain-specific information to the kernel. The OS Kerne [9]
and the CPU scheduler use this information for CPU speemhgett
and/or scheduling. GRACE-OS [26, 27] proposes such a caeper [10]
tive application/OS approach for periodic multimedia égations.
It uses probability distributions of CPU usage of periodipléca-
tions and knowledge of application periods (which is suggplby [11]
the application) for choosing CPU speeds. Aperiodic or reai-
time applications are currently not handled by the approach [12]
A cooperative power management approach was proposed]in [18
to unify low level architectural optimizations (CPU, memoreg-
ister), OS power-saving mechanisms (DVFS) and adaptivellmid (13]
techniques (admission control, optimal transcoding, netiraffic
regulation). In this technique, interaction parameteisvben the [14]
different levels are identified and optimized to signifiépmeduce
power consumption. Rather than an OS-application pattigrs [15]
Chameleon exports the entire burden of power managemehneto t
user level.

[16]

Finally, several different application-controlled DVF&hniques
for video decoding have been proposed [3, 16, 17, 19]. Whitees
require offline estimation of CPU demands for decoding [d%);
ers can estimate the CPU demands online [3, 16, 19]. However, [17]
all of these techniques implicitly assume only a single i@pgibn (18]
is executing on the CPU and grant complete control of thegsoc
sor settings to the video decoder. Unlike in Chameleon,rathe
plications are not considered—the issue of concurrenicgimns
that might use a different speed setting is not considerdbese
efforts, nor is the issue of providing isolation across aapions
considered explicitly.

[29]
[20]

[21]

8. CONCLUSIONS

This paper argued that applications know best what theirggne
needs are and proposed Chameleon, an approach that puts the e
tire burden of power management on individual applicatiddar
implementation and experiments showed that (i) user-lpoét

cies can be implemented at a modest cost of tens of lines &f, cod
(i) Chameleon can extract up to 32% energy savings when com- [25]
pared to LongRun and up to 50% when compared to recent OS-

[22]

[23]

[24]

based DVFS techniques, (iii) concurrent applications fiefrem [26]
Chameleon’s flexibility, and (iv) Chameleon imposes negleover-
heads. [27]

Acknowledgments:We would like to thank our shepherd Sid Ahuja,
the anonymous reviewers, Klara Nahrstedt, Ralf Steinmestd,
Wanghong Yuan for their comments. This research was suggbort
in part by NSF grants CCR-0219520, EIA-0080119, CNS-052072
CNS-0519881, CNS-0447877 and DUE-0416863.

9. REFERENCES

[1] A. Bavier, A. Montz, and L. Peterson. Predicting mpegax®n times. In

Proc. of ACM Sigmetrics 98, pages 131-140, June 1998.

[2] S.K. Card, T.P. Moran, and A. Newellhe Psychology of Human-Computer
Interaction. Lawrence Erlbaum Associates, 1983.
K. Choi, K. Dantu, W. Cheng, and M. Pedram. Frame-basetdyic voltage
and frequency scaling for a mpeg decodeiPtac. of the [EEE/ACM CAD’ 02,
San Jose, CA, pages 732-737, November 2002.
E. de Lara, D. Wallach, and W. Zwaenepoel. Puppeteer: idmant-based
adaptation for mobile computing. Proc. of USTS 01, San Francisco, CA,
pages 159-170, March 2001.

K]

4

D. R. Engler, M. Kaashoek, and J. O. Jr. Exokernel: An apirg system
architecture for application-level resource managenierRroc. of ACM
SOSP’ 95, Copper Mountain, CO, pages 251-266, December 1995.

K. Flautner and T. Mudge. Vertigo: Automatic performargetting for linux. In
Proc. of OSDI’ 02, Boston, MA, pages 105-116, December 2002.

M. Fleischmann. Longrun power management - dynamic ponsnagement
for crusoe processors. Technical report, Transmeta Catipar 2001.

J. Flinn, E. de Lara, M. Satyanarayanan, D. Wallach, an@¥aenepoel.
Reducing the energy usage of office applicationdrioc. of Middleware' 01,
Heidelberg, Germany, November 2001.

J. Flinn and M. Satyanarayanan. Energy-aware adaptégiomobile
applications. IrProc. of ACM SOSP’ 99, Charleston, SC, pages 4863,
December 1999.

P. Goyal, X. Guo, and H. Vin. A hierarchical cpu schedtite multimedia
operating systems. IRroc. of OSDI’ 96, Seattle, WA, pages 107-122, October
1996.

D. Grunwald, P. Levis, K. Farkas, C. M. Ill, and M. NeufaPolicies for
dynamic clock scheduling. IRroc. of OSDI’ 00, San Diego, CA, pages 73-86,
October 2000.

K.Govil, E.Chan, and H. Wasserman. Comparing algorgtor dynamic
speed-setting of a low-power cpu. Bnoc. of ACM Maobicom' 95, Berkeley, CA,
pages 13-25, November 1995.

X. Liu, P. Shenoy, and M. Corner. Chameleon: Applicatimntrolled power
management with performance isolation. Technical repb2®, University of
Massachusetts, 2004.

J. R. Lorch and A. J. Smith. Improving dynamic voltagelst algorithms
with PACE InProc. of ACM Sgmetrics 01, Cambridge, MA, pages 50-61, June
2001.

J. R. Lorch and A. J. Smith. Operating system modificeifor task-based
speed and voltage scheduling.Rroc. of ACM MobiSys' 03, San Francisco,
CA, pages 215-229, May 2003.

Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadr
Control-theoretic dynamic frequency and voltage scalorgriultimedia
workloads. InProc. of ACM/IEEE CASE’ 01, Greenoble, France, pages
156-163, October 2002.

M. Mesarina and Y. Turner. Reduced energy decoding cégrgireams. In
Proc. of MMCN’ 02, pages 73-84, January 2002.

S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. \@alsubramanian.
Integrated power management for video streaming to mohifelheld devices.
In Proc. of ACM MM’ 03, Berkeley, CA, pages 582-591, November 2003.

J. Pouwelse, K. Langendoen, I. Lagendijk, and H. Sipsvé?-aware video
decoding. InProc. of PCS 01, Seoul, Korea, pages 303-306, April 2001.

J. Pouwelse, K. Langendoen, and H. Sips. Applicativeetied voltage scaling.
IEEE Trans. on VLY, 11(5):812-826, October 2003.

P. Shenoy and P. Radkov. Proxy-assisted power-frjesiréaming to mobile
devices. InProc. of MMCN' 03, Santa Clara, CA, pages 177-191, Janauary
2003.

M. Tamai, T. Sun, K. Yasumoto, N. Shibata, and M. Ito. Ejyeaware video
streaming with gos control for portable computing devi¢e$roc. of ACM
NOSSDAV' 04, Cork, Ireland, pages 68—73, June 2004.

Crosoe tm5600 processor data sheet. Transmeta Inc.,
http://www.transmeta.com.

M. Weiser, B. Welch, A. Demers, and S. Shenker. Schadutr reduced cpu
energy. InProc. of OSDI’94, Monterey, CA, pages 13—-23, November 1994.
Q. Wu, P. Juang, M. Martonosi, and D. Clark. Formal oalimethods for
voltage/frequency control in multiple clock domain microgessors. IfProc.
of ACM ASPLOS-XI, Boston, MA , October 2004.

W. Yuan and K. Nahrstedt. Energy-efficient soft reateicpu scheduling for
mobile multimedia systems. Iroc. of ACM SOSP’ 03, Bolton Landing, NY,
pages 149-163, October 2003.

W. Yuan and K. Nahrstedt. Practical Voltage ScalinghNtwbile Multimedia
Devices. InProc. of ACM MM’ 04, New York, NY, pages 924-931, October
2004.

