
Weighted Voting for Replicated Data
David K. Gifford

Stanford University and Xerox Palo Alto Research Center

In a new algorithm for maintaining replicated data,
every copy of a replicated file is assigned some number of
votes. Every transaction collects a read quorum of r votes
to read a file, and a write quorum of w votes to write a file,
such that r + w is greater than the total number of votes
assigned to the file. This ensures that there is a non-null
intersection between every read quorum and every write
quorum. Version numbers make it possible to determine
which copies are current. The reliability and performance
characteristics of a replicated file can be controlled by
appropriately choosing r, w, and the file's voting
configuration. The algorithm guarantees serial
consistency, admits temporary copies in a natural way by
the introduction of copies with no votes, and has been
implemented in the context of an application system called
Violet.

Key Words and Phrases: weighted voting, replicated
data, quorum, file system, file suite, representative, weak
representative, transaction, locking, computer network

CR Categories: 4.3, 4.35, 4.33, 3.81

The work reported here was supported in part by the Xerox
Corporation, and by the Fannie and John Hertz Foundation.
Author's present address: Xerox Palo Alto Research Center, 3333
Coyote Hill Road, Palo Alto, California 94304.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACM 0-89791-009-5/79/1200/0150 $00.75

1. Introduction

The requirements of distributed computer systems
are stimulating interest in keeping copies o f the same
information at different nodes in a computer network.
Replication o f data allows information to be located close
to its point o f use, either by statically locating copies in
high use areas, or by dynamically creating temporary
copies as dictated by demand. Replication of data also
increases the availability of data, by allowing many nodes
to service requests for the same information in parallel,
and by masking partial system failures. Thus, in some
cases, the cost of maintaining copies is offset by the
performance, communication cost, and reliability benefits
that replicated data affords.

We present a new algorithm for the maintenance of
replicated files. The algorithm can be briefly
characterized by the following description:

- Every copy of a replicated file is assigned some
number of votes.

- Every transaction collects a read quorum of r votes
to read a file, and a write quorum of w votes to
write a file, such that r + w is greater than the total
number of votes assigned to the file.

- This ensures that there is a non-null intersection
between every read quorum and every write
quorum. There is always a subset of the
representatives of a file whose votes total to w that
are current.

- T h u s , any read quorum that is gathered is
guaranteed to have a current copy.

. - Version numbers make it possible to determine
which copies are current.

The algorithm has a number o f desirable properties:

It continues to operate correctly with inaccessible
copies.

150

- It consists o f a small amount o f extra machinery that
runs on top of a transactional file system. Although
"voting" occurs as will become evident later in the
paper, no complicated message based coordination
mechanisms are needed.

It provides serial consistency. In other words, it
appears to each transaction that it alone is running.
The most current version of data is always provided
to a user.

By manipulating r, w, and the voting structure o f a
replicated file, a system administrator can alter the
file's performance and reliability characteristics.

All of the extra copies of a file that are created,
including temporary copies on users' local disks, can
be incorporated into our framework.

The remainder of the paper is organized" as five
sections. Section 2 describes related work, and how the
algorithm differs from previous solutions. The algorithm's
environment, interface, and basic structure are introduced
in Section 3. Refinements are offered in Section 4,
including the introduction of temporary copies and a new
locking technique. The Violet System, which contains an
implementation of this proposal, and some performance
considerations are discussed in Section 5. The final
section is a brief conclusion. The appendix demonstrates
that our algorithm maintains serial consistency [1].

The ideas in this paper are illustrated in Mesa, a
programming language developed at the Xerox Palo Alto
Research Center [8]. Mesa is well suited for this task
because it contains integrated support for processes,
monitors, and condition variables [6]. To simplify this
presentation some nonessential details have been omitted
from the Mesa examples.

2. Re la ted W o r k

Previous algorithms for maintaining replicated data
fall into two classes. Some insist that every object has a
primary site which assumes responsibility for update
arbitration. Distributed INGRES [10] is such a system.
This technique is simple, but relatively inflexible. Others
do not employ distinguished sites for objects, and are
more complex than primary site algorithms. SDD-1 [9]
keeps all copies of an object up to date by sending
updates via a communication system that will buffer
messages over machine crashes. Thomas' proposal [11]
only requires that a majority of an object's copies be
updated, and includes voting.

Although we share the notion of voting, it is difficult
to directly compare our algorithm with Thomas' because
the two provide different services. Notably:

We guarantee serial consistency for queries (read-
only transactions), while Thomas' algorithm does
not.

- We do not insist that a majority of an object's copies
be updated.

- T h o m a s ' algorithm does not employ weighted
voters, which limits its flexibility.

- Thomas' algorithm is more complex because it
addresses consistency issues as well as replication
issues. We have separated the two, resulting in an
algorithm that is easier to reason about and to
implement.

- Our structure allows for the inclusion of temporary
copies.

3. The B a s i c Algor i thm

3.1 Environment
The concepts necessary for the implementation o f our

algorithm are modeled below as a stable file system. In
Section 3.3 we build our algorithm for replicated data
assuming the existence of such a system.

Our exposition uses two kinds of objects, files and
containers. Files are arrays of bytes, addressed by read
and write operations as described below. Containers are
storage repositories for files; they are intended to
represent storage devices such as disk drives. These
objects, and others introduced later in the paper, have
unique names. No two objects will ever be assigned the
same name, even if they are on different machines. We
will not concern ourselves further with how programs
acquire names, but will assume that the names of
containers and files of interest are at hand.

A file is logically an array o f bytes that can be
created, deleted, read, and written.
File.Create: PROCEDURE [container: Container.ID]

RETURNS [file: File.ID],

File.Delete: PROCEDURE [file: File.ID];

File.Read.' PROCEDURE [file: File.ID, startByte, count: INTEGER,
buffer: POINTER[;

File.Write: PROCEDURE [file: File.ID, startByte, count: INTEGER,
buffer: POINTE~,];,,

To keep tlie discussion simple, we assume that file
system primitive~ operate on remote and local files alike.
This can be accomplished by encoding a file's location or

• I
container in its, unique identifier, or by maintaining
location hints for'remote files. These details will not be
considered further.

Transactions are used to define the scope of
control\and failure recovery. A transaction is concurrency

a group of related file operations bracketed by a begin
transaction call and \a commit transaction call.

Transaction.Begin: PROCEDURE,

Transaction.Commit: PROCEDURE;

A transaction hides ~.gncurrency by making it appear
to its file operations that ~h~ is no other activity in the

\

151

system, a property known as serial consistency [1]. A
transaction hides undesirable events that can be recovered
from, such as a detected disk read error, or a server crash.
A transaction also guarantees that either all of its write
operations are performed, or none of them are.
Furthermore, once a transaction has committed, its effects
must be resilient to hardware failures, such as a server
crash. Every process has a single current transaction.
Thus, for an application program to use two transactions it
must create at least two processes. A forked process can
join its parent's transaction by calling:

Transaction.JoinParentsTransaction: PROCEDURE;

A file may be unavailable if the server it resides on is
down, or if there is a communication failure. If a read
operation is directed to a file that is unavailable, the
corresponding File.Read call will never return. Multiple
processes are used by our algorithm to allow it to proceed
in this case. Outstanding uncompleted reads, because
they never occurred, do not affect the ability of a
transaction to commit. The transaction system only
guarantees serial consistency for reads that have actually
completed when the transaction is committed. Likewise,
if a write operation is directed to a file that is unavailable,
the corresponding File.Write call will never return.
However, a transaction that attempts to commit with
unfinished writes will remain uncommitted until all of its
writes complete.

It is possible that a user will want to abort a
transaction in progress. A transaction abort, which can be
initiated by a user as shown below, will discard all of a
transaction's writes, and terminate the transaction.

Transaction.Abort: PROCEDURE,

It is also possible that the file system will
spontaneously abort a transaction because o f a server
crash, communication failure, or lock conflict.

This concludes our model set of primitive objects and
operations. The model abstracts a confederation o f
cooperating computers into a structure that has uniform
naming and a distributed transactional file system. As we
shall see in following sections, the abstractions introduced
here make the replication algorithm straightforward to
explain. Of course we believe that the model that we
have described is realizable and practical; in fact, the ideas
necessary for an implementation have received a great
deal of attention. Gray [4] provides a nice discussion of
two phase commit protocols, locking, and synchronization
primitives. Lampson and Sturgis [5, 7] describe an
implemented system that has all o f the properties our
model requires.

3.2 Interface
Our algorithm uses the facilities described in Section

3.1 to provide an abstraction called a file suite. This is a
file that is realized by a collection of copies, which we call
representatives because of the democratic way in which
update decisions are reached. When a file suite is created,

a description of its configuration must be supplied, which
includes r, w, the number o f representatives, the
containers where they should be stored, and the number
of votes each should be accorded.
Configuration: TYPE = RECORD [

r: INTEGER,
w: INTEGER,
v" ARRAY OF RECORD [container: Contai.er.ID, votes: INTEGER]].

File.CreateSuite: PROCEDURE [configuration: Configuration]
RE~RNS [suite: File.ID];

File.CreateSuite stores a suite's configuration in stable
storage. The structures stored would depend on the
algorithm's implementation, but Figure 1 shows one
possible alternative. A suite is cataloged by directory
entries, preferably more than one in case one o f them is
unavailable. Each representative has a prefix that
identifies all the other representatives in the suite and
their voting strength.

Once created, a file suite can be treated like an
ordinary file. The File.Read, File.Write, and File.Delete
operations specified in Section 3.1 can be used to
manipulate the abstract array o f bytes represented by a
file suite. Like file operations, all file suite operations are
part of some transaction. A file suite appears to be an
ordinary file in almost every respect.

Differences arise because a file suite can have
performance and reliability characteristics that are
impossible for a file. It is possible to tailor the reliability
and performance of a file suite by manipulating its voting
configuration. A high performance suite results by
heavily weighting high performance representatives, and a
very reliable suite results by heavily weighting reliable
representatives. A file suite can also be made very reliable
by having many equally weighted representatives. A
completely decentralized structure results from equally
weighting representatives, and a completely centralized
scheme results from assigning of all of the votes to one
representative. Thus the algorithm falls into both of the
classes described in Section 2.

Once the general reliability and performance of a
suite is established by its voting configuration, the relative
reliability and performance of Read and Write can be
controlled by adjusting r and w. As w decreases, the
reliability and performance of writes increases. As r
decreases, the reliability and performance of reads
increases. The choice of r and w will depend on an
application's read to write ratio, the cost of reading and
writing, and the desired reliability and performance.

The following examples suggest the diverse mix o f
properties that can be created by appropriately setting r
and w. In the table below we assume that the probability
that a representative is unavailable is .01.

Example 1 is configured for a file with a high read to
write ratio in a single server, multiple user environment.
Replication is used to enhance the performance of the
system, not the reliability. There is one server on a local
network that can be accessed in 75 milliseconds. Two
users have chosen to make copies on their personal disks

152

by creating weak representatives, or representatives with
no votes (see Section 4.1 for a complete discussion o f
weak representatives). This allows them to access the
copy on their local disk, resulting in lower latency and less
traffic to the shared server.

Example 2 is configured for a file with a moderate
read to write ratio that is primarily accessed from one
local network. The server on the local network is assigned
two votes, with the two servers on remote networks
assigned one vote apiece. Reads can be satisfied from the
local server, and writes must access the local server and
one remote server. The system will continue to operate in
read-only mode if the local server fails. Users could
create additional weak representatives for lower read
latency.

Example 3 is configured for a file with a very high
read to write ratio, such as a system directory, in a three
server environment. Users can read from any server, and
the probability that the file will be unavailable is very
small. Updates must be applied to all copies. Once again,
users could create additional weak representatives on their
local machines for lower read latency.

Example 1 Example 2 Example 3
Latency (msec)

Representative 1 75 75 75
Representative 2 65 100 750
Representative 3 65 750 750

Voting Configuration < 1, 0, 0 > < 2, 1, 1 > < 1, 1, 1 >
r 1 2 1
w 1 3 3

Read
Latency (msec) 65 75 75
Blocking Probability L0 X 10 -2 2.0 X 10 -4 1.0 X 10 -6

Write

Latency (msec) 75 100 750
Blocking Probability 1.0 X 10 -2 1.0 X 10 -2 3.0 X 10 -2

FileSuite: MONITOR [suiteName: File.ID] = BEGIN

VersionNumber: TYPE = {unknown, 1, 2, 3, 4, ... }

Set: TYPE = ARRAY OF BOOLEAN;

SuiteEntry: TYPE = RECORD [
name: File.ID,
version: VersionNumber,
votes: INTEGER];

suite: ARRAY OF SuiteEntry;

currentVersionNumbcr: VersionNumber;

firstResponded: BOOLEAN; -- true whenfirst representative has
responded

r: INTEGER; . . number o f votes required for a read quorum

w: INTEGER; -- number o f votes required for a write quorum

When FileSuite is instantiated, the number o f
representatives, their names, their version numbers, their
voting strengths, r, and w must be copied from some
representative's prefix into the data structure shown
above. This information must be obtained with the same
transaction that is later used to access the file suite, in
order to guarantee that it accurately reflects the suite's
configuration. Additional information, such as the speed
o f a representative, has been omitted from a SuiteEntry to
make the basic algorithm easier to understand.

To read from a file suite, a read quorum must be
gathered to ensure that a current representative is
included. After a file suite is first accessed, collecting a
quorum never encounters any delays. The operation o f
the collector which gathers a quorum is described in detail
below. From the quorum, any current representative can
actually be read. Ideally, one would like to read from the
representative that will respond fastest.

Read: PROCEDURE {file: File.ID, firstByte, count: INTEGER, buffer:
POINTER] =

BEGIN
-- select best representative

quorum: Set ~- CollectReadQuorumfl;
best: INTEGER ~-

SelectFastestCurrentRepresentative[quorum];
-- send request and wait for response

File.Read[suite[best].name, firstByte, count, buffer];
END;

3.3 The Algorithm
We present the basic algorithm in prose and

fragments of Mesa code. The prose is meant be a
complete explanation, with the Mesa code provided so the
reader can check his understanding of the ideas. All the
Mesa procedures shown below are part of a single
monitor called FileSuite. There is a separate instance o f
FileSuite for each transaction accessing a given suite.
ENTRY procedures manipulate shared data, and thus lock
the monitor. Careful use of public non-entry procedures
has been made so the monitor is never locked while input
or output is in progress, allowing FileSuite to process
simultaneous requests.

To write to a file suite, a write quorum is assembled: all of
the representatives in the quorum must be current so
updates are not applied to obsolete representatives. All of
the writes to the quorum are done in parallel. The first
write of a transaction increments the version numbers o f
its write quorum. Thus, all subsequent writes will be
directed to the same quorum, because it will be the only
one that is current. Determining which write is the first
one must done under the protection of the monitor, and is
not shown J.n the Mesa code. With the procedure below,
the result o f issuing two concurrent writes that update the
same portion of a file is undefined.

153

Write: PROCEDURE [file: File.ID, firstByte, count: INTEGER, buffer:
POINTER] =

BEGIN
-- select write q~orura

quorum: Set ,- CollectWriteQuorum[i;
i, count: INTEGER ~- 0;
process: ARRAY OF PROCESS;

-- send requests to all members of quorum, and wait for responses
FOR i IN [1..LENGTH[SUite]]

DO
IF quorum[i] THEN

BEGIN
count ,- count + 1;
process[count] 4- FORK

RepresentativeWrite[i, firstByte, count, buffer];
END;

ENDLOOP;
FOR i IN [1..count]

DO
JOIN process[i];
ENDLOOP;

END"

Rel~resentativeWrite: PROCEDURE [i, firstl~yte, count: INTEGER, buffer:
POINTER] =

BEGIN
-- we are acting on behalf o f our parent; join its transaction

Transaction.JoinParentsTransaction[];
UpdateVersionNumber[i];

-- write data on representative and inform parent process
File.Write[suite[i].name, firstByte, count, buffer];

END;

It is possible that a representative will become
unavailable while a file suite is in use, perhaps due to a
server crash. A simple solution to this problem, not
shown in the procedures above, is to abort the current
transaction if Read or Write take more than a specified
length of time. This will restart the suite, as described
below.

Quorum sizes are the minimum number o f votes that
must be collected for read and write operations to
proceed. It is possible to increase the performance o f a
file suite by artificially expanding a quorum with
additional representatives. Once again, to reduce
complexity, the procedures shown above do not use this
approach.

When a file suite is first accessed, version number
inquiries are sent to representatives. The information that
results is used as the basis for future collector decisions.
To determine the correct value o f a file suite's current
version number a read quorum must be established before
the file suite can entertain requests. All representatives
might not contain the current voting rules, but the
algorithm will stabilize with the correct rules before a read
quorum is established, as shown in Section 4.6. If a
representative is unreachable its version number read will
never return. This does not prohibit a user's transaction
from committing, as described in Section 3.1.

lnitiatelnquiries: PROCEDURE =
BEGIN
i: INTEGER;
--find out the state of representatives

FOR i IN [1..LENGTH[Suite]]
DO
Detach[FORK Inquiry[ill;
ENDLOOP;

-- set currentVersionNumber and voting rule~
[] ~- CoUectRead[1;

END;

Inquiry: PROCEDURE [i: INTEGER] =
BEGIN
-- we are acting on behalf o f our parent

Transaction JoinParentsTransactionfl;
--find out the state of a representative

NewRepresentative[ReadPrefixln formation[i]];
END;

ReadPrefixlnformation: PROCEDURE [i: IrCrEGER] RETURNS [i, version,
rP, wP; INTEGER, v: ARRAY OFINTEGER] =

BEGIN
(read version number, r, w, and array o f voting s trengths f r o m

the pre f ix o f representative i)
END;

NewRepresentative: ENTRY PROCEDURE [i, version, rP, wP: INTEGER. v:
ARRAY OF INTEGER] =

BEGIN
j: INTEGER;
-- update shared data and notify

suite[i].versionNumber ,- version;
-- if this is new information, update suite

IF version > currentVersionNumber THEN
BEGIN
currentVersionNumber ,- version;
r ~- rP; w *- wP;
FOR j IN [1..LENGTH[suite]]

DO
suite[jl.votes 4- viii;
ENDLOOP;

END;
firstResponded ,- TRUE;
BROADCAST CrowdLarger;

END;

The collector is used by evei3, file suite operation to
gather a quorum of representatives. Normally the
collector selects what it considers to be the quorum that
will respond the fastest, and returns immediately to its
caller. Occasionally one of two problems will arise. First,
it is possible that a read quorum of the suite's
representatives have not reported their version numbers.
In this case the collector can only wait for one o f them to
report in. The second potential problem is that a read
quorum have reported their version numbers, but there is
not a current write quorum. This can only occur if some
representatives have not reported their version numbers.
in this case if r < w the collector will initiate a background
process to copy the contents of the suite into one o~" the
obsolete representatives that has reported in. It is always
legal to copy the current contents of the file suite to an
obsolete representative. Note that the copy process will
be reading from the suite, in effect a recursive call, but
there will be enough votes for this read-only operation to
proceed. To minimize lock conflicts the background
process should be run in a separate transaction. The
background process signifies its completion by breaking
the transaction of its parent.

154

CrowdLarger: CONDITION; - - notifed when a new representative is available

CollectReadQuorum: ENTRY PROCEDURE RETURNS [q u o r u m : Set] =
BEGIN
i, j, votes: INTEGER:
index: ARRAY OF INTEGER;
- - until the first representative responds we don't have a seed for the voting r u l e s

UNTIL f i r s tResponded DO WAIT C r o w d L a r g e r ENDLOOP;
- - an endless loop that only returns when a quorum has been established

D O
-- i f w e h a v e a read quorum here. then the voting rules are current

index ~- SortRepresentativesBySpeedl];
q u o r u m 4- ALL[FALSE]; vo tes ,- 0;

- - s e e (f w e c a n f i n d a read quorum
FOR i IN [I..LENGTH[SUite]]

DO
j ~- index[i];
IF su i t e [j] . ve r s ionNumber ~ u n k n o w n THEN

BEGIN
quorum[j] ~- TRUE;
votes ~- votes + suite[j].votes;
IF votes > = r THEN RETURN[qUorum];
END;

ENDLOOP;
-- we can't f ind a quorum

WAIT CrowdLarger;
ENDLOOP;

END;

CollectWdteQuorum: ENTRY PROCEDURE RETURNS [q u o r u m : Set] =
BEGIN
i, j, votes, readVotes: INTEGER;
index: ARRAY OF INTEGER;
- - an endless loop that only returns when a quorum has been established

D O

index ,- SortRepresentativesBySpeedl];
q u o r u m ~- ALL[FALSE]; vo tes ,- r e adVo te s ~- 0;

- - s e e i f w e can f ind a write quorum
FOR i IN [1..LENGTH[SUite]]

DO
j ~- index[i];
IF suite[j].versionNumber~unknown THEN

BEGIN
readVotes 4- readVotes + suite[j].votes;
IF su i t e [j] . ve r s ionNumber = c u r r e n t THEN

BEGIN •
quorum[j] 4- TRUE;
votes ~- votes + suiteD].votes;
IF vo tes > = w THEN RETURN[qUorurrl];
END;

END;
ENDLOOP;

- - we ean 't f ind a write q u o r u m ; o r w e h a v e a read quorum update obsolete
representatives

IF r e a d V o t e s > = r THEN
BEGIN
FOR i IN [1..LENGTH[SUite]]

DO
IF s u i t e [i] . v e r s i o n N u m b e r ~ u n k n o w n AND

suite[i].versionNumber~currentVersionNumber
THEN
BEGIN
suite[i].versionNumber ,- unknown:
copy.StartBackground[from: suiteName, to:

suite[i].name];
END;

ENDLOOP;
END;

WAIT CrowdLarger;
ENDLOOP;

END;

If a user decides to abort his transaction, or if the
system spontaneously aborts a user's transaction the suite
is no longer in a well defined state. The version number
information it is holding is no longer guaranteed to be
serially consistent with ensuing operations, and must be
discarded and replaced by new inquiries. Asynchronous
representative writes or version number reads still in
progress must be aborted.

Initialize: PROCEDURE =
-- called at transaction abort and suite start-up
BEGIN
-- reset the suite

Reset[];
-- stop outstanding requests

AbortFileSuiteProcessesfi;
Transaction.Beginfi;
Initiatelnquiriesl];

END;

Reset: ENTRY PROCEDURE =
BEGIN
-- invalidate state information

FOR i IN [1..LENGTH[suite]]
DO
suite[i].versionNumber ,- unknown;
suite[i].votes ,- 0;
ENDLOOP;

firstResponded ,- FALSE;
currentVersionNumber ,- unknown;

END;

At transaction commit the module instance is deleted.

4. Refinements

4.1 Weak Representatives
We can incorporate temporary copies into the

algorithm by introducing representatives with no votes,
called weak representatives. Such a representative will not
change the quorums of a file suite, and thus can be
introduced at any time. However, it can be included in
any quorum and, when placed on a high speed storage
device, can improve the performance of a file suite.

Because a weak representative has no votes, it bears
no responsibility for the long term safekeeping of data.
There will always be a write quorum of other
representatives that contain current data. Thus, if an error
is detected while accessing a weak representative an
acceptable means of recovery is to invalidate it by setting
its version number to be unknown. This property allows
weak representatives to be stored outside o f the stable file
system. We have made the further simplification of
insisting that weak representatives be unshared. To insure
that users do not share weak representatives exclusive
locks are used.

The simplified recovery and concurrency
requirements of weak representatives allow us to store
them in a less general file system than the one outlined in
Section 3.1. In particular, they can be stored on a user's
personal computer using a very simple mechanism. After
a crash on a user's personal machine it is sufficient to
invalidate all weak representatives that are locked.

4.2 Lock Compatibility
A disadvantage that our algorithm has in comparison

with Thomas' is that locks are set by the stable file system
to guarantee serial consistency, which reduces the amount
of concurrency in the system. For example, a typical
locking structure that is used to guarantee serial
consistency has two types of locks, read and write. These

155

locks are set on data items implicitly in response to file
operations. The compatibility o f locks is specified by the
m a t r i x :

No Lock Read Write

No Lock Yes Yes Yes

Read Yes Yes No

Write Yes No No

A transaction is suspended if it attempts to set a lock that
is incompatible. This matrix corresponds to the familiar
rule that either n readers or one writer are permitted to
access a file simultaneously.

This locking rule potentially can introduce long
periods of time when information is unavailable. For
example, if a user controls the length of a transaction, he
can hold a write lock for a long period of time. This may
naturally occur as a user thinks at the keyboard. To
insure that no user monopolizes a file, a transaction will
be timed out if other users are waiting f~r a file it has
locked. A transaction that times out leaves files
unchanged, because it is aborted. The same mechanism
insures that cyclic lock dependencies (deadlocks) will be
resolved by aborting some transaction. Time-outs did not
provide an adequate solution in our environment, as we
describe in Section 5.1.

A property of serial consistency is that all o f a
transaction's writes appear to occur at transaction commit
time. We can take advantage o f this property to increase
the concurrency in our system. Writes appear to occur
when they are issued, but in fact are buffered until
commit time by the stable file system. A read following a
write will receive the write's data. When a user writes a
datum, an l-Write lock is set, for intention to write. At
commit time I-Write locks are converted to Commit locks,
and the writing actually takes place. The new lock
compatibility matrix is:

No Lock Read I-Write Commit

No Lock Yes Yes Yes Yes

Read Yes Yes Yes No

I-Write Yes Yes No No

Commit Yes No No No

With this revised locking matrix, data is only unavailable
for predictably short periods of time, during commit
processing. This results in increased concurrency, as we
discuss in Section 5.1. However, it may cause the later
abortion of a transaction.

We chose to make multiple I-Write locks
incompatible, because eventually one of the two
transactions would probably commit, and become
incompatible. Thus we chose not to postpone the
inevitable.

4.3 Lower Degrees of Consistency
We have assumed that the algorithm must be capable

of providing serial consistency. Lower degrees of
consistency are possible, and allow liberties to be taken,
for example, setting r to be 0. This corresponds to the

notion "give me the latest version you can find, but I
don't care if it isn't fresh". Certain applications that have
self-correcting characteristics, such as name lookup, can
use lower degrees of consistency. However, the
unexplicable behavior of lower degrees precludes their
widespread use. Gray et al [3] have explored the
properties o f various degrees o f consistency in detail.
Their Degree 3 consistency corresponds to serial
consistency. If our algorithm is run on top of a file system
that ensures Degree 0 or Degree 1 consistency, the
algorithm will guarantee the same consistency it sees, a
fact we will not prove here.

4.4 Size of Replicated Objects
The size of an object that is replicated should be

chosen to match the needs of an intended application.
For example, a data base manager might choose to
replicate relations, tuples, or indexes. Each replicated
object requires a version number. Because our algorithm
depends on a file's version number remaining unchanged
throughout a transaction, the smallest unit that can be
individually locked is a file.

4.5 Broken Read Locks
If the stable file system can break read locks to

resolve conflicts instead of aborting an entire transaction,
two positive effects result. First, fewer transactions are
aborted. Second, it is not necessary for a version number
to remain unchanged during a transaction. If it does
change, the broken read lock mechanism informs the
algorithm. The smallest lockable unit is no longer a file,
but instead is the smallest lockable unit supported by the
stable file system.

4.6 Reassigning Votes
As the focus of references to a file suite changes, it is

possible to update the file suite's voting configuration for
optimum performance. Unless the refinement proposed
in Section 4.5 is adopted, updating a suite's voting
configuration conflicts with any other use of the suite.
Section 3.3's inquiry process protects itself against such
changes by reading a suite's voting structure under the
protection of a transaction.

To change r, w, or the voting structure of a file suite
it is necessary to ensure that that there is a write quorum
under the new rules that is current. The change can then
be effected by updating the prefixes of a set o f
representatives that is the union of a current write quorum
and a future (under the new voting rules) write quorum.
We claim that regardless of the order representatives are
examined, the most recent voting rules will be discovered
before a read quorum is established. Imagine that a
transaction incorrectly assumes that an obsolete generation
of voting rules, G, is current. Then there is a set voting
rules, G + 1, that is one generation more recent. But when

156

G + 1 was established its rules were written into a write
quorum (under G). Therefore, the transaction would
have examined a representative that contained or once
contained G + I . If this representative did not contain
G + 1, then it contained a later generation o f the voting
rules. The version number mechanism in
NewRepresentative would have replaced G with one o f
these later generations. But we assumed that the
transaction did not find a later generation. We have our
contradiction.

4.7 Replicating Containers
Using the procedure outlined in Section 3.2, a user

specifies a collection o f containers to create a file suite.
This flexibility can complicate the operation of the system.
Imagine that User A creates a file suite on containers C
and D, and User B creates a file suite on containers D and
E. If container D fails it is possible that one or both o f
the users could continue to access their suites, and it is
also possible that both of the users could not proceed,
depending on the voting configuration. In short, a system
operator does not know what a failure of container D
implies. Replicated containers provide a solution to this
problem.
Container.CreateReplicated: PROCEDURE [configuration:

Configuration] RETURNS [replicatedContaiuer: Container.ID];

A replicated container appears to the user exactly like
an unreplicated one. However, when passed a replicated
container, File.Create creates a file suite instead o f a single
file. Thus, the user is unaware that replication is taking
place. We call the containers that compose a replicated
container base containers.

This approach has several benefits:

It is easy to determine the implications of removing
a base container from service. This allows the
system to be operated effectively.

Voting structures can be tailored to the
characteristics of the system's configuration by
knowledgeable system administrators.

Backup and archiving of replicated containers makes
sense.

- Replicated containers can be mounted and
dismounted as a unit. This is because all of a
replicated container's corresponding base containers
are easily identified.

4.8 Releasing Read Locks
Every lock that a transaction holds necessitates

communication at commit time to ensure that the lock is
still in force. Section 5's Initiatelnquires procedure sends
inquires to all representatives in the suite, to determine
their status. A read lock is thus obtained on every
representative that is available. An enhancement to the
algorithm would be to release the read locks on
representatives that are not used as part o f a quorum

before committing. This would reduce the amount o f
communication at commit time significantly.

4.9 Updating Representatives in Background
In conjunction with replicated containers, it is

possible to operate servers that update obsolete
representatives by examining a replicated container and
initiating appropriate transfers. This can be done when
there is surplus communication capacity in the
internetwork.

5. Implementation

5.1 The Violet System
We have implemented the algorithm in the context o f

a simple decentralized data management system called
Violet [2]. Violet is a distributed calendar system which
provides simple relational views of personal and public
calendars. Figure 4 is a picture of Violet's display-based
user interface. A user "interacts with Violet by selecting
items from the command menu at the bottom of the
screen.

Violet is designed to operate in the environment
shown in Figure 2. Each user has a personal computer,
with a bit-map display, a pointing device, and a local
network interface. Local network segments operate at
2.84 megabits per second, and are connected together by
gateways to form an internetwork.

Violet's implementation of file suites closely parallels
the code fragments of Section 3.3; it creates and
manipulates uniformly weighted representatives. Each file
suite is managed by a monitored module, consisting Of
seven pages of Mesa source code. Instead of employing
the directory suggested by Figure 1, a file suite name in
Violet is a list of the representatives that compose the
suite.

Section 3.1% stable file system is implemented by DFS
[5, 7]. DFS is a system composed of cooperating servers
that provide a decentralized transactional file system. The
interface to DFS closely parallels the model we presented
in Section 3.1. At the File interface, we found that the
read latency of a 512 byte page on a local DFS (on the
same local network as the user) was 75 milliseconds.
When the server was located on a remote network,
accessed through a 9.6 KB data connection, the read
latency of a 512 byte page was 650 milliseconds. By
comparison, the read latency of the user's local disk was
65 milliseconds.

Replication is accomplished below Violet's simulated
virtual memory, as shown in Figure 3. Pages from local

.and remote file suites are buffered in Level 2.
Before we implemented the proposal of Section 4.2,

Violet exhibited the following undesirable behavior.
Imagine that Users A and B are viewing the same
calendar for a considerable length of time, longer than

157

any minimum amount of time which the file system
guarantees for viewing data. User A decides to update his
view. As soon as User A writes into the view, User B's
transaction will break. User B is now denied access to the
data, and User B's machine constantly requests access to
fresh information to repaint its screen. Meanwhile, User
A holds a write lock while he thinks at the keyboard.
User B eventually times out User A's lock, breaking A's
transaction. Both screens repaint with the old
information, and no net progress is made. This problem
was solved by implementing Section 4.2's proposal.

5.2 Performance
We present two sets o f cost figures for our algorithm.

The first set o f costs, the number of reads and writes, are
inherent in the algorithm. The second set, the number of
messages and round-trip delay times, are the result of an
implementation that uses DFS.

Consideration should be given to the source of the
message and delay statistics. DFS was optimized for a
local network, and thus some of the figures below are
misleading. DFS requires three messages for a single
request due to the protocol it uses for duplicate
suppression. In addition, DFS uses a three phase commit
protocol, while only a two phase protocol is logically
necessary.

All of the figures shown are for worst case behavior.
We have assumed that each representative is stored on a
separate server, r=w, and there are at least two
representatives. The Add Server figures refer to the cost
of causing other servers to participate in an existing
transaction. The Inquiries line represents the cost of the
version number reads. Coordinator and Workers refer to
the participants in commit processing.

d: a round till5 delay time in the network
m: the number of representatives in a quorum

Command Reads Writes Messages Delay

Begin Transaction 3 d
First Read m + l 0 8m-2 4d

Add Server 0 0 5(m-1) 2d
Inquiries m 0 3m d
Read 1 0 3 d

Subsequent Read 1 0 3 d
Subsequent Write 0 m 3m d
End Transaction 6 m + 3 3d

Coordinator 3 d
Workers 6m 2d

6. Conclusion

Level
User Interface

~ V i / W S ~ c ale ndar Names
Buffers

e Suites
\

T r a n s a c t i o n s Conta ine r s

~Neti° r ~ * ~

Process Table Stable Files Volatile Files

The Internal Structure of Violet
Figure 3

replication has resulted in a conceptually simple approach
which guarantees serial consistency in a straightforward
way and is relatively easy to implement.

The facilities of Mesa have allowed us to express and
implement a complex concurrent control structure. We
invite language designers attempting to provide facilities
for concurrent programming to gauge the difficulty of
implementing the algorithm in their language.

The idea of weighting votes will undoubtedly have
applications outside of replication algorithms. For
example, when a decision has to be made by cooperating
nodes with different probabilities of being correct,
weighting the nodes' responses will improve the
probability that a correct decision is reached.

Acknowledgments. I would like to thank my advisors,
Butler Lampson and Susan Owicki, for their hard
questions and encouragement during the course of this
research. James Gray, Hector Garcia-Molina, Lawrence
Stewart, Howard Sturgis, and the referees provided
helpful comments and discussions.

We have demonstrated a new algorithm for the
maintenance of replicated data that offers many benefits
not provided by previous solutions. The introduction of
weighted voting allows file suites to be synthesized with
desired properties, including the presence of temporary
copies. The separation o f consistency considerations from

References
1. Eswaran, K.P. et al The Notions of Consistency and Predicate
Locks in a Database System, Comm. .4CM 19. 1l (November 1976),
pp. 624-633.
2. Gifford, D.K. Violet, An Experimental Decentralized System,
Integrated Office System Workshop, IRIA, Rocqueneourt, France,
November, 1979. Available as CSL Report 79-12, Xerox Palo Alto
Research Center, 1979.

158

3. Gray, J.N. et al Granularity of Locks and Degrees of Consistency
in a Shared Data Base, in Modeling in Data Base Management Systems,
North Holland Publishing, 1976, pp. 365-394.
4. Gray, J.N. Notes on Data Base Operating Systems, in Operating
Systems, A n Advanced Course, Lecture Notes in Computer Science 60,
Springer-Verlag, 1978, pp. 393-481.
5. Israel, J.E., Mitchell, J.G., and Sturgis, H.E. Separating Data
From Function in a Distributed File System, Second International
Symposium on Exploratory Systems, IRIA, Rocquencourt, France,
October, 1978.
6. Lampson, B.W., and Redell, D.D. Experience with Processes and
Monitors in Mesa, to appear in Proceedings of the Seventh Symposium
on Operating System Principles, ACM Operating Systems Review.
7. Lampson, B.W., and Sturgis, H.E. Crash Recovery in a
Distributed Data Storage System, Com~ ACM, to appear.
8. Mitchell, J.G. et al, Mesa Language Manual. CSL Report 79-3,
Xerox Palo Alto Research Center, February, 1979
9. Rothnie, J.B., Goodman, N., and Bernstein, P.A., The Redundant
Update Methodology ofSDD-I: A System for Distributed Databases
(The Fully Redundant Case), Rep. No. CCA-77-02, Computer
Corporation of America, 1977.
10. Stonebraker, M. Concurrency Control and Consistency of
Multiple Copies of Data in Distributed INGRES, 1EEE Trans. on Soft.
Eng. 5. 3 (May 1979), pp. 188-194
11. Thomas, R.H. A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases, ACM Trans. on Database
Systems 4, 2 (June 1979), pp. 180-209.

We demonstrate that our algorithm, coupled with the
consistency of stable files, guarantees the consistency o f
file suites, by showing that a file suite obeys TC1 and
TC2, and thus is consistent.

THEOREM. Our replication algorithm guarantees TC1
and TC2.

PROOF. (T C l) We have assumed that all writes to
stable files in a transaction appear to occur atomically.
File suites writes are transformed to stable file writes.
The desired result follows.

(TC2) Imagine that our algorithm does not guarantee
TC2. This implies that one of the file suite reads must
not be fresh at commit time. This implies that some file
suite read, if repeated now, would not yield the same
results as it originally did. However, a key property o f
our algorithm is the guarantee that an updated datum
will appear in a write quorum. But every read quorum
and every write quorum have a non-null intersection.
Hence at least o n e of our version number reads would
not be fresh. But TC2 for the stable file system
guarantees that all of the representative reads are fresh.
We have our contradiction. []

Appendix: Consistency Considerations

Given the serial consistency [1] of stable files, which
we allowed ourselves in Section 3.1, it is relatively
straightforward to demonstrate that file suites also provide
serial consistency. To do so, we need to formalize
sufficient conditions for serial consistency, and show that
file suites satisfy these conditions.

We formalize serial consistency as follows. A
processing of an act is said to be uninterrupted if no other
activities take place while it is in progress; a concurrent
processing implies that other acts may be processed in
parallel. An act is said to appear to occur atomically i f the
concurrent processing o f the act has the same result that
an uninterrupted processing would have produced. It
follows that for a transaction mechanism to guarantee
serial consistency a transaction must appear to occur
atomically. A fresh read is one that, if issued now, would
have the same result that it originally had. We propose
the following axioms as sufficient conditions to guarantee
serial consistency:

TC1 (Atomicity of writes) All of the writes o f a
transaction appear to occur atomically at transaction
commit.

TC2 (Atomicity of reads) For a transaction to commit,
at the instant the writes occur all of the transaction's
reads must be fresh.

THEOREM. If a transaction obeys TC1 and TC2 then the
transaction appears to occur atomically.

PROOF. By contradiction. We assume that the
operations comprising transaction t did not occur
atomically. TC1 guarantees the atomicity o f writes.
Thus there is some read r that did not appear to occur
at commit time. This implies that r would have
produced different results at commit time. TC2 does
not permit this. []

159

7395

56739

37462

32840

98345

DirectoryEntry

7395

56739

37462

32840

98345

Directory Entry

Representative
Version Number

r

w

Suite Size

File1

Votes1

File 2

Votes2

File 3

Votes3

o

o

o

File Suite Prefix

Rep resentative
Prefix

Prefix

Client
Data

Rep resentative
of File Suite

7395
File

37462

Container: 234

Votes: 2

1
Prefix

Client
Data

Rep resentative
of File Suite

7395
File

98345

Prefix

Client
Data

Representative
of File Suite

7395
File

56739

Container: 583

Votes: 1

Prefix

Client
Data

Representative
of File Suite

7395
File

32840

Container: 124

Votes: 1

Container: 328

Votes: 1

Example of a File Suite Configuration

Figure 1

160

D

TO Other Local Ne tworks

STA B LE

I

~ L e a s e d Line

FILE

-,,.

SYSTEM

D

Local Network

D
. , . .

STABLE

. , , . ..°.

FILE SYSTEM

Local Network

Typical internetwork Environment

Figu re 2

161

View: Seminars,csl

Viole t Calendar System

January 19?9

14 15 16 17 14 19 20
~unday Monday Tuesday Wednesday Thursday Friday ~aturday

10:30 - 12:00 13:15 - 15:00 15=45 - 17:00

Prof. Steven Dave Gif ford, Don Solfres,

Ward o f MIT CSL GSL

CSL Commons CSL Commons PARC

The MuNet: A Dealer= The Cafeter ia

Scalable Archi tecture Forum=

Multlproceszor of Violet Exploring the

Arohl teoture Light

. Fantazt lo

14:30 - 15:30

Dr. Robert

Bower, UCLA

& TRW

CSL Commons

Very Large

Scale

Integrated

Circuits=

Evolut ionary

or

Revolut ionary

for the lg80'z

15:00 - 16:00

Prof. Yutake

Toyozawa

GSL

Conference

Room #1077

81stabillt y and

Anomalies in

Resonant

Scatter ing of

Intense Light

? I I Quit I Next We~k I Previous Week I Set View] Create] Char, ge I Delete I Commit [Abort[Coloy

Figure 4

162

