
CS677: Distributed OSComputer Science Lecture 5, page 1

Types of Virtualization

• Emulation

– VM emulates/simulates complete hardware

– Unmodified guest OS for a different PC can be run

• Bochs, VirtualPC for Mac, QEMU

• Full/native Virtualization

– VM simulates “enough” hardware to allow an unmodified

guest OS to be run in isolation

• Same hardware CPU

– IBM VM family, VMWare Workstation, Parallels,…

CS677: Distributed OSComputer Science Lecture 5, page 2

Types of virtualization

• Para-virtualization

– VM does not simulate hardware

– Use special API that a modified guest OS must use

– Hypercalls trapped by the Hypervisor and serviced

– Xen, VMWare ESX Server

• OS-level virtualization

– OS allows multiple secure virtual servers to be run

– Guest OS is the same as the host OS, but appears isolated

• apps see an isolated OS

– Solaris Containers, BSD Jails, Linux Vserver

• Application level virtualization

– Application is gives its own copy of components that are not shared

• (E.g., own registry files, global objects) - VE prevents conflicts

– JVM

CS677: Distributed OSComputer Science Lecture 5, page 3

Server Design Issues

• Server Design

– Iterative versus concurrent

• How to locate an end-point (port #)?

– Well known port #

– Directory service (port mapper in Unix)

– Super server (inetd in Unix)

CS677: Distributed OSComputer Science Lecture 5, page 4

Stateful or Stateless?

• Stateful server

– Maintain state of connected clients

– Sessions in web servers

• Stateless server

– No state for clients

• Soft state

– Maintain state for a limited time; discarding state does not

impact correctness

CS677: Distributed OSComputer Science Lecture 5, page 5

Server Clusters

• Web applications use tiered architecture

– Each tier may be optionally replicated; uses a dispatcher

– Use TCP splicing or handoffs

CS677: Distributed OSComputer Science Lecture 5, page 6

Case Study: PlanetLab

• Distributed cluster across universities

– Used for experimental research by students and faculty in
networking and distributed systems

• Uses a virtualized architecture

– Linux Vservers

– Node manager per machine

– Obtain a “slice” for an experiment: slice creation service

CS677: Distributed OSComputer Science Lecture 5, page 7

Code and Process Migration

• Motivation

• How does migration occur?

• Resource migration

• Agent-based system

• Details of process migration

CS677: Distributed OSComputer Science Lecture 5, page 8

Motivation

• Key reasons: performance and flexibility

• Process migration (aka strong mobility)

– Improved system-wide performance – better utilization of
system-wide resources

– Examples: Condor, DQS

• Code migration (aka weak mobility)

– Shipment of server code to client – filling forms (reduce
communication, no need to pre-link stubs with client)

– Ship parts of client application to server instead of data from
server to client (e.g., databases)

– Improve parallelism – agent-based web searches

CS677: Distributed OSComputer Science Lecture 5, page 9

Motivation

• Flexibility

– Dynamic configuration of distributed system

– Clients don’t need preinstalled software – download on demand

CS677: Distributed OSComputer Science Lecture 5, page 10

Migration models

• Process = code seg + resource seg + execution seg

• Weak versus strong mobility

– Weak => transferred program starts from initial state

• Sender-initiated versus receiver-initiated

• Sender-initiated (code is with sender)

– Client sending a query to database server

– Client should be pre-registered

• Receiver-initiated

– Java applets

– Receiver can be anonymous

CS677: Distributed OSComputer Science Lecture 5, page 11

Who executes migrated entity?

• Code migration:

– Execute in a separate process

– [Applets] Execute in target process

• Process migration

– Remote cloning

– Migrate the process

CS677: Distributed OSComputer Science Lecture 5, page 12

Models for Code Migration

• Alternatives for code migration.

CS677: Distributed OSComputer Science Lecture 5, page 13

Do Resources Migrate?

• Depends on resource to process binding

– By identifier: specific web site, ftp server

– By value: Java libraries

– By type: printers, local devices

• Depends on type of “attachments”

– Unattached to any node: data files

– Fastened resources (can be moved only at high cost)

• Database, web sites

– Fixed resources

• Local devices, communication end points

CS677: Distributed OSComputer Science Lecture 5, page 14

Resource Migration Actions

• Actions to be taken with respect to the references to local resources

when migrating code to another machine.

• GR: establish global system-wide reference

• MV: move the resources

• CP: copy the resource

• RB: rebind process to locally available resource

GR

GR

RB (or GR)

GR (or MV)

GR (or CP)

RB (or GR, CP)

MV (or GR)

CP (or MV, GR)

RB (or GR, CP)

By identifier

By value

By type

FixedFastenedUnattached

Resource-to machine binding

Process-to-

resource

binding

CS677: Distributed OSComputer Science Lecture 5, page 15

Migration in Heterogeneous Systems

• Systems can be heterogeneous (different architecture, OS)

– Support only weak mobility: recompile code, no run time information

– Strong mobility: recompile code segment, transfer execution segment

[migration stack]

– Virtual machines - interpret source (scripts) or intermediate code [Java]

CS677: Distributed OSComputer Science Lecture 5, page 16

Case study: Agents

• Software agents

– Autonomous process capable of reacting to, and initiating

changes in its environment, possibly in collaboration

– More than a “process” – can act on its own

• Mobile agent

– Capability to move between machines

– Needs support for strong mobility

– Example: D’Agents (aka Agent TCL)

• Support for heterogeneous systems, uses interpreted

languages

CS677: Distributed OSComputer Science Lecture 5, page 17

Case Study: ISOS

• Internet scale operating system

– Harness compute cycles of thousands of PCs on the Internet

– PCs owned by different individuals

– Donate CPU cycles/storage when not in use (pool resouces)

– Contact coordinator for work

– Coodinator: partition large parallel app into small tasks

– Assign compute/storage tasks to PCs

• Examples: Seti@home, P2P backups

CS677: Distributed OSComputer Science Lecture 5, page 18

Case study: Condor

• Condor: use idle cycles on workstations in a LAN

• Used to run lareg batch jobs, long simulations

• Idle machines contact condor for work

• Condor assigns a waiting job

• User returns to workstation => suspend job, migrate

• Flexible job scheduling policies

