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An informal description is given of three fault-tolerant 

clock-synchronization algorithms. These algorithms work 

in the presence of arbitrary kinds of failure, including "two- 

faced" clocks. Two of the algorithms are derived from 

Byzantine Generals solutions. 

1. I n t r o d u c t i o n  

Many multiprocess systems, especially process-control 

systems, require processes to maintain clocks that  are syn- 

chronized with one another  [4], [6], [11]. Physical clocks 

do not keep perfect time, but can drift with respect to one 

another, so the clocks must periodically be resynchronized. 

For such a process to be fault-tolerant,  the clock synchro- 

nization algorithm must work despite faulty behavior by 

some processes and clocks. 

The  purpose of this paper is to provide an infor- 

mal, intuitive description of three fault-tolerant clock- 

synchronization algorithms. We refer the reader to [7] for 

the details, including a precise s ta tement  of the problem, a 

rigorous description of the algorithms, and a proof of their  

correctness. 

It is easy to construct  fault-tolerant clock-synchroniza- 

tion algorithms if one restricts the type of faults that  are 

permitted.  However, it is difficult to find algorithms that  
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can handle arbitrary faul ts - - in  particular,  faults that  result 

in "two-faced" clocks. Consider a three-process system in 

which: 

• Process l ' s  clock reads 1:00 

• Process 2's clock reads 2:00 

• Process 3's clock is faulty in such a way that when 

read by Process 1 it gives the value 0:00 and when 

read by Process 2 it gives the value 3:00. 

Processes 1 and 2 are in symmetr ic  positions; each sees one 

clock that  reads an hour earlier than its own clock, and one 

clock that  reads an hour later. The  obvious synchronization 

algorithms, which are symmetric,  will not cause Processes 

1 and 2 to reset their clocks in a way that  would bring 

their values closer together.  The  study of this problem was 

initiated by the realization, during the design of the SIFT 

reliable aircraft control computer  [11], that  such malicious 

faults can occur in practice. 

The  algorithms described in this paper  assume that 

each process can read every other  process's clock. They 

work in the presence of any kind of fault, including such 

malicious two-faced clocks. We let a process's clock be 

part  of the process, so a clock failure is just  one kind of 

process failure. We consider only process failures, ignoring 

communicat ion line failures. At worst, the failure of a com- 

munication line joining two processes can be analyzed as if 

it were a failure of ei ther of the processes. Communication- 

line failure is briefly discussed in [7]. 

Our first algorithm is called an interactive convergence 

algorithm, since it causes correctly working clocks to con- 

verge, but the closeness with which they can be synchro- 

nized depends upon how far apart  they are allowed to drift 

before being resynchronized. In a network of at least 3 m +  1 

processes, it will handle up to m faults. 

The  remaining two algori thms are called interactive 
consistency algorithms, so named because the nonfaulty 

processes obtain mutually consistent views of all the clocks. 
In these algorithms, the degree of synchronizat ion-- the  

maximum difference between any two nonfaulty processes' 

c locks--  depends only upon the accuracy with which pro- 
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cesses can read each other's clocks and how far clocks can 
drift during the actual synchronization procedure. 

The interactive consistency algorithms are derived from 
two basic "Byzantine Generals" solutions presented in [5]. 
The first one requires at least 3m + 1 processes to handle 
up to m faults. The second algorithm assumes a special 

method of reading clocks, requiring the use of unforgeable 
digital signatures, to handle up to m faults with as few as 

2m + 1 processes. A recent algorithm of Halpern, Simons 
and Strong [3], using a similar method of reading clocks, 
will be better than our second Byzantine Generals solution 
in almost all practical situations. However, we feel that our 
algorithm is still worth describing because it makes some- 
what different assumptions about how clocks are read and 

because its derivation from the Byzantine Generals algo- 
rithm is interesting. 

Lundelius and Lynch [8] have recently described an 
interactive convergence algorithm. It requires a special 
method of reading clocks, so it is difficult to compare with 

our first two algorithms. However, in some situations, it can 
synchronize the clocks with greater accuracy than our al- 
gorithms. We discuss the various algorithms' clock-reading 
methods in Section 4, and, in the conclusion, we compare 
their efficiency and accuracy. 

Dolev, Halpern, and Strong [2] have recently proved 

that, like the original Byzantine generals problem, 3m + 1 
processes are required to allow clock synchronization in the 

presence of m faults if digital signatures are not used. Our 
first two algorithms are thus use the minimum number of 
processes. 

2. A lgor i thm CON 

Algorithm CON, our interactive convergence algorithm, 
is the simplest of the three algorithms. It assumes that the 

clocks are initially synchronized, and that they are resyn- 
chronized often enough so two nonfaulty processes' clocks 
never differ by more than 6. The value of 6 is chosen in ad- 
vance, as explained later. We ignore for now the question 
of how processes read each other's clocks. 

Algorithm CON is essentially the following. 

Each process reads the value of every process's 
clock and sets its own clock to the average of 

these values--except that if it reads a clock value 
differing from its own by more than 6, then it 

replaces that value by its own clock's val,te when 

forming the average. 

To see why this works, let us consider by how much two 
nonfaulty processes' clocks can differ after they are resyn- 
chronized. For simplicity, we ignore the error in reading 

another process's clock and assume that all processes ex- 
ecute the algorithm instantaneously at exactly the same 

time. 

Let p and q be nonfaulty processes, let r be any pro- 
cess, and let cp, and %, be the values used by p and q, 
respectively, as process r's clock value when forming the 

average. If r is nonfaulty, then cp, and cq, will be equal. If 
r is faulty, then %, and %, will differ by at most 36, since 
cp, lies within 6 of p's clock value, Cqr lies within 6 of q's 
clock value, and the clock values of p and q lie within 6 of 
one another. 

Let n be the total number of processes and m the num- 
ber of faulty ones, and assume that n > 3rn. Processes p 
and q set their clocks to the average of the n values cp, and 
cq,, respectively, for i -- 1 , . . . ,  n. We have car = Cq, for the 

n - m nonfaulty processes r, and [%, - ear ] <_ 36 for the 
m faulty processes r. It follows from this that the averages 
computed by p and q will differ by at most (3re~n)6. The 
assumption n > 3m implies (3re~n)6 < 6, so the algorithm 
succeeds in bringing the clocks closer together. Therefore, 
we can keep the nonfaulty processes' clocks synchronized 

to within 6 of one other by resynchronizing often enough 

so that clocks which are initially within (3re~n)5 seconds 
of each other never drift further that 5 seconds apart. 

It appears that by repeated resynchronizations, each 
one bringing the clocks closer by a factor of 3re~n, this al- 

gorithm can achieve any desired degree of synchronization. 
However, we have ignored two factors: 

I. The time taken to execute the algorithm. 

2. The error in reading another process's clock. 

The fact that a process does not read all other clocks 
at exactly the same time means that it must average not 
clock values, but differences between its clock value and the 
others. When process p reads process q's clock, it records 
the difference Aqa between q's clock and its own. More 
precisely, Aqa = Cq - %, where Cq is the value p reads on q's 
clock and % is the value it reads at the same time on its 
own clock. Letting Apa = 0 and defining 

Aqa if[Aqa 1< 6  
Aqa -= 

0 otherwise , 

process p resets its clock by adding the average of the n 
values Aqa to its own clock value. 

The error in reading clocks must also be taken into 
account in computing Aqa. Let e be the maximum error in 
reading the clock difference Aqa. If 6 is the maximum true 
difference between the two clocks, then the difference read 
by process p could be as great as 6 + c. Therefore, we nmst 
replace 6 by 6 + e in the above definition of Aqp. 

A careful analysis, given in [7], shows that the algorithm 
works if 6 is at least about (6m + 2)e + (3m + 1)pR, where 
p is the maximum error in the rates at which the clocks 
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run and R is the length of t ime between resynchroniza- 

tions. The  value of 6 is the maximum difference between 

two nonfaulty clocks, so this value represents the degree of 
clock synchronization maintained by this algorithm, l The  

value (6m + 2)c + (3m + 1)pR is the smallest value we can 

safely choose for 6; any larger value will also work, yielding 

a larger clock synchronization error. 

3. The Interactive Consis tency Al- 

gori thms 

In the Algori thm CON, a process sets its clock to the 

average of all clock values. Since a single bad value can skew 

an average, bad clock values must be thrown away. Another  

approach is to take a median instead of an average, since a 

median provides a good value so long as a minority of values 

are bad. However, because of the possibility of two-faced 

clocks, the processes cannot simply read each other 's  clocks 

and take a median; they must use a more sophisticated 

method of obtaining the values of other  processes'  clocks. 

We now investigate what properties such a method must 

have. 

The  median computed by two different processes will 

be approximately the same if the sets of clock values they 

obtain are approximately the same. Therefore,  we want the 

following condition to hold for every process r. 

CC1. Any two nonfaulty processes obtain approximately 

the same value for r ' s  c lock--even if r is faulty. 

While CC1 guarantees that  all processes will compute 

approximately the same clock values, it doesn ' t  ensure that  

the values they compute will be meaningful. For example, 

CCI is satisfied if every process always obtains the value 

l:00 for any process's clock. This synchronizes the clocks 

by effectively stopping them all. To make sure that  the pro- 

cesses' clocks keep running at a reasonable rate, we make 

tile following additional requirement for any process r: 

CC2. If r is nonfaulty, then every nonfaulty process obtains 

approximately the correct value of r 's  clock. 

If a majority of processes are nonfaulty, then this ensures 

that  the median clock value computed by any process is 

approximately equal to the value of a good clock. 2 

Conditions CCI and CC2 are very similar to the con- 
ditions that describe the Byzantine Generals problem [5]. 

In this problem, some process r must send a value to all 

processcs in such a way that the following two conditions 

are sati~sfi~'d; . 
INote that [7] shows only that at least this degree of synchronization 
can be obtained; we do not know if the worst-case behavior is really 
this bad. The same remark applies to the other error bounds quoted 
below. 

:More precisely, it is either approximately equal to a good clock's value 
or else lies between the values of two good clocks. 

IC1. All nonfaulty processes obtain the same value. 

IC2. If process r is nonfaulty, then all nonfaulty processes 
obtain the value that  it sends. 

Our two interactive consistency algorithms are modifi- 

cations of two Byzantine Generals solutions from [5] to 

achieve conditions CC1 and CC2. 

3 . 1 .  A l g o r i t h m  C O M ( m )  

Our first interactive consistency algorithm, denoted 

COM(m),  works in the presence of up to m faulty pro- 

cesses when the total  number n of processes is greater than 

3m. It is based upon Algori thm OM(m) of [5]. 

We first consider the case n -- 4, m -- l, and describe a 

special case of Algori thm OM(1) in which the value being 

sent is a number.  In this algorithm, process r sends its 

value to every other  process, which in turn relays the value 

to the two remaining processes. Process r uses its own 

value. Every other  process i has received three "copies" 

of this value: one directly from process r and the other 

two from the other  two processes, s The  value obtained by 

process i is defined to be the median of these three copies. 

To show that  this works, we consider separately the two 

cases: process r faulty and nonfaulty. First,  suppose r is 

nonfaulty. In this case, at least two of the copies received 

by any other  nonfaulty process p must equal the value sent 

by r: the one received directly from r and the one relayed 

by another  nonfaulty process. (Since there is at most one 

faulty process, at least one of the two processes that  relay 

the value to p must be nonfaulty.) The  median of a set of 

three numbers, two of which equal v, is v, so condition IC1 

is satisfied. When process r is nonfaulty, IC1 implies IC2, 

which finishes the proof for this ease. 

Next, suppose that  process r is faulty. Condition IC1 is 

then vacuous, so we need only verify IC2. Since there is at 

most one faulty process, the three processes other  than r 

must be nonfaulty. Each one therefore correctly transmits 

the value it receives from r to the other  processes. All of the 

other  processes thus receive the same set of copies, so they 

choose the same median, showing that  that  IC2 is satisfied. 

To modify Algori thm OM(1) for clock synchronization, 

let us suppose that  instead of sending a number, a process 

can send copy of a clock. (We can imagine clocks being sent 

from process to process, continuing to tick while in transit.) 

We assume that  sending a clock from one nonfaulty process 

to another  can per turb its value by at most some small 

amount E, but leaves it otherwise unaffected. However, a 

faulty process can arbitrarily change a clock's value before 
sending it. 

Sin case a process fails to receive a message, presumably because the 
sender is faulty, it can pretend to have received any arbitrary message 
from that process. See [5] for more details. 
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In Algorithm COM(1), we apply Algorithm OM(1) four 
times, once for each process r. However, instead of sending 
values, the processes send clocks. Exactly the same argu- 
ment used above to prove ICl and IC2 proves CCI and 
CC2, where "approximately" means to within O(~). 

The more general Byzantine Generals solution OM(m), 
which handles m faulty processes, n > 3m, involves more 
rounds of message passing and additional median taking. 
This algorithm can be found in [5]. Algorithm COM(rn) 
is obtained from OM(m) in the same way we obtained 
COM(1) from OM(1): by sending clocks instead of mes- 
sages. 

This completes our description of Algorithm COM(m), 
except for one question: how do processes send clocks to 

one another? The answer is that the processes don't send 
clocks, they send clock differences. As before, when pro- 
cess p reads process q's clock, it records the difference Aqp 
between its clock value and q's. Process p sends a "copy" 
of q's clock to another process r by sending the value Aqp, 
which means "q's clock differs from mine by Aqp". 

Now, suppose r receives a copy of q's clock from p in 

the form of a message (from p) saying "q's clock differs 
from mine by x ' .  How does r relay a copy of this clock to 
another process? Process r reasons as follows: 

• p tells me that q's clock differs from his by x. 

• I know that p's clock differs from mine by Ap,. 

• Therefore, p has told me that q's clock differs from 
mine by x + Ap, 

In other words, when r relays a clock difference sent to him 
by p, he just adds Ap, to that difference. 

This completes the description of Algorithm COM(m). 
A careful analysis, described in [7], reveals that this algo- 

rithm keeps the clocks of different processes synchronized 
to within approximately (6m + 4)e +pR, where, as before, 
is the maximum error in reading a clock, p is the maximum 
error in the running rate of a clock, and R is the length 
of time between resynchronizations. The first term of the 

error is caused by clock-reading errors that accumulate as 
messages are passed around; the second term is the amount 

that the clocks drift apart between resynchronizations. 

3 .2 .  A l g o r i t h m  C S M  

With no assumptions about the behavior of failed pro- 
cesses, it can be shown that the Byzantine Generals prob- 
lem is solvable only if n > 3m [9]. However, we can do 

better than this by allowing the use of digital signatures. 
More precisely, we assume that a process can generate a 

message which can be copied but cannot be undetectably 
altered. Thus, if r generates a signed message, and copies 

of that message are relayed from process to process, the ul- 
timate recipient can tell if the copy he receives is identical 

to the original signed message generated by r. With digital 
signatures, we are assuming that a faulty process cannot 
affix the signature of another process to any message not 
actually signed by that process. See [5] for a brief discussion 
of how digital signatures can be generated in practice. 

Algorithm SM(m) of [5] solves the Byzantine Generals 
problem in the presence of up to m faults for any value of 
n. ~ We first consider the case n -- 3, m = 1. In Algo- 
rithm SM(1), process r sends a signed message containing 
its value to the other two processes, each of which relays a 
copy of this signed message to the other. Each process p 
other than r winds up with a pile containing up to two prop- 
erly signed messages: one received directly from process r 

and another relayed by the third process. Process p may 
receive fewer than two messages because a faulty process 

could fail to send a message. The value process p obtains 
is defined to be the largest of the values contained in this 
pile of properly signed messages. (If no message is received, 
then some arbitrary fixed value is chosen.) 

For notational convenience, we pretend that r sends 
a signed message to itself, which it does not relay. It is 

easy to see that the piles of messages received by the three 
processes satisfy the following two properties. 

SM1. For any two nonfaulty processes p and q: every value 
in p's pile is also in q's. 

SM2. If process r is nonfaulty, then every nonfaulty pro- 
cess's pile has at least one properly signed message, 

and every properly signed message has the same 
value. 

Note that SMI holds for p or q equal to r because of our 
assumption that r sends a properly signed message to itself. 
Condition IC1 follows immediately from property SM1, 
and condition IC2 follows immediately from property SM2, 

proving that SM(1) is a Byzantine Generals solution. 

In the general Algorithm SM(m), messages are copied 
and relayed up to m times, with each relaying process 
adding its signature. When a process p receives a mes- 
sage with fewer than m signatures, p signs the message, 
copies it, and relays it to every process that has not al- 
ready signed the message. The reader can either verify for 
himself or find the proof in [5] that the stacks of messages 
received by the processes satisfy conditions SMI and SM2. 
(Again, we assume that r sends a signed message to itself, 
so SM1 is satisfied when p or q equals r.) Hence, defining 
the value obtained by a process to be the largest value in its 
pile gives an algorithm that solves the Byzantine Generals 
problem. 

To turn the Byzantine Generals solution SM(m) into 
the clock-synchronization Algorithm CSM(m), we again 
send clocks instead of messages. Moreover, we allow pro- 
cesses to sign the clocks that they send. As before, we 
4The problem is vacuous if there are more than n - 2 faults. 
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assume that a clock's value is perturbed by at most some 
small amount c when sent by a nonfaulty process. How- 
ever, instead of allowing a faulty process to set a clock to 
any value when relaying it, we assume that the process can 

turn the clock back but not ahead. More precisely, we as- 
sume that, when relaying a clock, a faulty process can set 

it back arbitrarily far, but can set it ahead by at most E. 

We now use the same relaying procedure as in Algo- 
rithm SM(m) to send copies of r's clock to all processes. 
For simplicity, we assume that all clocks run at exactly the 
same rate, except for the perturbations they receive when 
being relayed, s Each process keeps a copy of every prop- 
erly signed clock, so after all the relaying has ended, it has 
a pile of copies of r 's clock. (We assume that r keeps a 

signed copy of its own clock.) Since a nonfaulty process 
perturbs a clock's value by at most E when relaying it, the 
same reasoning used to prove SM1 and SM2 shows that the 
following properties are true of these piles of copies of r's 

clock. 

CSM1. For any two nonfaulty processes p and q : if p has 
a properly signed clock with value c, then q has a 

properly signed clock whose value is within me of 
C. 

CSM2. If process r is nonfaulty and its clock has the value 
c, then every other process has at least one properly 
signed clock whose value is within ~ of c, and every 

properly signed clock that it has reads no later than 
c+m~. 

The value that a process obtains for r 's clock is defined to be 
the fastest clock in its pile. Conditions conditions CC1 and 
CC2 then follow immediately from CSM1 and CSM2, where 
"approximately" means to within O(m~). Hence, this pro- 
vides a fault-tolerant clock-synchronization algorithm. 

To finish the description of Algorithm CSM(rn), we 
must describe how clocks can be signed and relayed in such 
a way that they are disturbed by at most ~ when relayed 

by a nonfaulty clock and can be set forward at most e by a 
faulty one. As in Algorithm SM(m), we require a method 
for generating unforgeable signed messages. 

We first assume that processes and transmission lines 

are infinitely fast, so a message can be relayed from pro- 
cess to process in zero time. We use this assumption to 
construct a method of relaying clocks for which e equals 
zero. The message that r sends, and that all the processes 
relay, is r 's clock value cr. The message c, acts like a clock 
whose value is now c,. A nonfaulty process relays this value 
in zero time, so the clock is sent with no perturbation. A 
SRemoving this assumpt ion  adds  a te rm of order  pS to the max imum 

difference between the clocks, where S is the t ime taken to execute the 

a lgor i thm and  p the m a x i m u m  er ror  in the clock rates.  In most  cases 

this t e rm is much smaller  than  the difference due to the pe r tu rba t ion  

faulty process cannot change the value of the clock, since 
the value is contained in a signed message; all it can do is 
delay sending the value. This is equivalent to stopping the 
clock while holding it, which is tantamount to turning the 
clock back. Hence, the assumption about sending clocks is 
satisfied, with zero perturbation. 

In practice, processes and transmission lines are not 
infinitely fast. Instead, we assume that a message received 
by a nonfaulty process will be copied, signed, sent, and 
received at its destination in time "74-E, for some constant '7. 
By counting the signatures affixed to a message, a process 
knows how many times the message has been relayed, so it 
can correct the clock value in the message by adding the 
appropriate multiple of "7. The net effect is to introduce 
an error of at most ~ each time the message is relayed. 
The detailed analysis of [7] shows that this algorithm can 
maintain clocks synchronized to within about (m+6)E+pR, 
where once again p is the maximum error in the clock rate 

and R is the interval between resynchronizations. 

4. Reading  Clocks 

To synchronize their clocks, processes have to read each 

other's clock values. Errors in reading those values limit the 
closeness with which clocks can be synchronized. We let E 

denote the worst-case error in reading a clock value. The 
degree of closeness with which an algorithm can synchro- 

nize clocks depends upon e, and it is tempting to use tfiis 
dependence ~ as a measure for comparing different clock- 
synchronization algorithms--the algorithm that can syn- 
chronize to within the smallest factor of e being the best. 

Such comparisons can be misleading. Different algo- 
rithms require different methods of reading clocks, and 
these different methods can yield very different values for 
E. Algorithms CON and COM can use any method of 
clock reading, so they can always be implemented with 
the smallest possible value of ~. However, this is not true 
of Algorithm CSM or the algorithms of Lundelius [8] and 

Halpern [3]. 

In practice, the value of ~ is determined primarily by 

the system level at which clock reading takes place. The 
value of E can be quite small if clock reading is performed by 
the operating system. For example, c is a few microseconds 
in SIFT [ll]. However, if clock reading is done by a high- 
level program in a multiprogramming environment, E can 

be tenths of a second or more. 

In Algorithm CSM and the algorithms of Lundelius and 
Halpern, one process reads another's clock by" determining 
the arrival time (on its own clock) of a message. Thus, E is 
the maximum uncertainty in the elapsed time between the 
generation and receipt of the message. The algorithms dif- 
fer in how the messages are generated. In the Lundelius al- 
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, gorithm [8], they are simply sent by a process when its own 

clock reaches a certain value. However, in Algori thm CSM 

and the Halpern algorithm, some of the messages are gen- 

erated in response to the arrival of other  messages, and the 

generation of these messages requires a nontrivial compu- 

tation. Thus, of these three algorithms, Lundelius's is more 

likely to be implementable at a lower system level. 

Comparison of these three algorithms with Algorithms 

CON and COM is difficult, since the lat ter  two algorithms 

make no assumptions about how clocks are read. However, 

the following theoretical observations seem to be relevant. 

It is likely that, at some level, for process p to read the 

clock of another process q, p must measure the arrival t ime 

of a message sent by q. This "message" might be a sin- 

gle voltage change traveling along a wire. Since p and q 

are asynchronous, q's message must be stored in a buffer, 

which p reads to determine if the message has arrived. The 

frequency with which p checks the buffer introduces a fun- 

damental  source of e r ro r - -when  when p sees a message, it 

knows only that the message arrived some time since it last 

read the buffer. Thus, the t ime between successive reads of 

the buffer provides a lower bound on ~. 

The  best that a process can do to reduce the t ime be- 

tween successive reads is to do nothing but repeatedly read 

the buffer. Therefore, E cannot be smaller than the time 

needed to read a message buffer. Moreover, the following 

clock-reading procedure seems to indicate that  this bound 

is theoretically achievable. To read process q's clock, pro- 

cess p sends q a request message, then continually examines 

the buffer looking for q's reply. Process q eventually replies 

to this message by sending p a message with its current 

clock value. In principle, it should be possible to determine 

the time it takes q generate the message, as well as the 

travel t ime of the message, with arbitrary accuracy. Then, 

is equal to the error in p's determination of when the mes- 

sage arrived, which is the time it takes to read the buffer. 

(Actually, p must wait only a fixed length of time for q's re- 

ply, since q might be faulty, so there must also be a t imeout 

tegt in q's "waiting loop".) 

Algorithm CSM and the Lundelius and Halpern algo- 

rithms require a process p to measure the arrival t ime of 

me~sages sent concurrently by different processes. Fault- 
tolerance requires that  p maintain a separate buffer for 

messages from different processes, since a faulty process 

could "jam" communication to a shared buffer by contin- 

ually sending messages. If a process is implemented by a 

single processor, then it must cyclically scan all its input 

bu[h,rs. Thus, ( is at least n times the time needed to read 

a ~ingle buffer, where n is the number of processes. Thus, 
the limiting value of ~ for these algorithms is n times as 

great as the limiting value for Algorithms CON and COM, 

which can use an?' method of clock reading. 

By r(,gulating when processes send their messages, AI- 

gorithm CSM can be modified so every process waits for 

only a single message at a time. For example, fixed time 

slots can be allocated to each communicat ion link, with 

each message sent at the beginning of the first available 

t ime slot after its generation. The  t ime between successive 

slots just  has to be greater than the maximum difference be- 

tween processes' clocks. This  adds a known delay to every 

message, which does not significantly affect the accuracy 

of the algorithm. It should be possible to modify the Lun- 

delius algorithm in a similar way. However, this trick does 

not seem to work for the Halpern algorithm, since the algo- 

r i thm relies on the ability to receive messages concurrently 

from different processes. 

5. C o n c l u s i o n  

We have presented three clock-synchronization algo- 

ri thms and noted that  they keep the clocks synchronized 

to within the following tolerances, where m is the degree of 

fault tolerance, E is the maximum error in reading a clock, 

p is the maximum error in the clock rate, and R is the time 

between successive resynchronizations. 

Algori thm CON: (6m + 2)~ + (3m + 1)pR 
Algori thm COM: (6m + 4)c + pR 
Algori thm CSM: (m + 6)e + pR 

(Note that  the expression for Algori thm CON is more com- 

plicated because it is an inteFactive convergence algorithm.) 

Algori thm CON is the simplest, requiring only that 

each process read every other  process's clock. It appears 

to be slightly bet ter  than Algori thm COM if one is inter- 

ested in maintaining the closest possible synchronization, 

without regard to how frequently resynchronization is per- 

formed. However, Algori thm CON requires much more fre- 

quent resynchronization than the other  two, by an asymp- 

totic factor of 3m + 1, to maintain the same degree of 

synchronization.e 

The  corresponding synchronization error for the Hal- 

pern algorithm [3] is 2E + pR. While Lundelius and Lynch 

do not give the synchronization error for their  algorithm in 

a comparable form, it appears to have the value 4c + 4pR. 
(As in Algorithm CON, the extra  factor appears in front of 
the pR term because this is an interactive convergence algo- 

rithm.) However, as we have indicated, the values of c are 

not the same for the different algorithms. Algorithms CON 

and COM have the smallest value of E, since they can use 

any method of clock reading. The  values of e for the other  

three algorithms c o u l d b e  larger in some circumstances. 
6While the above numbers are simply the best bounds on the synchro- 
nization errors that we have been able to find and do not necessarily 
reflect the actual worst-cause performance of the algorithms, we believe 
that it is in the nature of an interactive convergence algorithm to re- 
quire more frequent resynchronization than an interactive consistency 
algorithm. 
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Our two interactive consistency algorithms are based 
upon particular Byzantine Generals solutions. Dolev [1] has 
generalized Algorithm OM of [5] to the case in which pro- 
cesses cannot send messages directly to all other processes. 
His algorithm is similar enough to Algorithm OM that it 
can be transformed into a clock-synchronization algorithm 
by the same method we used to transform Algorithm OM 
into Algorithm COM, thereby yielding a generalization of 
Algorithm COM to the case when a process cannot read 
every other process's clock. The intuitive reasoning used 
above works the same way. However, we have not analyzed 
the resulting algorithm to determine its precise properties. 

Many other Byzantine Generals solutions have been 
found that improve in some way upon the ones in [5]-- 
usually by reducing the number of messages. Our two in- 
teractive consistency algorithms generate about n ra+l mes- 
sages, while there are more recent algorithms in which the 
number of messages is polynomial in n and m. A survey 
of these results can be found in [10]. All the current algo- 
rithms that do not use signed messages require more rounds 
of message passing than Algorithm OM. 

One should compare these message requirements with 
those of the known algorithms not based upon Byzantine 
Generals solutions--namely, Algorithm CON and the algo- 
rithms of Halpern and Lundelius. The last two require, in 
the worst case, about n: messages. Algorithm CON does 
not require any message passing per se, just the reading of 
every clock by each process. If this is done by sending clock 
values in messages, then it too requires about n 2 messages. 

Process-control systems, which we see as the main ap- 
plication of our clock-synchronization algorithms, use a 
small number of processes, so the number of messages is 
not prohibitive. However, the number of rounds of message 
passing is significant, since it increases the time needed to 
perform the clock synchronization. Therefore, for process- 
control applications, Algorithm OM is the best Byzantine 
Generals algorithm not using signed messages, so it is the 
best candidate for converting to a clock-synchronization al- 
gorithm. 

In any event, our method of constructing Algo- 
rithm COM depends very strongly on the nature of Algo- 
rithm OM. Other Byzantine Generals solutions might lead 
to clock synchronization algorithms that are better than Al- 
gorithm COM in some applications, but we don't know how 
to construct such algorithms. Neither do we not know how 
to construct clock-synchronization algorithms from signed- 
message Byzantine Generals solutions other than Algo- 
rithm SM. However, the Halpern algorithm, which is not 
derived from a Byzantine Generals solution, seems to make 
this an uninteresting problem. 
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