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In a new algorithm for maintaining replicated data, 
every copy of a replicated file is assigned some number of 
votes. Every transaction collects a read quorum of r votes 
to read a file, and a write quorum of w votes to write a file, 
such that r +  w is greater than the total  number of votes 
assigned to the file. This ensures that there is a non-null 
intersection between every read quorum and every write 
quorum. Version numbers make it possible to determine 
which copies are current. The reliability and performance 
characteristics of a replicated file can be controlled by 
appropriately choosing r, w, and the file's voting 
configuration. The algorithm guarantees serial 
consistency, admits temporary copies in a natural way by 
the introduction of copies with no votes, and has been 
implemented in the context of an application system called 
Violet. 
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1. Introduction 

The requirements of  distributed computer systems 
are stimulating interest in keeping copies o f  the same 
information at different nodes in a computer network. 
Replication o f  data allows information to be located close 
to its point o f  use, either by statically locating copies in 
high use areas, or by dynamically creating temporary 
copies as dictated by demand. Replication of  data also 
increases the availability of  data, by allowing many nodes 
to service requests for the same information in parallel, 
and by masking partial system failures. Thus, in some 
cases, the cost of  maintaining copies is offset by the 
performance, communication cost, and reliability benefits 
that replicated data  affords. 

We present a new algorithm for the maintenance of  
replicated files. The algorithm can be briefly 
characterized by the following description: 

- Every copy of  a replicated file is assigned some 
number of  votes. 

- Every transaction collects a read quorum of  r votes 
to read a file, and a write quorum of  w votes to 
write a file, such that r +  w is greater than the total 
number of  votes assigned to the file. 

- This ensures that there is a non-null intersection 
between every read quorum and every write 
quorum. There is always a subset of  the 
representatives of  a file whose votes total to w that 
are current. 

- T h u s ,  any read quorum that is gathered is 
guaranteed to have a current copy. 

. -  Version numbers make it possible to determine 
which copies are current. 

The algorithm has a number o f  desirable properties: 

It continues to operate correctly with inaccessible 
copies. 
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- It consists o f  a small amount o f  extra machinery that 
runs on top of  a transactional file system. Although 
"voting" occurs as will become evident later in the 
paper, no complicated message based coordination 
mechanisms are needed. 

It provides serial consistency. In other words, it 
appears to each transaction that it alone is running. 
The most current version of  data is always provided 
to a user. 

By manipulating r, w, and the voting structure o f  a 
replicated file, a system administrator can alter the 
file's performance and reliability characteristics. 

All of  the extra copies of  a file that are created, 
including temporary copies on users' local disks, can 
be incorporated into our framework. 

The remainder of  the paper is organized" as five 
sections. Section 2 describes related work, and how the 
algorithm differs from previous solutions. The algorithm's 
environment, interface, and basic structure are introduced 
in Section 3. Refinements are offered in Section 4, 
including the introduction of  temporary copies and a new 
locking technique. The Violet System, which contains an 
implementation of  this proposal, and some performance 
considerations are discussed in Section 5. The final 
section is a brief conclusion. The appendix demonstrates 
that our algorithm maintains serial consistency [1]. 

The ideas in this paper are illustrated in Mesa, a 
programming language developed at the Xerox Palo Alto 
Research Center [8]. Mesa is well suited for this task 
because it contains integrated support for processes, 
monitors, and condition variables [6]. To simplify this 
presentation some nonessential details have been omitted 
from the Mesa examples. 

2. Re la ted  W o r k  

Previous algorithms for maintaining replicated data 
fall into two classes. Some insist that every object has a 
primary site which assumes responsibility for update 
arbitration. Distributed INGRES [10] is such a system. 
This technique is simple, but relatively inflexible. Others 
do not employ distinguished sites for objects, and are 
more complex than primary site algorithms. SDD-1 [9] 
keeps all copies of  an object up to date by sending 
updates via a communication system that will buffer 
messages over machine crashes. Thomas' proposal [11] 
only requires that a majority of  an object's copies be 
updated, and includes voting. 

Although we share the notion of  voting, it is difficult 
to directly compare our algorithm with Thomas' because 
the two provide different services. Notably: 

We guarantee serial consistency for queries (read- 
only transactions), while Thomas' algorithm does 
not.  

- We do not insist that a majority of  an object's copies 
be updated. 

- T h o m a s '  algorithm does not employ weighted 
voters, which limits its flexibility. 

- Thomas' algorithm is more complex because it 
addresses consistency issues as well as replication 
issues. We have separated the two, resulting in an 
algorithm that is easier to reason about and to 
implement. 

- Our structure allows for the inclusion of  temporary 
copies. 

3. The  B a s i c  Algor i thm 

3.1 Environment  
The concepts necessary for the implementation o f  our 

algorithm are modeled below as a stable file system. In 
Section 3.3 we build our algorithm for replicated data 
assuming the existence of  such a system. 

Our exposition uses two kinds of  objects, files and 
containers. Files are arrays of  bytes, addressed by read 
and write operations as described below. Containers are 
storage repositories for files; they are intended to  
represent storage devices such as disk drives. These 
objects, and others introduced later in the paper, have 
unique names. No two objects will ever be assigned the 
same name, even if they are on different machines. We 
will not concern ourselves further with how programs 
acquire names, but will assume that the names of  
containers and files of  interest are at hand. 

A file is logically an array o f  bytes that can be 
created, deleted, read, and written. 
File.Create: PROCEDURE [container: Container.ID] 

RETURNS [file: File.ID], 

File.Delete: PROCEDURE [file: File.ID]; 

File.Read.' PROCEDURE [file: File.ID, startByte, count: INTEGER, 
buffer: POINTER[; 

File.Write: PROCEDURE [file: File.ID, startByte, count: INTEGER, 
buffer: POINTE~, ];,, 

To keep tlie discussion simple, we assume that file 
system primitive~ operate on remote and local files alike. 
This can be accomplished by encoding a file's location or 

• I 
container in its, unique identifier, or by maintaining 
location hints for'remote files. These details will not be 
considered further. 

Transactions are used to define the scope of  
control\and failure recovery. A transaction is concurrency 

a group of  related file operations bracketed by a begin 
transaction call and \a commit transaction call. 

Transaction.Begin: PROCEDURE, 

Transaction.Commit: PROCEDURE; 

A transaction hides ~.gncurrency by making it appear 
to its file operations that ~h~ is no other activity in the 

\ 
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system, a property known as serial consistency [1]. A 
transaction hides undesirable events that can be recovered 
from, such as a detected disk read error, or a server crash. 
A transaction also guarantees that either all of  its write 
operations are performed, or none of  them are. 
Furthermore, once a transaction has committed, its effects 
must be resilient to hardware failures, such as a server 
crash. Every process has a single current transaction. 
Thus, for an application program to use two transactions it 
must create at least two processes. A forked process can 
join its parent's transaction by calling: 

Transaction.JoinParentsTransaction: PROCEDURE; 

A file may be unavailable if the server it resides on is 
down, or if there is a communication failure. If  a read 
operation is directed to a file that is unavailable, the 
corresponding File.Read call will never return. Multiple 
processes are used by our algorithm to allow it to proceed 
in this case. Outstanding uncompleted reads, because 
they never occurred, do not affect the ability of  a 
transaction to commit. The transaction system only 
guarantees serial consistency for reads that have actually 
completed when the transaction is committed. Likewise, 
if a write operation is directed to a file that is unavailable, 
the corresponding File.Write call will never return. 
However, a transaction that attempts to commit with 
unfinished writes will remain uncommitted until all of  its 
writes complete. 

It is possible that a user will want to abort a 
transaction in progress. A transaction abort, which can be 
initiated by a user as shown below, will discard all of  a 
transaction's writes, and terminate the transaction. 

Transaction.Abort: PROCEDURE, 

It is also possible that the file system will 
spontaneously abort a transaction because o f  a server 
crash, communication failure, or lock conflict. 

This concludes our model set of  primitive objects and 
operations. The model abstracts a confederation o f  
cooperating computers into a structure that has uniform 
naming and a distributed transactional file system. As we 
shall see in following sections, the abstractions introduced 
here make the replication algorithm straightforward to 
explain. Of  course we believe that the model that we 
have described is realizable and practical; in fact, the ideas 
necessary for an implementation have received a great 
deal of  attention. Gray [4] provides a nice discussion of  
two phase commit protocols, locking, and synchronization 
primitives. Lampson and Sturgis [5, 7] describe an 
implemented system that has all o f  the properties our 
model requires. 

3.2 Interface 
Our algorithm uses the facilities described in Section 

3.1 to provide an abstraction called a file suite. This is a 
file that is realized by a collection of  copies, which we call 
representatives because of  the democratic way in which 
update decisions are reached. When a file suite is created, 

a description of  its configuration must be supplied, which 
includes r, w, the number o f  representatives, the 
containers where they should be stored, and the number 
of  votes each should be accorded. 
Configuration: TYPE = RECORD [ 

r: INTEGER, 
w: INTEGER, 
v" ARRAY OF RECORD [container: Contai.er.ID, votes: INTEGER]]. 

File.CreateSuite: PROCEDURE [configuration: Configuration] 
RE~RNS [suite: File.ID]; 

File.CreateSuite stores a suite's configuration in stable 
storage. The structures stored would depend on the 
algorithm's implementation, but Figure 1 shows one 
possible alternative. A suite is cataloged by directory 
entries, preferably more than one in case one o f  them is 
unavailable. Each representative has a prefix that 
identifies all the other representatives in the suite and 
their voting strength. 

Once created, a file suite can be treated like an 
ordinary file. The File.Read, File.Write, and File.Delete 
operations specified in Section 3.1 can be used to 
manipulate the abstract array o f  bytes represented by a 
file suite. Like file operations, all file suite operations are 
part of  some transaction. A file suite appears to be an 
ordinary file in almost every respect. 

Differences arise because a file suite can have 
performance and reliability characteristics that are 
impossible for a file. It is possible to tailor the reliability 
and performance of  a file suite by manipulating its voting 
configuration. A high performance suite results by 
heavily weighting high performance representatives, and a 
very reliable suite results by heavily weighting reliable 
representatives. A file suite can also be made very reliable 
by having many equally weighted representatives. A 
completely decentralized structure results from equally 
weighting representatives, and a completely centralized 
scheme results from assigning of  all of  the votes to one 
representative. Thus the algorithm falls into both of  the 
classes described in Section 2. 

Once the general reliability and performance of  a 
suite is established by its voting configuration, the relative 
reliability and performance of  Read and Write can be 
controlled by adjusting r and w. As w decreases, the 
reliability and performance of  writes increases. As r 
decreases, the reliability and performance of  reads 
increases. The choice of  r and w will depend on an 
application's read to write ratio, the cost of  reading and 
writing, and the desired reliability and performance. 

The following examples suggest the diverse mix o f  
properties that can be created by appropriately setting r 
and w. In the table below we assume that the probability 
that a representative is unavailable is .01. 

Example 1 is configured for a file with a high read to 
write ratio in a single server, multiple user environment. 
Replication is used to enhance the performance of  the 
system, not the reliability. There is one server on a local 
network that can be accessed in 75 milliseconds. Two 
users have chosen to make copies on their personal disks 
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by creating weak representatives, or representatives with 
no votes (see Section 4.1 for a complete discussion o f  
weak representatives). This allows them to access the 
copy on their local disk, resulting in lower latency and less 
traffic to the shared server. 

Example 2 is configured for a file with a moderate 
read to write ratio that is primarily accessed from one 
local network. The server on the local network is assigned 
two votes, with the two servers on remote networks 
assigned one vote apiece. Reads can be satisfied from the 
local server, and writes must access the local server and 
one remote server. The system will continue to operate in 
read-only mode if  the local server fails. Users could 
create additional weak representatives for lower read 
latency. 

Example 3 is configured for a file with a very high 
read to write ratio, such as a system directory, in a three 
server environment. Users can read from any server, and 
the probability that the file will be unavailable is very 
small. Updates must be applied to all copies. Once again, 
users could create additional weak representatives on their 
local machines for lower read latency. 

Example 1 Example 2 Example 3 
Latency (msec) 

Representative 1 75 75 75 
Representative 2 65 100 750 
Representative 3 65 750 750 

Voting Configuration < 1, 0, 0 > < 2, 1, 1 > < 1, 1, 1 > 
r 1 2 1 
w 1 3 3 

Read 
Latency (msec) 65 75 75 
Blocking Probability L0 X 10 -2 2.0 X 10 -4 1.0 X 10 -6 

Write 

Latency (msec) 75 100 750 
Blocking Probability 1.0 X 10 -2 1.0 X 10 -2 3.0 X 10 -2 

FileSuite: MONITOR [suiteName: File.ID] = BEGIN 

VersionNumber: TYPE = {unknown, 1, 2, 3, 4, ... } 

Set: TYPE = ARRAY OF BOOLEAN; 

SuiteEntry: TYPE = RECORD [ 
name: File.ID, 
version: VersionNumber, 
votes: INTEGER]; 

suite: ARRAY OF SuiteEntry; 

currentVersionNumbcr: VersionNumber; 

firstResponded: BOOLEAN; -- true whenfirst representative has 
responded 

r: INTEGER; . .  number o f  votes required for  a read quorum 

w: INTEGER; -- number o f  votes required for  a write quorum 

When FileSuite is instantiated, the number o f  
representatives, their names, their version numbers, their 
voting strengths, r, and w must be copied from some 
representative's prefix into the data structure shown 
above. This information must be obtained with the same 
transaction that is later used to access the file suite, in 
order to guarantee that it accurately reflects the suite's 
configuration. Additional information, such as the speed 
o f  a representative, has been omitted from a SuiteEntry to 
make the basic algorithm easier to understand. 

To read from a file suite, a read quorum must be 
gathered to ensure that a current representative is 
included. After a file suite is first accessed, collecting a 
quorum never encounters any delays. The operation o f  
the collector which gathers a quorum is described in detail 
below. From the quorum, any current representative can 
actually be read. Ideally, one would like to read from the 
representative that will respond fastest. 

Read: PROCEDURE {file: File.ID, firstByte, count: INTEGER, buffer: 
POINTER] = 

BEGIN 
-- select best representative 

quorum: Set ~- CollectReadQuorumfl; 
best: INTEGER ~- 

SelectFastestCurrentRepresentative[quorum]; 
-- send request and wait for  response 

File.Read[suite[best].name, firstByte, count, buffer]; 
END; 

3.3 The Algorithm 
We present the basic algorithm in prose and 

fragments of  Mesa code. The prose is meant be a 
complete explanation, with the Mesa code provided so the 
reader can check his understanding of  the ideas. All the 
Mesa procedures shown below are part of  a single 
monitor called FileSuite. There is a separate instance o f  
FileSuite for each transaction accessing a given suite. 
ENTRY procedures manipulate shared data, and thus lock 
the monitor. Careful use of  public non-entry procedures 
has been made so the monitor is never locked while input 
or output is in progress, allowing FileSuite to process 
simultaneous requests. 

To write to a file suite, a write quorum is assembled: all of  
the representatives in the quorum must be current so 
updates are not applied to obsolete representatives. All of  
the writes to the quorum are done in parallel. The first 
write of  a transaction increments the version numbers o f  
its write quorum. Thus, all subsequent writes will be 
directed to the same quorum, because it will be the only 
one that is current. Determining which write is the first 
one must done under the protection of  the monitor, and is 
not shown J.n the Mesa code. With the procedure below, 
the result o f  issuing two concurrent writes that update the 
same portion of  a file is undefined. 
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Write: PROCEDURE [file: File.ID, firstByte, count: INTEGER, buffer: 
POINTER] = 

BEGIN 
-- select write q~orura 

quorum: Set ,- CollectWriteQuorum[i; 
i, count: INTEGER ~- 0; 
process: ARRAY OF PROCESS; 

-- send requests to all members of  quorum, and wait for responses 
FOR i IN [1..LENGTH[SUite]] 

DO 
IF quorum[i] THEN 

BEGIN 
count ,- count + 1; 
process[count] 4- FORK 

RepresentativeWrite[i, firstByte, count, buffer]; 
END; 

ENDLOOP; 
FOR i IN [1..count] 

DO 
JOIN process[i]; 
ENDLOOP; 

END" 

Rel~resentativeWrite: PROCEDURE [i, firstl~yte, count: INTEGER, buffer: 
POINTER] = 

BEGIN 
-- we are acting on behalf o f  our parent; join its transaction 

Transaction.JoinParentsTransaction[]; 
UpdateVersionNumber[i]; 

-- write data on representative and inform parent process 
File.Write[suite[i].name, firstByte, count, buffer]; 

END; 

It is possible that a representative will become 
unavailable while a file suite is in use, perhaps due to a 
server crash. A simple solution to this problem, not 
shown in the procedures above, is to abort the current 
transaction if Read or Write take more than a specified 
length of  time. This will restart the suite, as described 
below. 

Quorum sizes are the minimum number o f  votes that 
must be collected for read and write operations to 
proceed. It is possible to increase the performance o f  a 
file suite by artificially expanding a quorum with 
additional representatives. Once again, to reduce 
complexity, the procedures shown above do not use this 
approach. 

When a file suite is first accessed, version number 
inquiries are sent to representatives. The information that 
results is used as the basis for future collector decisions. 
To determine the correct value o f  a file suite's current 
version number a read quorum must be established before 
the file suite can entertain requests. All representatives 
might not contain the current voting rules, but the 
algorithm will stabilize with the correct rules before a read 
quorum is established, as shown in Section 4.6. If  a 
representative is unreachable its version number read will 
never return. This does not prohibit a user's transaction 
from committing, as described in Section 3.1. 

lnitiatelnquiries: PROCEDURE = 
BEGIN 
i: INTEGER; 
--find out the state of  representatives 

FOR i IN [1..LENGTH[Suite]] 
DO 
Detach[FORK Inquiry[ill; 
ENDLOOP; 

-- set currentVersionNumber and voting rule~ 
[] ~- CoUectRead[1; 

END; 

Inquiry: PROCEDURE [i: INTEGER] = 
BEGIN 
-- we are acting on behalf o f  our parent 

Transaction JoinParentsTransactionfl; 
--find out the state of  a representative 

NewRepresentative[ReadPrefixln formation[i]]; 
END; 

ReadPrefixlnformation: PROCEDURE [i: IrCrEGER] RETURNS [i, version, 
rP, wP; INTEGER, v: ARRAY OFINTEGER] = 

BEGIN 
( read version number,  r, w, and  array o f  voting s trengths  f r o m  

the pre f ix  o f  representative i ) 
END; 

NewRepresentative: ENTRY PROCEDURE [i, version, rP, wP: INTEGER. v: 
ARRAY OF INTEGER] = 

BEGIN 
j: INTEGER; 
-- update shared data and notify 

suite[i].versionNumber ,- version; 
-- if this is new information, update suite 

IF version > currentVersionNumber THEN 
BEGIN 
currentVersionNumber ,- version; 
r ~- rP; w *- wP; 
FOR j IN [1..LENGTH[suite]] 

DO 
suite[jl.votes 4- viii; 
ENDLOOP; 

END; 
firstResponded ,- TRUE; 
BROADCAST CrowdLarger; 

END; 

The collector is used by evei3, file suite operation to 
gather a quorum of  representatives. Normally the 
collector selects what it considers to be the quorum that 
will respond the fastest, and returns immediately to its 
caller. Occasionally one of  two problems will arise. First, 
it is possible that a read quorum of  the suite's 
representatives have not reported their version numbers. 
In this case the collector can only wait for one o f  them to 
report in. The second potential problem is that a read 
quorum have reported their version numbers, but  there is 
not a current write quorum. This can only occur if some 
representatives have not reported their version numbers. 
in this case if r < w the collector will initiate a background 
process to copy the contents of  the suite into one o~" the 
obsolete representatives that has reported in. It is always 
legal to copy the current contents of  the file suite to an 
obsolete representative. Note that the copy process will 
be reading from the suite, in effect a recursive call, but  
there will be enough votes for this read-only operation to 
proceed. To minimize lock conflicts the background 
process should be run in a separate transaction. The 
background process signifies its completion by breaking 
the transaction of  its parent. 
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CrowdLarger: CONDITION; - -  notifed when a new representative is available 

CollectReadQuorum: ENTRY PROCEDURE RETURNS [ q u o r u m :  Set] = 
BEGIN 
i, j, votes: INTEGER: 
index: ARRAY OF INTEGER; 
- -  until the first  representative responds we don't have a seed for  the voting r u l e s  

UNTIL f i r s tResponded  DO WAIT C r o w d L a r g e r  ENDLOOP; 
- -  an endless loop that only returns when a quorum has been established 

D O  
-- i f  w e  h a v e  a read quorum here. then the voting rules are current 

index ~- SortRepresentativesBySpeedl]; 
q u o r u m  4- ALL[FALSE]; vo tes  ,- 0; 

- -  s e e  ( f  w e  c a n  f i n d  a read quorum 
FOR i IN [I..LENGTH[SUite]] 

DO 
j ~- index[i]; 
IF su i t e [ j ] . ve r s ionNumber  ~ u n k n o w n  THEN 

BEGIN 
quorum[ j ]  ~- TRUE; 
votes ~- votes + suite[j].votes; 
IF votes  > = r THEN RETURN[qUorum]; 
END; 

ENDLOOP; 
-- we can't f ind  a quorum 

WAIT CrowdLarger; 
ENDLOOP; 

END; 

CollectWdteQuorum: ENTRY PROCEDURE RETURNS [ q u o r u m :  Set] = 
BEGIN 
i, j, votes, readVotes: INTEGER; 
index: ARRAY OF INTEGER; 
- -  an endless loop that only returns when a quorum has been established 

D O  

index ,- SortRepresentativesBySpeedl]; 
q u o r u m  ~- ALL[FALSE]; vo tes  ,- r e adVo te s  ~- 0; 

- -  s e e  i f  w e  can f ind  a write quorum 
FOR i IN [1..LENGTH[SUite]] 

DO 
j ~- index[i]; 
IF suite[j].versionNumber~unknown THEN 

BEGIN 
readVotes 4- readVotes + suite[j].votes; 
IF su i t e [ j ] . ve r s ionNumber  = c u r r e n t  THEN 

BEGIN • 
quorum[ j ]  4- TRUE; 
votes ~- votes + suiteD].votes; 
IF vo tes  > = w THEN RETURN[qUorurrl]; 
END; 

END; 
ENDLOOP; 

- -  we ean 't f ind  a write q u o r u m ;  o r  w e  h a v e  a read quorum update obsolete 
representatives 

IF r e a d V o t e s  > = r THEN 
BEGIN 
FOR i IN [1..LENGTH[SUite]] 

DO 
IF s u i t e [ i ] . v e r s i o n N u m b e r ~ u n k n o w n  AND 

suite[i].versionNumber~currentVersionNumber 
THEN 
BEGIN 
suite[i].versionNumber ,- unknown: 
copy.StartBackground[from: suiteName, to: 

suite[i].name]; 
END; 

ENDLOOP; 
END; 

WAIT CrowdLarger; 
ENDLOOP; 

END; 

If a user decides to abort his transaction, or if the 
system spontaneously aborts a user's transaction the suite 
is no longer in a well defined state. The version number 
information it is holding is no longer guaranteed to be 
serially consistent with ensuing operations, and must be 
discarded and replaced by new inquiries. Asynchronous 
representative writes or version number reads still in 
progress must be aborted. 

Initialize: PROCEDURE = 
-- called at  transaction abort and suite start-up 
BEGIN 
-- reset the suite 

Reset[];  
-- stop outstanding requests 

AbortFileSuiteProcessesfi; 
Transaction.Beginfi; 
Initiatelnquiriesl]; 

END; 

Reset: ENTRY PROCEDURE = 
BEGIN 
-- invalidate state information 

FOR i IN [1..LENGTH[suite]] 
DO 
suite[i].versionNumber ,- unknown; 
suite[i].votes ,- 0; 
ENDLOOP; 

firstResponded ,- FALSE; 
currentVersionNumber ,- unknown; 

END; 

At transaction commit the module instance is deleted. 

4. Refinements 

4.1 Weak Representatives 
We can incorporate temporary copies into the 

algorithm by introducing representatives with no votes, 
called weak representatives. Such a representative will not 
change the quorums of  a file suite, and thus can be 
introduced at any time. However, it can be included in 
any quorum and, when placed on a high speed storage 
device, can improve the performance of  a file suite. 

Because a weak representative has no votes, it bears 
no responsibility for the long term safekeeping of  data. 
There will always be a write quorum of  other 
representatives that contain current data. Thus, if an error 
is detected while accessing a weak representative an 
acceptable means of  recovery is to invalidate it by setting 
its version number to be unknown. This property allows 
weak representatives to be stored outside o f  the stable file 
system. We have made the further simplification of  
insisting that weak representatives be unshared. To insure 
that users do not share weak representatives exclusive 
locks are used. 

The simplified recovery and concurrency 
requirements of  weak representatives allow us to store 
them in a less general file system than the one outlined in 
Section 3.1. In particular, they can be stored on a user's 
personal computer using a very simple mechanism. After 
a crash on a user's personal machine it is sufficient to 
invalidate all weak representatives that are locked. 

4.2 Lock Compatibility 
A disadvantage that our algorithm has in comparison 

with Thomas' is that locks are set by the stable file system 
to guarantee serial consistency, which reduces the amount 
of  concurrency in the system. For example, a typical 
locking structure that is used to guarantee serial 
consistency has two types of  locks, read and write. These 

155 



locks are set on data items implicitly in response to file 
operations. The compatibility o f  locks is specified by the 
m a t r i x :  

No Lock Read Write 

No Lock Yes Yes Yes 

Read Yes Yes No 

Write Yes No No 

A transaction is suspended if it attempts to set a lock that 
is incompatible. This matrix corresponds to the familiar 
rule that either n readers or one writer are permitted to 
access a file simultaneously. 

This locking rule potentially can introduce long 
periods of  time when information is unavailable. For 
example, if a user controls the length of  a transaction, he 
can hold a write lock for a long period of  time. This may 
naturally occur as a user thinks at the keyboard. To 
insure that no user monopolizes a file, a transaction will 
be timed out if other users are waiting f~r a file it has 
locked. A transaction that times out leaves files 
unchanged, because it is aborted. The same mechanism 
insures that cyclic lock dependencies (deadlocks) will be 
resolved by aborting some transaction. Time-outs did not 
provide an adequate solution in our environment, as we 
describe in Section 5.1. 

A property of  serial consistency is that all o f  a 
transaction's writes appear to occur at transaction commit 
time. We can take advantage o f  this property to increase 
the concurrency in our system. Writes appear to occur 
when they are issued, but in fact are buffered until 
commit time by the stable file system. A read following a 
write will receive the write's data. When a user writes a 
datum, an l-Write lock is set, for intention to write. At 
commit time I-Write locks are converted to Commit locks, 
and the writing actually takes place. The new lock 
compatibility matrix is: 

No Lock Read I-Write Commit  

No Lock Yes Yes Yes Yes 

Read Yes Yes Yes No 

I-Write Yes Yes No No 

Commit  Yes No No No 

With this revised locking matrix, data is only unavailable 
for predictably short periods of  time, during commit 
processing. This results in increased concurrency, as we 
discuss in Section 5.1. However, it may cause the later 
abortion of  a transaction. 

We chose to make multiple I-Write locks 
incompatible, because eventually one of  the two 
transactions would probably commit, and become 
incompatible. Thus we chose not to postpone the 
inevitable. 

4.3 Lower Degrees of Consistency 
We have assumed that the algorithm must be capable 

of  providing serial consistency. Lower degrees of  
consistency are possible, and allow liberties to be taken, 
for example, setting r to be 0. This corresponds to the 

notion "give me the latest version you can find, but I 
don't care if it isn't fresh". Certain applications that have 
self-correcting characteristics, such as name lookup, can 
use lower degrees of  consistency. However, the 
unexplicable behavior of  lower degrees precludes their 
widespread use. Gray et al [3] have explored the 
properties o f  various degrees o f  consistency in detail. 
Their Degree 3 consistency corresponds to serial 
consistency. If  our algorithm is run on top of  a file system 
that ensures Degree 0 or Degree 1 consistency, the 
algorithm will guarantee the same consistency it sees, a 
fact we will not prove here. 

4.4 Size of Replicated Objects 
The size of  an object that is replicated should be 

chosen to match the needs of  an intended application. 
For example, a data base manager might choose to 
replicate relations, tuples, or indexes. Each replicated 
object requires a version number. Because our algorithm 
depends on a file's version number remaining unchanged 
throughout a transaction, the smallest unit that can be 
individually locked is a file. 

4.5 Broken Read Locks 
If  the stable file system can break read locks to 

resolve conflicts instead of  aborting an entire transaction, 
two positive effects result. First, fewer transactions are 
aborted. Second, it is not necessary for a version number 
to remain unchanged during a transaction. If  it does 
change, the broken read lock mechanism informs the 
algorithm. The smallest lockable unit is no longer a file, 
but instead is the smallest lockable unit supported by the 
stable file system. 

4.6 Reassigning Votes 
As the focus of  references to a file suite changes, it is 

possible to update the file suite's voting configuration for 
optimum performance. Unless the refinement proposed 
in Section 4.5 is adopted, updating a suite's voting 
configuration conflicts with any other use of  the suite. 
Section 3.3's inquiry process protects itself against such 
changes by reading a suite's voting structure under the 
protection of  a transaction. 

To change r, w, or the voting structure of  a file suite 
it is necessary to ensure that that there is a write quorum 
under the new rules that is current. The change can then 
be effected by updating the prefixes of  a set o f  
representatives that is the union of  a current write quorum 
and a future (under the new voting rules) write quorum. 
We claim that regardless of  the order representatives are 
examined, the most recent voting rules will be discovered 
before a read quorum is established. Imagine that a 
transaction incorrectly assumes that an obsolete generation 
of  voting rules, G, is current. Then there is a set voting 
rules, G + 1, that is one generation more recent. But when 
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G +  1 was established its rules were written into a write 
quorum (under G). Therefore, the transaction would 
have examined a representative that contained or once 
contained G + I .  If  this representative did not contain 
G + 1, then it contained a later generation o f  the voting 
rules. The version number mechanism in 
NewRepresentative would have replaced G with one o f  
these later generations. But we assumed that the 
transaction did not find a later generation. We have our 
contradiction. 

4.7 Replicating Containers 
Using the procedure outlined in Section 3.2, a user 

specifies a collection o f  containers to create a file suite. 
This flexibility can complicate the operation of  the system. 
Imagine that User A creates a file suite on containers C 
and D, and User B creates a file suite on containers D and 
E. If  container D fails it is possible that one or both o f  
the users could continue to access their suites, and it is 
also possible that both of  the users could not proceed, 
depending on the voting configuration. In short, a system 
operator does not know what a failure of  container D 
implies. Replicated containers provide a solution to this 
problem. 
Container.CreateReplicated: PROCEDURE [configuration: 

Configuration] RETURNS [replicatedContaiuer: Container.ID]; 

A replicated container appears to the user exactly like 
an unreplicated one. However, when passed a replicated 
container, File.Create creates a file suite instead o f  a single 
file. Thus, the user is unaware that replication is taking 
place. We call the containers that compose a replicated 
container base containers. 

This approach has several benefits: 

It is easy to determine the implications of  removing 
a base container from service. This allows the 
system to be operated effectively. 

Voting structures can be tailored to the 
characteristics of  the system's configuration by 
knowledgeable system administrators. 

Backup and archiving of  replicated containers makes 
sense. 

- Replicated containers can be mounted and 
dismounted as a unit. This is because all of  a 
replicated container's corresponding base containers 
are easily identified. 

4.8 Releasing Read Locks 
Every lock that a transaction holds necessitates 

communication at commit time to ensure that the lock is 
still in force. Section 5's Initiatelnquires procedure sends 
inquires to all representatives in the suite, to determine 
their status. A read lock is thus obtained on every 
representative that is available. An enhancement to the 
algorithm would be to release the read locks on 
representatives that are not used as part o f  a quorum 

before committing. This would reduce the amount o f  
communication at commit time significantly. 

4.9 Updating Representatives in Background 
In conjunction with replicated containers, it is 

possible to operate servers that update obsolete 
representatives by examining a replicated container and 
initiating appropriate transfers. This can be done when 
there is surplus communication capacity in the 
internetwork. 

5. Implementation 

5.1 The Violet System 
We have implemented the algorithm in the context o f  

a simple decentralized data management system called 
Violet [2]. Violet is a distributed calendar system which 
provides simple relational views of  personal and public 
calendars. Figure 4 is a picture of  Violet's display-based 
user interface. A user "interacts with Violet by selecting 
items from the command menu at the bottom of  the 
screen. 

Violet is designed to operate in the environment 
shown in Figure 2. Each user has a personal computer, 
with a bit-map display, a pointing device, and a local 
network interface. Local network segments operate at 
2.84 megabits per second, and are connected together by 
gateways to form an internetwork. 

Violet's implementation of  file suites closely parallels 
the code fragments of  Section 3.3; it creates and 
manipulates uniformly weighted representatives. Each file 
suite is managed by a monitored module, consisting Of 
seven pages of  Mesa source code. Instead of  employing 
the directory suggested by Figure 1, a file suite name in 
Violet is a list of  the representatives that compose the 
suite. 

Section 3.1% stable file system is implemented by DFS 
[5, 7]. DFS is a system composed of  cooperating servers 
that provide a decentralized transactional file system. The 
interface to DFS closely parallels the model we presented 
in Section 3.1. At the File interface, we found that the 
read latency of  a 512 byte page on a local DFS (on the 
same local network as the user) was 75 milliseconds. 
When the server was located on a remote network, 
accessed through a 9.6 KB data connection, the read 
latency of  a 512 byte page was 650 milliseconds. By 
comparison, the read latency of  the user's local disk was 
65 milliseconds. 

Replication is accomplished below Violet's simulated 
virtual memory, as shown in Figure 3. Pages from local 

.and remote file suites are buffered in Level 2. 
Before we implemented the proposal of  Section 4.2, 

Violet exhibited the following undesirable behavior. 
Imagine that Users A and B are viewing the same 
calendar for a considerable length of  time, longer than 
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any minimum amount of  time which the file system 
guarantees for viewing data. User A decides to update his 
view. As soon as User A writes into the view, User B's 
transaction will break. User B is now denied access to the 
data, and User B's machine constantly requests access to 
fresh information to repaint its screen. Meanwhile, User 
A holds a write lock while he thinks at the keyboard. 
User B eventually times out User A's lock, breaking A's 
transaction. Both screens repaint with the old 
information, and no net progress is made. This problem 
was solved by implementing Section 4.2's proposal. 

5.2 Performance 
We present two sets o f  cost figures for our algorithm. 

The first set o f  costs, the number of  reads and writes, are 
inherent in the algorithm. The second set, the number of  
messages and round-trip delay times, are the result of  an 
implementation that uses DFS. 

Consideration should be given to the source of  the 
message and delay statistics. DFS was optimized for a 
local network, and thus some of  the figures below are 
misleading. DFS requires three messages for a single 
request due to the protocol it uses for duplicate 
suppression. In addition, DFS uses a three phase commit 
protocol, while only a two phase protocol is logically 
necessary. 

All of  the figures shown are for worst case behavior. 
We have assumed that each representative is stored on a 
separate server, r=w,  and there are at least two 
representatives. The Add Server figures refer to the cost 
of  causing other servers to participate in an existing 
transaction. The Inquiries line represents the cost of  the 
version number reads. Coordinator and Workers refer to 
the participants in commit processing. 

d: a round till5 delay time in the network 
m: the number  of representatives in a quorum 

Command Reads Writes Messages Delay 

Begin Transaction 3 d 
First Read m + l  0 8m-2 4d 

Add Server 0 0 5(m-1) 2d 
Inquiries m 0 3m d 
Read 1 0 3 d 

Subsequent Read 1 0 3 d 
Subsequent Write 0 m 3m d 
End Transaction 6 m +  3 3d 

Coordinator 3 d 
Workers 6m 2d 

6. Conclusion 

Level 
User Interface 

~ V i / W S ~ c  ale ndar Names 
Buffers 

e Suites 
\ 

T r a n s a c t i o n s  Conta ine r s  

~Neti° r ~ * ~  

Process Table Stable Files Volatile Files 

The Internal Structure of Violet 
Figure 3 

replication has resulted in a conceptually simple approach 
which guarantees serial consistency in a straightforward 
way and is relatively easy to implement. 

The facilities of  Mesa have allowed us to express and 
implement a complex concurrent control structure. We 
invite language designers attempting to provide facilities 
for concurrent programming to gauge the difficulty of  
implementing the algorithm in their language. 

The idea of  weighting votes will undoubtedly have 
applications outside of  replication algorithms. For 
example, when a decision has to be made by cooperating 
nodes with different probabilities of  being correct, 
weighting the nodes' responses will improve the 
probability that a correct decision is reached. 
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We have demonstrated a new algorithm for the 
maintenance of  replicated data that offers many benefits 
not provided by previous solutions. The introduction of  
weighted voting allows file suites to be synthesized with 
desired properties, including the presence of  temporary 
copies. The separation o f  consistency considerations from 
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We demonstrate that our algorithm, coupled with the 
consistency of  stable files, guarantees the consistency o f  
file suites, by showing that a file suite obeys TC1 and 
TC2, and thus is consistent. 

THEOREM. Our replication algorithm guarantees TC1 
and TC2. 

PROOF. ( T C l )  We have assumed that all writes to 
stable files in a transaction appear to occur atomically. 
File suites writes are transformed to stable file writes. 
The desired result follows. 

(TC2) Imagine that our algorithm does not guarantee 
TC2. This implies that one of  the file suite reads must 
not be fresh at commit time. This implies that some file 
suite read, if  repeated now, would not yield the same 
results as it originally did. However, a key property o f  
our algorithm is the guarantee that an updated datum 
will appear in a write quorum. But every read quorum 
and every write quorum have a non-null intersection. 
Hence at least o n e  of  our version number reads would 
not be fresh. But TC2 for the stable file system 
guarantees that all of  the representative reads are fresh. 
We have our contradiction. [] 

Appendix: Consistency Considerations 

Given the serial consistency [1] of  stable files, which 
we allowed ourselves in Section 3.1, it is relatively 
straightforward to demonstrate that file suites also provide 
serial consistency. To do so, we need to formalize 
sufficient conditions for serial consistency, and show that 
file suites satisfy these conditions. 

We formalize serial consistency as follows. A 
processing of  an act is said to be uninterrupted if  no other 
activities take place while it is in progress; a concurrent 
processing implies that other acts may be processed in 
parallel. An act is said to appear to occur atomically i f  the 
concurrent processing o f  the act has the same result that 
an uninterrupted processing would have produced. It 
follows that for a transaction mechanism to guarantee 
serial consistency a transaction must appear to occur 
atomically. A fresh read is one that, if  issued now, would 
have the same result that it originally had. We propose 
the following axioms as sufficient conditions to guarantee 
serial consistency: 

TC1 (Atomicity of  writes) All of  the writes o f  a 
transaction appear to occur atomically at transaction 
commit. 

TC2 (Atomicity of  reads) For a transaction to commit, 
at the instant the writes occur all of  the transaction's 
reads must be fresh. 

THEOREM. If  a transaction obeys TC1 and TC2 then the 
transaction appears to occur atomically. 

PROOF. By contradiction. We assume that the 
operations comprising transaction t did not occur 
atomically. TC1 guarantees the atomicity o f  writes. 
Thus there is some read r that did not appear to occur 
at commit time. This implies that r would have 
produced different results at commit time. TC2 does 
not permit this. [] 
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