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A liveness property asserts that program execution eventually reaches some desirable state. While 
termination has been studied extensively, many other liveness properties are important for concurrent 
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1. INTRODUCTION 

This paper presents a method for proving properties of concurrent programs. By 
using the word "proving", we are committing ourselves to logical rigor--a method 
based upon an unsound logical foundation cannot be said to prove anything. 
However, our purpose is to develop a practical method for verifying that programs 
do what they are supposed to do, not to develop logical formalism. While we 
hope that logicians will find this work interesting, our goal is to define a method 
that programmers will find useful. 
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456 S. Owicki and L. Lamport 

There is a rather large body of sad experience to indicate that a concurrent 
program can withstand very careful scrutiny without revealing its errors. The 
only way we can be sure that  a concurrent program does what we think it does 
is to prove rigorously that it does it. We have found that  there are two kinds of 
properties one usually wants a concurrent program to satisfy: 

--Safety properties, which state that  something bad never happens--that  is, that  
the program never enters an unacceptable state. 

--Livenessproperties, which state that  something good eventually does happen-- 
that  is, that the program eventually enters a desirable state. 

Some familiar safety properties are 

Partial correctness: if the program begins with the precondition true, then it 
can never terminate with the postcondition false. 

Absence of deadlock: the program never enters a state in which no further 
progress is possible. 

Mutual exclusion: two different processes are never in their critical sections 
at the same time. 

The only liveness property that  has received careful formal treatment is 
program termination. However, concurrent programs are capable of many more 
sins of omission than just failure to terminate. Indeed, for many concurrent 
programs--operating systems are a prime example--termination is known by the 
less flattering name of "crashing", and we want to prove that  it does not happen. 
For such programs other kinds of liveness properties are important, for example: 

- -Each request for service will eventually be answered. 
u A  message will eventually reach its destination. 
- -A process will eventually enter its critical section. 

A number of methods have been proposed for proving safety properties of 
concurrent programs, but formal proof of liveness has received little attention. 
For sequential programs, termination is the one liveness property that  has been 
studied extensively. It is typically proved by using some sort of inductive argu- 
ment to show that  every loop terminates, allowing us to conclude that  the entire 
program terminates. In addition, the intermittent assertion method [1, 13] pro- 
vides an informal approach to deducing more general liveness properties of 
sequential programs. 

There has been some work on proving particular liveness properties of concur- 
rent programs, such as absence of livelock [8] or the existence of cyclically 
recurring states [4]. Perhaps the first formal method for proving general liveness 
properties was given by Lamport in [11], where the idea of a proof lattice first 
appeared. However, his proofs of even simple liveness properties were unbearably 
long and hard to follow. The fundamental innovation of our method is the 
combining of Lamport's proof lattices with Pnueli's temporal logic [16]. This 
permits rigorous proofs that  are easy to understand because they capture our 
intuitive understanding of how the program works. Flon and Suzuki [3] also 
present a formal proof system for liveness properties, but it is not clear how to 
use it in constructing program proofs. 
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982. 
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Liveness propert ies involve the temporal  concept  "eventual ly".  Th e  most  
obvious way to formalize this concept  is to use predicate calculus formulas 
containing a " t ime" variable. This  approach was used by Francez and Pnueli  [4] 
in their  proof  method  for cyclic properties.  However,  the explicit int roduct ion of 
t ime in this way leads to complicated formulas tha t  t end  to obscure the underlying 
ideas. To  avoid this, temporal  logic was used by Burstall  [1] for reasoning about  
sequential  programs and by Pnueli  [15, 16] for concurrent  programs. 

Tempora l  logic is an extension of ordinary logic to include certain kinds of 
assertions about  the future.  The  form tha t  we u se - - t h e  "l inear t ime logic" 
described in [10]--has two temporal  operators: 

[] - -  meaning "now and forever";  
O - -  meaning "now or somet ime in the future".  

The  following are some examples of temporal  assertions using these operators: 

x > 0 - - " t he  variable x is positive now"; 
[:](x > 0 ) - - "x  is positive now and forever"; 
~ ( x  > 0 ) - - "x  is positive now or will be positive some t ime in the future".  

Tempora l  logic provides the logical foundat ion for our  proof  method.  
One of the most  impor tant  concepts in concurrent  processing is fairness. 

Fairness means  tha t  every process gets a chance to make progress, regardless of 
what  o ther  processes do. Fairness is guaranteed by  a t ruly concurrent  system in 
which each process is run  on its own processor: one process cannot  hal t  the 
physical execution of a process running on a different processor. Mult iprogram- 
ming systems, in which a single processor is shared by several processes, may  or 
may  not  provide fairness, depending on the scheduling algori thm used for proc- 
essor allocation. 

In proving safety properties,  it does not  ma t t e r  whether  one assumes fairness--  
any safety proper ty  tha t  holds under  fair scheduling will also hold under  unfair 
scheduling. However,  many  programs satisfy their  liveness requi rements  only if 
the underlying implementat ion guarantees fairness. A methodology tha t  cannot  
prove these propert ies will be inadequate  for dealing with t rue concurrency,  so 
fairness must  be par t  of a general me thod  for dealing with concurrent  programs. 
Fairness has proved to be a stumbling block for formal systems. 1 Our temporal  
logic approach makes it easy to express fairness propert ies  and use them in our 
proofs. 

The  paper  is organized as follows. In the next  section we present  a simple 
programming language tha t  serves to illustrate the method.  We then  introduce 
temporal  logic and describe the proof  lattices. Section 4 summarizes the proof  of 
safety propert ies  and their  expression in temporal  logic. Section 5 presents  the 
basic axioms tha t  define the liveness propert ies  of our programming language, as 
well as derived inference rules and examples of proofs. Section 6 develops a more 
complex example: liveness proofs for a mutual  exclusion algorithm. Section 7 

' For example, attempts to apply denotational semantics have had to cope with the fact that fairness 
introduces discontinuity: the limit of a sequence of fair executions ~, in which a certain process gets 
to run (1/n)th of the time is an unfair execution in which the process never runs. 
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illustrates how languages with synchronization primitives can be handled, pre- 
senting axioms for semaphore operations and an example of their use. Section 8 
concludes with a discussion of what we have and have not done. 

2. THE PROGRAMMING LANGUAGE 

The programming language used in this paper is a very simple one, containing 
only assignment, while,  and cobeg in  statements; concatenation (sequencing); 
and variable declarations at the beginning of the program. These language 
features are illustrated by the program of Figure 1, which is otherwise of no 
particular interest. Except for the cobegin,  the language constructs are familiar 
and require no explanation. A cobeg in  statement 

cobegin S1 m oo. m Sn eoend  

causes the statements $1 . . . .  Sn to be executed concurrently. The Si's are often 
called processes .  Since variable declarations can only appear at the beginning of 
a program, all variables are global to the entire program. In Section 7, we consider 
additional synchronizing statements. 

Besides the cobegins,  the other novel feature of the program of Figure 1 is the 
angle brackets. In order to specify a concurrent program, one must state which 
actions are atomic. Atomic actions are indivisible and represent the finest grain 
of process interleaving. We indicate the atomic actions by enclosing them in angle 
brackets. In this paper, we require that  each assignment and each test in a whi le  
statement be an atomic action. The angle brackets are therefore redundant, but 
we use them anyway to remind us of the grain of atomicity that we are assuming. 
Nonatomic assignments and tests are considered in [9] and cause no fundamental 
difficulty. 

The purpose of this paper is to describe a method of proving things about 
programs. It is rather important that  such a proof method allow one to prove 
only things that  are true. To make sure that  this is the case, one must be able to 
determine precisely what is true about the programs written in our language. To 
this end, we describe the semantics of the programming language somewhat 
informally, but carefully enough so that  there should be no ambiguity about the 
meaning of programs. 

We define the semantics of a program to be the set of all possible executions of 
that program. More formally, the semantics of a program is given by a set ~ of 
execu t ion  sequences .  Each element of ~ is a sequence of p r o g r a m  states.  A 
program state s consists of two parts: 

- -An assignment of a value to each program variable. 
- -A control component r e a d y  (s) consisting of a set of atomic actions. (When the 

program is being executed, the next action to be performed is chosen from 
r e a d y  (s).) 

One example of a state for the program of Figure 1 is 

( x  = 1, y = 3 ; r e a d y  = { e , g } ) .  

Here the variables x and y are assigned the values 1 and 3, respectively, and the 
control component indicates that there are two possibilities for the next action to 
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integer x ,  y ; 

a : < x : = O > ;  

b.' cobegin 
c: < y := 0 >; 

d.' cobegin 
e: < y := 2 * y > 

coend 
! 

g: while < y = 0 > do 
coend ; 

j :  < x := 2 * y > 

I f i  < y := y +  3> 

h: < x := x + 1> od 

Fig. 1. A concu r r en t  p rogram.  

be executed: 

- - t h e  assignment s ta tement  ( y := 2 * y ) ; 
- - t h e  (y  = 0) test  in the w h i l e  loop. 

To save space, we omit  the variable names when writing states, so the above 
state is wri t ten (1, 3; {e, g} ). Note  how we use program labels to describe the 
r e a d y  componen t - - in  particular, how the label a t tached to a w h i l e  s ta tement  
denotes the test  operation. 

An execution sequence So, sl . . . .  in ~ represents  a program execution tha t  starts 
in state So, performs one atomic action to reach state sl, performs another  atomic 
action to reach state s2, and so on. I t  simplifies our  notat ion if all the e lements  of 

are infinite sequences. Therefore,  if the program execution terminates,  we 
repeat  the last state indefinitely to get an infinite sequence. This  is purely a 
notat ional  convenience and has no deep significance. 

As an example, consider the following execution sequence for the program of 
Figure 1. It  s tarts  with initial values of 2 for x and 7 for y, with control  at  the 
beginning of the program. 

s0-- (2, 7; {a}); 

Sl ~- ( 0 ,  7; (c, g}) ;  

s2 = (0, O; {e, f, g}) ;  

s3 -- (0, O; (e ,  f, h } ) ;  

s 4 =  (1,0; {e, f , g ) ) ;  

s5 = (1, 3; {e ,g}) ;  

s6 = (1, 6; {g) ) ;  

s7 = (1, 6; ( j } ) ;  

s s  = s 9  = Slo . . . . .  (12, 6; ( } ) .  

The  reader  should observe the following things about  the control  component:  

- - T h e r e  is no explicit "control  po in t "  at  the beginning of a co b eg in .  Thus,  af ter  
execution of s ta tement  a, the control  component  becomes (c, g}. 
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- - T h e  fact that one process in a cobeg in  has terminated is indicated by the 
absence of any action from that process in the r e a d y  component. Thus, the 
component {e, g} in s~ indicates that the second process of the inner cobeg in  
has terminated. 

--After  execution of the body of a whi le  statement, control returns to the 
beginning of the statement. There is no control point between the end of the 
body and the test, and the r e a d y  component does not distinguish the initial 
entry point from the "looping" point. 

- -Execution terminates when the r e a d y  component is empty. 

In general, a poss ib le  p r o g r a m  s ta te  is one in which 

--All variables are assigned legal values--for example, an integer variable is not 
assigned a boolean value. 

- - T h e  r e a d y  component consists of a set of concurrent atomic actions, where two 
actions are concurren t  if they occur in different processes of some cobeg in  
statement. 

The second condition means that  we exclude r e a d y  components like {a, c} for 
the program of Figure 1, because the program control structure does not permit 
concurrent execution of statements a and c. 

The set Z of all possible execution sequences consists of all sequences So, sl, 
• .. satisfying the following requirements: 

- - V a l i d  s ta r t i ng  state:  So is a possible program state. 
- - T r a n s i t i o n :  for each i > 0, si is obtained from si-~ by executing one atomic 

action in r e a d y  (si-1). The only atomic actions in our language are the assign- 
ment statement and whi le  test, which affect the program state in the obvious 
way. 

- - F a i r n e s s :  if a is an atomic action in r e a d y ( s i ) ,  then, for some j > i, sj is 
obtained by executing a. 

Although in our example we happened to pick a starting state in which control 
was at the beginning of the program, this is not necessary. We allow an execution 
sequence to start in any possible program state. Thus, the sequence s4, s~ . . . .  is 
also a possible execution sequence for the above program. In fact, for any 
program, the set Z has the following tai l  c losure property: 

if o = So, s l , . . ,  is in Z, then for all i > 0, o ~i~ is in Z, where a ~i~ = si, si+~, • • • 

Tail closure implies that  the set of possible computations from a given state is 
completely determined by the state itself and not by the history of the compu- 
tation in reaching that  state• Defining ~ in this way, rather than restricting 
ourselves to executions that  begin in a distinguished starting state, will prove 
convenient when using temporal logic. 

Although we speak of "concurrent" programming, we are actually modeling 
concurrency by a nondeterministic interleaving of atomic actions from the various 
processes. With an appropriate choice of atomic actions, almost any concurrent 
system can be accurately modeled this way, in the sense that  any safety or 
liveness properties proved about the model will be true of the system. For 
example, a network of processes that  communicate by exchanging messages can 
be modeled by using a process to represent the communication medium. This 
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process communicates with the transmitting and receiving processes via shared 
variables, and its local variables represent the state of the medium. With this 
structure it is easy to model a variety of assumptions about message transmis- 
s i o n - f o r  example, that the process delivers all messages safely or that it may 
nondeterministically lose or modify some of them. 

The nondeterministic interleaving in our model of concurrency means that  we 
make no assumption about the relative speeds of the processes. However, fairness 
implies that  no processor is infinitely faster than another. This requirement is 
met, for example, by an implementation that  provides a separate processor to 
execute each active process and fair scheduling of concurrent accesses to shared 
variables. 

The set of execution sequences in our model includes all those that  could occur 
when the program is executed fairly. In any implementation, the relative speeds 
of the processors and the scheduling mechanism would further constrain the 
possible execution sequences. However, as long as all execution sequences are a 
subset of those in Y., any results proved by the methods in this paper will be true 
for that implementation. 

3. TEMPORAL LOGIC 

Temporal logic provides us with both a language for stating program requirements 
and a set of rules for reasoning about them. We now give a precise formulation of 
temporal logic in terms of program execution sequences. The version of temporal 
logic we use was introduced by Pnueli in [16] and is the "linear time" logic 
discussed in [10]. Our exposition here is brief, and we refer the reader to the 
above papers for more details. 

3.1 Immediate Assertions 

Temporal logic assertions are built up from immediate  assertions, using the 
ordinary logical operators A, V, and - and the temporal operators [] and ~. An 
immediate assertion is a boolean-valued function of the program state. It may 
refer to program variables or to the control component. We write s ~ P to denote 
that  the immediate assertion P has the value true for state s. In this case we say 
that  P holds  for s, or that s satisfies P. For example, s m x = 1 means that  the 
program state s assigns the value 1 to x. 

We use three kinds of immediate assertions to refer to the control component: 
at A,  in A ,  and after A,  where A is an executable program statement. The 
immediate assertion at A holds for all states where control is at the beginning of 
A. Since the executable statements in our programming language are formed 
using assignment, while,  and cobeg in  statements and concatenation, we can 
defme the immediate assertion at A as follows: 

s ~ a t A  if and only if 

IF A is a : ( x : = e )  T H E N  a E r e a d y ( s ) ;  

IF A is a: whi le  (B)  do C o d  T H E N  a E ready(s); 

IF A is cobeg in  B1 | . . .  | Bn coend  

T H E N  (s ~ at  BI) and . . .  and (s ~ at  Bn); 

IF A is B ; C  T H E N  s ~ a t B .  
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Thus,  for the p rogram of Figure 1 we see tha t  s ~ a t  b if and only if r e a d y ( s )  = 
{c, g},  and s ~ a t  d if and only if e and f a r e  bo th  in r e a d y ( s ) .  

Note  tha t  the immedia te  assert ion at  A refers to a specific instance of a 
s ta tement .  For  example,  if there  were two " ( x  := x + 1)" s t a t emen t s  in the  
program,  then  we could not  ~_~te "a t  ( x := x + 1)" because there  would be no 
way of knowing which "{ x :-- x + 1 )" s t a t emen t  it referred to. We use s t a t emen t  
labels to refer  unambiguous ly  to individual s ta tements .  

T h e  immedia te  assert ion in A holds for s ta tes  where  control  is a t  the beginning 
of A or somewhere  inside A. In  o ther  words, s ~ in A if and only if e i ther  s 
at  A or there  is some componen t  B of A such tha t  s ~ a t  B.  For  example,  in the  
p rog ram of Figure 1, the  following relat ions hold: 

in a = a t  a; 

in g =- a t  g v a t  h; 

in d -  a t  e v a t  f; 

in b =- a t  c v in d v i n g .  

T h e  immedia te  assert ion af ter  A holds for s ta tes  where  control  is immedia te ly  
af ter  s t a t emen t  A. T h e  following definition uses an "ou tward  recursion" to define 
af ter  A in t e rms  of the  p rogram s t a t emen t  B tha t  immedia te ly  contains A. 

s ~ a f ter  A if and only if 

IF  A is the  entire p rogram T H E N  ( r e a d y ( s )  = ~); 

IF B is w h i l e ( C )  d o A o d  T H E N  s ~ a t B ;  

IF  B is cobeg in . . . |AII . . ,  coend 

T H E N  ( s ~ a f ter  B )  or [(s ~ in  B )  and not  ( s ~ in A)];  

IF B i s A ; C  T H E N  s ~ a t C ;  

IF B is C ; A  T H E N  s ~ a f t e r B .  

Note  tha t  being af ter  the  body  of a w h i l e  loop is the same as being at  the  loop 
test.  Also, being af ter  a process A in a c o b e g i n  s t a t emen t  means  ei ther  t ha t  the  
entire c o b e g i n  has  finished or tha t  some of its processes (but not  A)  are still 
being executed. 

3.2 Temporal Assertions 

Where  an immedia te  assert ion is a funct ion on p rog ram states,  a t empora l  
assert ion is a boolean-valued funct ion on execution sequences.  We write o ~ P to 
denote  tha t  t empora l  assert ion P is t rue  for the  execution sequence a. For  the  
remainder  of this discussion, we let a denote  an a rb i t ra ry  execution sequence So, 
sl . . . . .  We think of t ime as being composed  of an infinite sequence of discrete 
instants,  where  si represents  the s ta te  of  the  computa t ion  a t  t ime  i. We refer  to 
t ime 0 as the  present  and any  t ime greater  t han  0 as in the  future.  

An immedia te  assert ion is in te rpre ted  as a t empora l  assert ion t ha t  refers  to the  
present .  More  precisely, this  means  t ha t  an immedia te  assert ion P (a s t a t e m e n t  
abou t  p rogram states) is in te rpre ted  as a t empora l  assert ion (a s t a t e m e n t  abou t  
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execution sequences) by the convention 

a ~ P if and only if So ~ P. 

Tempora l  assertions tha t  refer  to the future as well as the present  are obtained 
with the temporal  operators  [] and O. The  assertions formed with these operators  
always refer  to both  the present  and the future.  Th e  unary  operator  [] means  "for 
all present  and future t imes it will be t rue that" ,  and O means  "a t  some present  
or future t ime it will be t rue that" .  Recalling tha t  a (i) is the execution sequence 
si, si+l . . . . .  we can define these temporal  operators  formally as follows, where P 
denotes any temporal  assertion: 

a ~ [Np if and only if Vi _ O: o (i) ~ P ;  

a ~ O P  if and only if 3i  _ O: o (i~ ~ P. 

Note  tha t  0 is the dual of [ ] - - t h a t  is, ~ P  =- - D ~ P .  
Since temporal  assertions are formed from immediate  assertions using the 

temporal  operators  [] and 0 and the ordinary logical operations A, V, and - ,  the  
definition of o ~ P for any temporal  assertion P is completed as follows: 

a ~ ( P A Q )  if and only if ( o ~ P )  a n d ( o ~ Q ) ;  

a ~ ( P v Q )  if and only if ( o ~ P )  o r ( a ~ Q ) ;  

o ~ ( ~ P )  if and only if it is not  the case tha t  a ~ P. 

In discussing temporal  formulas, we often use English phrases like " P  holds at  
t ime i"  instead of the formula o (i) ~ P. Unfortunately,  there  is no English tense 
tha t  combines the present  and the future in the way tha t  the temporal  operators  
do. To  smooth our  syntax, we take a l iberty with the English language by using 
the future tense in such cases, as in the s ta tement  " P  will be t rue now or in the 
future".  

We now consider some examples of temporal  logic formulas. As usual, we define 
D (logical implication) in terms of V and ~. If  P and Q are immedia te  assertions, 
then  the temporal  assertion P D []Q means  "if  P is t rue now, then  Q will always 
be t rue".  More  precisely, P D []Q is t rue for an execution sequence if P is false in 
the first state or Q is t rue in all states. This  type of assertion expresses a basic 
safety proper ty  and is discussed fur ther  in Section 4. 

As a second example, consider the formula V](I D [ ] I ) .  It  means  tha t  if I ever 
becomes true, then  it will remain true forever. An immediate  assertion I for which 
this is t rue is said to be invariant. Invariants  play a major  role in the proof  of 
safety properties.  

As a final example, consider the assertion []( P D (> Q). I t  states tha t  if P ever 
becomes true, then  Q will be t rue at the same t ime or later. Such an assertion 
expresses a liveness proper ty  and is discussed in Sect ion 5. This  part icular  formula 
is very useful, and we abbreviate  it as P ~ Q (pronounced " P  leads to Q") :  

(P~-, Q) - R(PD <>Q). 

(Manna and Waldinger [13] use a similar notation with the following meaning: if 
P is true at some time, then Q is true at some time, not necessarily later.) 
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3.3 Theorems 

Our definition of o ~ P says what it means for the assertion P to be true for the 
single execution sequence o. However, we are not interested in properties that  
hold for some individual execution sequence, but in properties that  hold for all of 
a program's execution sequences. We say that  an assertion P holds for a program 
if it holds for all execution sequences of that  program-- that  is, for all elements of 
~. For example, P ~ Q is true for a program if and only if any execution of the 
program that  reaches a state where P is true must subsequently reach a state 
where Q is true. To prove that  an assertion holds for a program, we use two kinds 
of reasoning: 

--Reasoning based upon the semantics of the individual program under consid- 
eration. 

--Reasoning that is valid for all programs. 

The second kind of reasoning is what temporal logic is all about, and it is the 
subject of this section. We return to the semantics of programs in subsequent 
sections. 

Temporal logic incorporates all the laws of reasoning of ordinary logic--that  is, 
the axioms and rules of inference of the propositional calculus. For example, if we 
can prove that  the temporal assertions P and P D Q are true for a program, ttien 
we can conclude that the assertion Q is true for that  program. 

We also assume some method of reasoning about immediate assertions. For 
example, the rules of integer arithmetic allow us to prove that  (x > 1) ~ (x > 0) 
for any integer x. It is often possible to prove theorems about program variables 
that depend only on the types of values they may take on. Such theorems must 
be true of any program state in which the variables have the appropriate type. 
Thus (x > 1) D (x > 0) must be true for all states of a program in which x is an 
integer variable. Our first law allows us to use these theorems in our temporal 
logic reasoning. 

TL1. I f  the immediate assertion P is true for every program state, then P is 
true for the program. 

PROOF. This follows immediately from the fact that  an immediate assertion is 
true for an execution sequence if and only if it is true for the first state of that  
sequence. [] 

Logicians will note that the proofs of this and the remaining laws are actually 
proofs of their validity, based upon the semantic definitions given above. Since 
our goal is to familiarize the reader with temporal logic as an intuitively mean- 
ingful way of reasoning, not to overwhelm him with rigor, our proofs will be quite 
informal. We hope the reader will come to feel, as we do, that  this kind of 
temporal logic reasoning is simple and natural. All our laws can also be proved 
using the formal temporal logic system given in [16]. 

The following law states that  a true assertion must always be t rue - - t ru th  is 
eternal. 

TL2. I f  the temporal assertion P is true for a program S, then []P is true 
for S. 
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PROOF. Let  a be any execution sequence of S. Th e  tail closure proper ty  implies 
tha t  for any i, o (i) is also an execution sequence of S. By  the hypothesis,  this 
means  tha t  o (i) ~ P for all i. I t  then  follows immediately from the definition of 
o ~ [ ] P  tha t  [ ] P  is t rue for any execution sequence of S. 0 

Note  tha t  TL2 does not imply tha t  the assertion P ~ [ ] P  is t rue for all 
programs. This  assertion states tha t  if P is t rue at the beginning of an execution 
sequence, then  it is t rue at  all points in the execution sequence. TL2 states tha t  
if an assertion is t rue at  the beginning of all execution sequences, then  tha t  
assertion must  be true throughout  all execution sequences. 

Connoisseurs of logic will observe tha t  TL1 and TL2 are inference rules. Th e  
rest  of our laws are theorems: temporal  assertions tha t  are true for every program. 
We have not  tr ied to give a complete set of theorems for proving propert ies  of 
programs, merely  ones we use in our  examples. With a little experience, the 
reader  will be able to decide easily for himself  whether  a temporal  logic formula 
he would like to use as a theorem is really true. 

TL3. [ ] ( P D Q )  ~ ( P ~ Q ) .  

PROOF. Consider an execution sequence o which satisfies the left-hand side of 
TL3. For  this execution sequence, whenever  P is true, Q is t rue too. Thus,  
whenever  P is true, Q will be t rue "now or in the future",  which means  tha t  
P ~ * Q . O  

TL4. (a) O(P /~ Q) =- ([]P /~ []Q). 
(b) ~ ( P  k/ Q) - (<>P k/ <>Q). 

PROOF. To  establish TL4(a),  we must  show that ,  for any execution se- 
quence o, 

o ~ C](P/S Q) if and only if o ~ ([3P/~ [3Q). 

This  is easily verified by expanding the definition of I3: 

o ~ D ( P  A Q) -= Vi  _> 0: o ~i~ ~ ( P / ~  Q) 

- Vi  ___ 0: (o ~° ~ P ) / ~  (o ~i~ ~ Q) 

- ( v i  ___ o: o "~ m P ) / ~  ( v i  ___ o: o ~i~ ~ Q) 

-= (o ~ [ 3 P ) / k  (o ~ OQ) 

- o ~  ([]P/k[]Q). 

TL4(b) follows from TL4(a) using the duality of [] and ~.  0 

Note  tha t  the formula 

R ( P  V Q) - ( [ ]P  V [3Q) 

is not  a theorem. The  left-hand side is t rue for an execution sequence if e i ther  P 
or Q is t rue at  all times, while the r ight-hand side is t rue if e i ther  P is t rue at  all 
t imes or Q is t rue at all times. The  implication 

( [ ]P  W [3Q) ~ [ ] (P  W Q) 

is a theorem of temporal  logic, but  we will not  use it. 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982. 



466 • S Owicki and L Lamport  

TL5. ( [qP/~ [q(P D Q)) D C]Q. 

PROOF. If  P and P D Q are true at  all times, then  Q must  be t rue at all 
times. 0 

TL6. <>P V [3 -P .  

PROOF. This  is an obvious consequence of the duali ty of [] and <>--that is, <>P 
-- ~ R - p .  D 

T h e o r e m  TL6 states tha t  in every execution sequence, ei ther  P is always false 
or there  is some t ime at  which it is true. This  fact  is f requent ly  used in proofs of 
liveness properties: to prove <>P, one first shows tha t  Q - P  leads to a contradict ion 
and then  applies TL6. 

The  next  theorem states tha t  ~-~ is a transit ive relation. 

TL7. ((P ~-~ Q) /~  (Q ~* R)) D (P ~-~ R). 

PROOF. Recall tha t  U ~ ,  V holds for an execution sequence a if and only if 
whenever  U holds at  t ime i, there  is some t ime j _ i at  which V holds. Hence,  P 
~- Q implies tha t  if P is t rue at  t ime i, Q is t rue at  some t ime j _ i. Likewise, Q 
~-, R implies tha t  if Q is t rue at  t ime j ,  R is t rue at  some t ime k _ j .  Together ,  
they  imply tha t  if P is t rue at  t ime i, R is t rue at  some t ime k >_ i; so P ~ R is 
true. 0 

TL8. ((P ~-~ R ) / ~  (Q ~* R)) D ((P V Q) ~'~ R). 

PROOF. This  follows immediate ly  from the fact tha t  if (P V Q) holds at  some 
time, ei ther  P or Q holds at  tha t  time. 0 

TL9. [q(P V Q) D (C]P V <>Q). 

PROOF. Consider an execution sequence in which P V Q is always true. If  there  
is any point  at  which P is false, Q must  be t rue at  tha t  point. Therefore ,  e i ther  P 
is always t rue or there  is a point  at  which Q is true. [3 

TL10. [ (P /~  [qQ) ~-~ R]  D [ (P /~  [3Q) ~ ,  (R/~ DQ)].  

PROOF. Consider an execution sequence tha t  satisfies the left-hand side of the 
implication. If P is t rue at  t ime i and Q is t rue from t ime i on, then  R must  be 
t rue at  some t ime j _ i. Since Q will still be t rue at  t ime j and from then  on, this 
implies tha t  the execution sequence satisfies the r ight-hand side of the implication 
as well. 0 

3.4 Proof Lattices 

Suppose tha t  the following three  assertions hold for a program: 

(1) P ~* (R1 V R2); 
(2) R1 ~-~ Q; 
(3) R2 ~-~ Q. 

Writing the meaning of each of these assertions as follows: 

(1) if P is t rue at  any t ime i, then  R1 or R2 will be t rue at  some t i m e j  _ i; 
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P 

J \  
R1 R2 Fig. 2. Lattice proof outline for P ~-. R. 

(2) if R1 is t rue at  any t ime j,  then  Q will be t rue at  some t ime k >__j; 
(3) if R2 is t rue at  any time]', then  Q will be true at  some t ime k _>j, 

we easily see tha t  they  imply the t ru th  of P ~-, Q. Formally, this is proved by a 
simple application of TL8 and TL7. 

This  reasoning is conveniently described by the proof lattice of Figure 2. Th e  
two arrows leading from P to R1 and R2 denote the assertion P ,¢* (R1 V R2); 
the arrow from R1 to Q denotes the assertion R1 ~* Q; and the arrow from R2 to 
Q denotes the assertion R2 ~- Q. 

In general, we make the following definition: 

Definition. A proof lattice for a program is a finite directed acyclic graph in 
which each node is labeled with an assertion, such tha t  

(1) There  is a single entry node having no incoming edges. 
(2) There  is a single exit node having no outgoing edges. 
(3) If  a node labeled R has outgoing edges to nodes labeled R1, R 2 , . . . ,  Rk, then  

R ~,  (R1 V R2 V " ' "  V Rk) holds for the program. 

The  third condition means that ,  if R is t rue at some time, then  one of the Ri 
must  be true at  some later  time. By a generalization of the informal reasoning 
used for the lattice of Figure 2, it is easy to see tha t  if the ent ry  node assertion is 
t rue at  some time, then  the exit node assertion must  be true at  some later  time. 
This  is s tated and proved formally by the following theorem: 

THEOREM. I f  there is a proof lattice for a program with entry node labeled P 
and exit node labeled Q, then P ~-, Q is true for that program. 

PROOF. We prove the following hypothesis,  which clearly implies tha t  P ~-, Q. 

Induction Hypothesis. If  r is a node in the lattice with label R, then  R ~,  Q. 

The  proof  is by induction on the length of the longest pa th  from node r to the 
exit node. (Since the lattice has only one exit, e i ther  r is the exit or there  is a pa th  
from r to the exit.) If  the longest pa th  has length 0, the hypothesis  clearly holds, 
since then  r is the exit node and R = Q. 

Now assume tha t  the hypothesis  holds for nodes whose longest pa th  to the exit 
has length n _> 0, and consider a node r whose longest pa th  to the exit has length 
n + 1. Let  the nodes reached by outgoing edges from r be labeled R1, R 2 , . . . ,  Rk. 
By definition of a proof  lattice, we have 

R ~ ,  (R1 V R2 X/ "'" V RD. 

By  the induction hypothesis,  Ri ~ Q for i = 1 . . . . .  k. Applying TL8 k - i t imes 
yields R~ k/ " ' "  k/Rk ~-~ Q. It  now follows from TL7 tha t  R ~-, Q. [3 
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Proof lattices in which every node is labeled by an immediate assertion were 
introduced in [11]. The significant change introduced in this paper is the use of 
more general temporal assertions in the lattices--in particular, assertions involv- 
ing the [] operator. 

Consider a lattice containing a node labeled R with arcs pointing to nodes 
labeled R 1 , . . . ,  Rk. This construction implies that if R ever becomes true during 
execution of the program, one of the Ri must subsequently become true. Now 
suppose that R has the form P / k  [3Q. Saying that  R is true at some time means 
that  P and Q are true then, and that Q will be true at all future times. In 
particular, Q must be true when any of the Ri subsequently become true. Hence, 
we could replace each of the Ri by Ri/k  r--]Q. More formally, it follows from TL10 
that  condition (3) in the definition of a proof lattice still holds if each Ri is 
replaced by Ri /k r--lQ. 

We see from this that if r-]Q appears as a conjunct ("and" term) of an assertion 
in a proof lattice, then NQ is likely to appear as a conjunct of the assertions 
"lower down" in the lattice. It is therefore convenient to introduce the following 
notation, which makes our proof lattices clearer. For any assertion Q, drawing a 
box labeled OQ around some of the nodes in the lattice denotes that  RQ is to be 
conjoined to the assertion attached to every node in the box. This notation is 
illustrated by the proof lattice of Figure 3, which is expanded in Figure 4 into the 
same proof lattice written without the box notation. 

The lattice in Figure 3 also illustrates the typical structure of a proof by 
contradiction for P ~,  Q. In the first step, the proof is split into two cases based 
on the temporal logic theorem 

P ~* [Q V (P/k D-Q)] .  

This theorem can be proved using TL3, TL6, and TL10. Intuitively, it is true 
because starting from a time when P is true, either 

• Q will be true at some subsequent time, or 
• - Q  will be true from then on. 

The former possibility is represented by the right-hand branch, the latter by the 
left-hand branch. Within the box labeled F3-Q is some argument that  leads to a 
contradiction, which appears at the node labeled false. Note that false ,,~ Q 
follows from TL1-TL3, since false ~ Q is a tautology. Thus, the general pattern 
of these proofs by contradiction is to assume that  the desired predicate never 
becomes true, and then show that  this assumption leads to a contradiction. We 
will see a number of examples of this type of reasoning in the next two sections. 

4. S A F E T Y  

In order to prove that "something good eventually happens", one usually has to 
show that "nothing bad happens" along the way. In other words, in order to prove 
a liveness property, one must usually prove one or more safety properties. A 
number of formal methods have been proposed for proving safety properties [7, 
9, 11, 14]. They all permit one to prove the same kind of properties, the differences 
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O-O 

P 

t ' A  O-Q 

R 

DR 

DR 

false 

Fig. 3. Abbreviated lattice. 

Fig. 4. Expanded lattice for Figure 3. 

P 

p A O - Q  

l 
R A O - Q  

1 
DR A r-l~Q 

1 
S A OR A r"l~Q 

1 
false 
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among the methods  being largely syntactic. We now describe their  basic approach 
in terms of temporal  logic. 

A safety proper ty  has the form P D [3Q, where P and Q are immediate  
assertions. This  assertion means  tha t  if the program starts with P true, then  Q is 
always t rue th roughout  its execution. (A more general type of safety proper ty  is 
discussed in the appendix.} The  most  familiar safety proper ty  is partial correct- 
ness, which states tha t  if the program S begins execution with some precondit ion 
P true, and if the execution of S terminates,  then  it terminates  with some 
postcondit ion Q true. This  is expressed by the temporal  logic formula 

(at S / k  P) D [:](after S D Q). 

For most  sequential  programs, part ial  correctness is the only safety proper ty  
required. For  concurrent  programs, a number  of interesting safety propert ies  
have been considered. As an example, we consider everyone 's  favorite multipro- 
cess synchronization property:  mutual  exclusion. Le t  S be a program with two 
processes, each of which has a critical section. Th e  mutual  exclusion proper ty  for 
S states tha t  the two processes never  execute their  critical sections concurrently.  
Let t ing CS1 and CS2 be the two critical sections, this p roper ty  is expressed as 
follows: 

at S D [3~(in CSI A in CS2). 

The  hypothesis  at S means tha t  the mutual  exclusion proper ty  has to hold only 
for those program execution sequences in which S is s tar ted at  the beginning. 
(Remember  tha t  we allow execution sequences beginning in any state, including 
one in which both  processes are in their  critical section. 2 } 

To  prove an assertion of the form P D DQ, one must  find an invariant  assertion 
/ - - t h a t  is, an assertion for which I D [31 is t r ue - - such  tha t  (i) P D I and (ii) I D 
Q. To  see tha t  this implies P D DQ, we simply observe tha t  if the program is 
s tar ted with P initially true, then  

--(i)  implies tha t  I is t rue initially; 
- - t h e  invariance of I then  implies tha t  I is always true; 
--(ii)  then  implies tha t  Q is always true. 

The  implications (i) and (ii) are proved using ordinary logic. Proving tha t  I is an 
invariant  requires reasoning about  the program and is discussed next. 

We illustrate this me thod  by showing tha t  the program of Figure 5 satisfies the 
mutual  exclusion property,  assuming tha t  the critical sections do not  modifyp~ or 
p2. Although it satisfies the mutual  exclusion property,  this program does not  
satisfy any of the other  propert ies  one generally requires of a mutual  exclusion 
algorithm. (For example, ra ther  few of the possible execution sequences actually 
let  any process enter  its critical section.) However,  it does serve as an example. 

To  prove the mutual  exclusion proper ty  

at c D [:]~ (in CS1 A in CS2) 

2 At this point, the reader may feel that things would be made much simpler by letting execution 
sequences always begin in a designated starting state. Both authors did just that in earlier work and 
now feel that the current approach is better. We refer the reader to [10] for a discussion of the reasons. 
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boolean Pl' Pz ; 
c: cobegin 

al : <Pl 

b 1 : if 

! 

az : <P2 

b z : if 
coend 

: = t r u e )  ; 

<~pz> then CS 1 : 

: = true> ; 

<~pl > then C S  z : 

c r i t i ca l  s ec t i on  1 fi 

c r i t i ca l  s ec t i on  2 fi 

Fig. 5. Oversimplified mutual exclusion program. 

we use the following invariant I: 

(in b~ D p l )  /k (in b2 D p2)/k - ( i n  CS~ /k in CS2). 

The reader can check that at  c D I, and I obviously implies the mutual exclusion 
property. Thus the mutual exclusion property is proved once we show that  I is 
invariant. 

To prove the invariance of I, one must show that if execution is begun in a 
program state s in which I is true, then executing any single atomic action in 
ready(s) leaves I true. This is the basic idea underlying all the aforementioned 
methods for proving safety properties. We leave it to the reader to verify the 
invariance of I and of all the invariants we use in our proofs of liveness properties. 

We use the notation introduced by Laraport in [9] for expressing safety 
properties. If S is a program statement and P and Q are immediate assertions, 
then the formula (P} S (Q) has the following meaning: 

If execution begins anywhere in S with P true, then executing the next atomic 
action of S yields a new state in which either 

- -  control is still within S and P is true, or 
- -  control is after S and Q is true. 

Note that (P} S {Q} says nothing about what can happen if an atomic action 
not in S--perhaps from another process--is executed. 

The method of proving safety properties described in [9] is based upon a logic 
for deriving formulas of the form (P} S {Q). This logic does not concern us here. 
We merely point out that safety properties are deduced from the fact that if S is 
the entire program, then the formula {I) S {I) means that I is invariant. Thus 
the logic can be used in proving invariants, as required for our method of proving 
simple safety properties. A method for proving more general safety properties, 
described briefly in [9], is explained in the appendix. 

5. LIVENESS 

5.1 The Axioms 

In the preceding section, we discussed how one proves safety properties. To prove 
liveness properties of programs written in our programming language, we need 
only introduce fairness into our formalism. This can be done with a single rule: 
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atomic actions a lways  terminate.  This means that  if the program reaches a state 
s, then any atomic action in ready(s)  will eventually be executed. Since there are 
two kinds of atomic actions (assignment statements and whi le  tests), fairness is 
expressed formally by the following two axioms: 

ATOMIC ASSIGNMENT AXIOM. For  any atomic ass ignment  s ta tement  S: 

at  S ,~, af ter S. 

while  CONTROL FLOW AXIOM. For  the s ta temen t  w: while  (b) do s: S od, 

at w ~ (at s V after w). 

Given a method for proving safety properties, these two axioms, together with 
the laws of temporal logic, enable us to derive all the liveness properties we wish 
to prove about programs. In the next two sections we give a number of additional 
proof rules for liveness properties, all of which are derived in the appendix from 
the liveness axioms and various safety properties. These derivations essentially 
combine a safety property "nothing not good ever happens" with the two axioms 
which say "something eventually happens" to conclude that  "something good 
eventually happens". 

5.2 Control Flow Rules 

The simplest liveness properties are statements about program control flow: if 
control is at one point, then it must eventually reach some other point. The two 
liveness axioms are of that  form, stating that  if control is at the beginning of an 
atomic operation, then it will eventually be after that operation. We can derive 
from them the following additional control flow rules. The validity of these rules 
should be obvious, and they are presented here without proof. Formal derivations 
of these and our other liveness rules are given in the appendix. 

CONCATENATION CONTROL FLOW. For  the s ta tement  S ; T, 

at  S ,~  after S, at  T ~ ,  af ter T 

at  S ,~, af ter T. 

cobegin CONTROL FLOW. For  the s ta tement  c: cobegin  S | T coend, 

at S ,~  af ter S, at  T , ~  after T 

at c ,~  af ter c. 

SINGLE EXIT RULE. For  any  s ta tement  S: 

in S D ([] in S V 0 after S) .  

Note that  the Single Exit Rule is true only because our programming language 
does not have a goto statement. Thus, if control is in S, it can only leave S by 
passing through the control point after S. 

5.3 More Complex Rules 

The above axioms and rules refer only to the control component of the program 
state and not to the values of variables. We also need rules that  describe the 
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boolean p ; integer x ; 
a: cobegin 

b: <p := fah'e> 
| 

c: ~hile <p> do & <x := x + l >  
cocnd 

od 

Fig. 6. A te rmina t ing  concurren t  program. 

interaction between control flow and the values of program variables, a For 
example, consider the program in Figure 6. It consists of two processes: one that 
sets the variable p false and another that loops as long as p is true. Since the first 
process eventually sets p false and terminates, the second process eventually 
terminates. Hence, the entire cobegin  terminates. However, its termination 
cannot be inferred directly from the above rules, because it depends upon the 
interaction between the control flow in the second process and the value of the 
variable p set by the first process. 

We now state and informally justify several rules for reasoning about the 
interaction between control flow and variable values. More formal proofs are 
given in the appendix. 

First, suppose that the safety property (P} (S) {Q} holds for the atomic 
statement (S}. This tells us that if (S)  is executed when P is true, then Q will be 
true immediately after its execution, when control is right after (S }. The Atomic 
Liveness Axiom tells us that if control is at (S}, then (S) will eventually be 
executed. We therefore deduce the following rule: 

A T O M I C  S T A T E M E N T  RULE. For any atomic statement (S }: 

{P} (S) {Q}, [~(at (S} D P) 
at (S) ~, (after {S} A Q). 

In the application of this rule, the hypothesis D(at (S) D P) must first be proved 
as a safety property, using the techniques of Section 4. 

One might be tempted to write a rule stating that, if {P} (S) (Q} holds, then 
(at (S) A P)  ~-~ (after (S) A Q). However, this would not be valid. Even if at 
(S) A P is true at some point in an execution sequence, P may not be true when 
(S) is actually executed--another process could execute a statement making P 
false before (S) is executed. If this happens, there is no reason why Q should be 
true upon completion of (S).  Thus the stronger assumption in the Atomic 
Statement Rule is necessary. 

We next extend the Atomic Statement Rule to nonatomic statements. If {P} 
S (Q} is true for some statement S that will eventually terminate, what will 
guarantee that Q is true when S terminates? From the meaning of (P} S {Q}, it 
is clear that Q will be true upon termination of S if P is true just before the last 
atomic step of S is executed. This in turn will be true if P is true throughout the 
execution of S. This gives us the following rule: 

a In the  formal  proof  of  these  rules f rom the  l iveness axioms, the  relat ionship be tween the  variable 
values  and  control  flow is derived from safety  properties,  as d iscussed in the  appendix.  
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G E N E R A L  S T A T E M E N T  R U L E .  

{P} S (Q}, [-](in S D P), in S ~-, after S 

in S ,¢* (after S A Q). 

Our final two rules involve the atomic test in a whi le  statement. Consider the 
statement w: whi le  (B)  do S o d .  The whi le  Control Flow Axiom tells us that  
if control is at w, then it will eventually be at S or after w. We also know that  
control will go to S only if B is true, and will leave w only if B is false. (This is a 
safety property of the whi le  statement.} Combining these observations, we 
deduce that  if control is at w, then eventually it will be at S with B true, or will 
be after S with B false, giving us the following rule: 

whi le  TEST RULE. For  the s ta tement  w: whi le  (B)  do S o d :  

at w ,¢* ((at S A B)  ~/ (after w A ~B) ) .  

The whi le  Test  Rule tells us that  control must go one way or the other at a 
whi le  statement test. If we know that  the value of the test expression is fixed for 
the rest of an execution sequence, then we can predict which way the test will go. 
In particular, we can deduce the following: 

whi le  EXIT RULE. For  the s ta tement  w: whi le  (B)  do S o d :  

{at w A [](at w D B)) ~ at S; 
(at w A [](at  w D ~B)}  ~ ,  af ter w. 

5.4 A Trivial Example 

We now prove that  the example program of Figure 6 terminates-- that  is, we 
prove at a ~ ,  after a. The proof is described by the lattice of Figure 7. The 
numbers attached to the lattice refer to the comments in the text. 

1. This step follows from the Atomic Statement Rule applied to statement b, 
using the formula {true} b: ( p := false)  ( - p ) .  This is obviously a valid formula, 
since no matter  what state b is started in, it ends with p having the value false. 

2. This is a consequence of the safety property (after b A - p )  ~ Vl(after b A 
-p) ,  which states that  once control reaches after b with p false, it must remain 
there (it has no place else to go) and p must stay false (no assignment in the 
program can change its value). 

3. For this program, control must be either in c or after c. This step separates 
the two cases. Formally, it follows from the fact that  the predicate in c k~ after c 
is true in any program state. At this point we use the box abbreviation to indicate 
that [](after b A - p )  is true at all descendants of this node. 

4. This follows from the fact that  in c and at c k~ at  d are equivalent. Again, 
the branch in the lattice separates the cases. 

5. This follows from the Atomic Liveness Axiom, applied to statement d, plus 
the fact that  after d is equivalent to at c. 

6. The enclosing box tells us that  {3up is true at this node. Thus, we can apply 
the whi le  Exit Rule to infer that  control eventually leaves the whi le  loop, 
making after c true. 

7. This is a trivial implication. The enclosing box tells us that [] after b is true, 
and [] after b implies after b. 
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at b A at c 

1 

after b A ~p 

2 

O(after b A ~p) 

475 

I'-I( after b A ~p} 

c /41 at d 

\ 
at ¢ 

°1 

after c A after b 

Fig. 7. Proof lattice for program of Figure 6. 

In this program, the termination of the whi le  loop was proved by showing that 
[3-p  must eventually become true. This enabled us to use the whi le  Exit Rule to 
show that control must eventually leave the loop. But suppose that we wanted to 
verify termination for the similar program in Figure 8. In this program D - p  does 
not eventually hold, because after control leaves the loop, p is reset to true. How 
can we hope to verify such a program, since the whi le  Exit Rule requires us to 
know D~p in order to prove termination? The answer is given by the proof lattice 
in Figure 9. It illustrates a type of proof by contradiction that  we use quite often. 
We start by using the Single Exit Rule to break the proof into two cases (this is 
the first branch in the lattice). In one of those cases, control remains forever 
inside the loop. In this case, we can establish that eventually R~p must be true, 
and then our reasoning is essentially the same as before. 

The proofs above were quite detailed, with each application of a proof rule 
cited explicitly. This is the sort of proof that mechanical verifiers do well but 
people find unbearably tedious. If people as well as machines are to be able to use 
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boolean p ; integer x ; 
a: cobegin 

b: <p := false> 
I 

c: while <p> do 
e: <p := true> 

coend 

d: <x := x+l>  od ; 

Fig. 8. Another  terminat ing program. 

D i n c  

after c 

at b A at c 

/ 
at b A rl in c 

/ 
at b 

1 
after b ~ -p 

! 

D (after b A ~p) 

D ~ p  ] 
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after e 

iil e 

after c 

l after e 

after b A after e 

Fig. 9. Proof  lattice for program of Figure 8. 

a proof method, they must be able to omit obvious details. For example, the 
reasoning in step 7 of Figure 7 is so trivial that  it does not really need to be 
explained--so steps 6 and 7 can be combined and the "after c" node of Figure 7 
eliminated. Also, steps 4-6 of the proof simply show that  if control is in c and 
D~p holds, then control must eventually be after c. This is such an obvious 
conclusion that  it could be reached in a single step. One often combines a number 
of proof rules when they describe simple progress of control in a single process. 

However, informal reasoning about concurrent programs often leads to errors, 
so we must be careful when we leave out steps in a proof. Fortunately, some 
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kinds of informal reasoning are relatively safe. We recommend the following 
guidelines for constructing informal proofs: 

(1) Each step in the proof should combine actions from just one process. 
(2) To conclude that evaluating an expression E yields a value v, one must 

prove [:](E = v). For example, in the above proof we were able to conclude that  
the whi le  test evaluated to false, and the loop therefore ended, because we had 
proved []~p. (The [] is needed here for the same reason as in the Atomic 
Statement Rule.) 

In the rest of the paper, we often omit proof details that  we feel are obvious, 
following these guidelines. All the missing steps can be proved directly from the 
axioms and rules we have given, and we urge the reader to do so if he is 
uncomfortable with the proof. It has been our experience that proof lattices help 
avoid mistakes in informal proofs by imposing a structure that makes it easy to 
see where care is needed. 

6. AN EXAMPLE: MUTUAL EXCLUSION 

6.1 The Problem 

We illustrate the use of these rules by proving a liveness property for a solution 
to one of the standard problems in concurrent programming: providing mutually 
exclusive access to critical sections. We must construct a program with two 
processes, each repeatedly executing a noncritical and a critical section. The 
content of these sections may be arbitrary, except that the critical sections are 
guaranteed to terminate. Both processes are to be started in their noncritical 
sections. 

The solution must, of course, satisfy the mutual exclusion property described 
in Section 4. However, a solution is useless unless it also satisfies some liveness 
property. (For example, mutual exclusion can be achieved by merely halting both 
processes.) Typically, one requires that  under certain conditions, a process that  
is trying to enter its critical section will eventually succeed. We construct a 
solution that  gives priority to Process 1--meaning that  Process 1 is always 
guaranteed eventual entry to its critical section, but Process 2 could be forever 
locked out of its critical section if Process 1 keeps executing its critical section 
often enough. 

The requirement that  Process 1 is always guaranteed eventual entry to its 
critical section can be stated more precisely as follows: 

It is always the case that after Process 1 finishes executing its noncritical 
section, it will eventually enter its critical section. 

This condition is a simple liveness property having the form 

"after executing noncritical section ~, executing critical section". 

To write this requirement as a formal temporal logic assertion to be proved, we 
must remember to include the initial condition, specifying that  the requirement 
need only hold for execution sequences starting from the beginning of the 
program. We also include as an explicit hypothesis the requirement that  Process 
2's critical section is always guaranteed to terminate. (This requirement does not 
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i n i t i a l  

at S 

condit ion 

A 

throughout the execution 
i t  w i l l  always be t rue  
t h a t :  

m 

~ r  eventual ly :  

f Process 2 not in  

~ c r i t i c a l  s e c t i o n  

O - m CS z ) 

D ( after NC 1 

J Process 1 f in ished 
noncr i t ica l  section 

leads to 

A~O 

1 
Process 1 in  i ts  
c r i t i c a l  section 

Fig. 10. Process 1 liveness property. 

• Hypothesis 
that 
Process 2 's  
c r i t i ca l  
sect ion 
always 
terminates 

i , C'S: ) 

depend upon the termination of Process l 's critical section.) Letting NCi and CSi 
be the noncritical and critical sections of Process i, and S the entire program, we 
get the assertion shown in Figure 10, annotated to explain the meaning of each of 
its clauses. 

The Process 1 liveness property could be achieved rather simply by perma- 
nently barring Process 2 from its critical section. Such a solution is clearly not 
what is intended, so some other requirement is needed. A little thought will reveal 
that  giving Process 1 priority tacitly implies that  Process 2 should be able to 
enter its critical section whenever Process 1 stays in its noncritical section. This 
condition can be expressed as follows: 

It is always the case that, if Process 2 has finished its noncritical section and 
Process 1 remains forever in its noncritical section, then Process 2 will 
eventually enter its critical section. 

Remembering to add the initial condition as an hypothesis, this gives us the 
formal property shown in Figure 11. 

The Process 2 liveness property only guarantees Process 2 entry to its critical 
section if Process 1 remains forever in its noncritical section. One might reason- 
ably want a stronger condition that  guarantees Process 2 entry to its critical 
section if Process 1 remains in its noncritical section long enough. This condition 
cannot be expressed in our temporal logic, since there is no way to express "long 
enough". It is actually the case that  any program satisfying the Process 2 liveness 
property must also satisfy such a "long enough" property. This is because 
programs cannot test the future; program statements like " i fp  will never become 
true t h e n . . . "  lead to logical contradictions. However, further discussion of this 
would lead us too far from our main subject. 
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Process 2 tn t t s  
c r i t i c a l  s e c t i o n  

Fig. 11. Process  2 l iveness property.  

6.2 The Solution 

Our solution uses the same method for achieving mutual exclusion as does the 
simple program of Figure 5. Each process i has a flagpi; and executes the protocol 
"set my flag true and check that the other process's flag is false" before entering 
its critical section. The simplest way to use this protocol is to precede each 
process's critical section by the following: 

Procedure A: 
Set my flag true and wait until the other process's flag is false. 

However, this is unsatisfactory because if both processes concurrently tried to 
enter their critical sections, then they could both wait forever--a situation known 
as deadlock. 

Deadlock can be prevented by having each process do the following before 
entering its critical section: 

Procedure B: 
Set my flag to true; 
If other process's flag is true: 

then set my flag false and try again 
else proceed. 

Although this avoids deadlock, it is unsatisfactory because each process might be 
unlucky enough to examine the other process's flag only when it is true, in which 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982. 



480 S. Owicki and L. Lamport 

boolean P t '  Pz 

S: cobegin 
S I :  begin 

Pl  

w I : while 

do 

:= false; 

< lrue > 

N C  l : 

a I : 

b I : 

CS 1 : 

al: 
od 

end 1 

S z : begin 

Pz := false: 

Wz: while < true > 

do 
N C  z : 

a z : 

b 2 : 

CS  z : 

od 
end 

eoend 

noncritical section 1 ; 

< Pl  := trite > ; 

while < Pz > do c1: 

critical section 1 ; 

< Pl := false > 

<skip> od : 

noncritical section 2 ; 

< P2 := lrue > ; 

while < Pl  > 

do Cz: < Pz := false > ; 

ez:  while < Pt > do <skip> od ; 

f z :  <P2 := true > 

od 
critical seclion 2 ; 

< Pz := false > 

Fig. 12. Mutual exclusion algorithm. 

case no process ever enters its critical section. This type of behavior is called 
"livelock" or "tempo blocking". 

Note that the absence of deadlock is a safety property, since it implies that a 
bad state (one in which both processes are waiting) cannot occur. Hence, it can 
be proved with the method described in Section 4. However, the absence of 
livelock is a liveness property, and requires a different proof method. 

Our solution, given in Figure 12, uses the following approach. To enter its 
critical section, Process 1 uses Procedure A- -not  resetting its flag until it leaves 
its critical section. When Process 2 wants to enter its critical section, it executes 
a modified version of Procedure B: if it finds Process l's flag true, then it waits 
until that flag becomes false before trying again. We assume that the noncritical 
and critical sections do not modify the values of the variables pl and p 2 .  
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6.3 The Correctness Proof 

The proof that the program of Figure 12 satisfies the mutual exclusion property 
is similar to the proof for the program of Figure 5 and is left to the reader. We 
prove the two liveness properties. 

We begin with an informal proof of the Process 1 liveness property, which is 
illustrated by the diagram of Figure 13. If Process 1 is after its noncritical section, 
then either it will eventually enter its critical section or else it will remain forever 
in bl withpl  true. We show by contradiction that the latter is impossible. Suppose 
Process 1 remains in bl withpl  true. Then, since Process 2's critical section always 
terminates, it either will reach e2 or will remain forever in its noncritical section 
with Pe false. However, if it reaches e2, it will remain there forever with p2 false 
because p~ is true. In either case, p2 remains false forever. But  this is impossible, 
because in that case Process 1 must eventually leave loop bl, and this is the 
required contradiction. 

The rigorous proof of the Process 1 liveness property is obtained by formalizing 
this argument. The informal reasoning relied upon certain simple safety properties 
of the program--for example, that p2 is false while Process 2 is in its noncritical 
section. Our f~rst step is to prove these safety properties. This is done by 
demonstrating the invariance of the following predicate/,  which relates the values 
ofpi to control points in process i, and also asserts that S never terminates: 

I: (in bl ~ p~) A (in NC1 ~ ~p l )  

A (in e2 D -p2) A (in NC2 ~ ~p2) 

A in $1 A in $2. 

The proof of invariance involves simple local reasoning about each process and 
is left to the reader. The invariance of I, plus the fact that I is true initially, imply 
that at S D n L  Thus we have shown that 

(at S A [ ]~  ~ i n  CS2) ~-~ ([3IA []<> ~ i n  CS2). (1) 

We also need the fact that control in both processes eventually reaches and 
remains inside the whi le  loops--that  is, 

in $1 ,¢* [] in wl, and in $2 ~ [] in w2. (2) 

This can be proved by combining simple liveness arguments that at S ~ in wi 
with the fact that in wi is invariant. 

Our next step is to prove that 

([3IA []<> ~ i n  CS2) D (at al ~.~ in CS~). (3) 

Combining eqs. (1) and (3) gives the Process 1 liveness property. Figure 14 
contains a proof lattice for eq. (3); the steps are explained below. 

1. By TIA(a), the assertion 

[]( I  A <> ~ i n  CS2) 

is equivalent to the hypothesis of eq. (3). Since the hypothesis is a "henceforth" 
property that can be used throughout the proof, we extend our notation slightly 
and attach it to a box containing the entire lattice. 
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Process 1 a f t e r  i t s  
n o n c r i t i c a l  s e c t i o n  

Process 1 f o r e v e r  in Process t e n t e r s  
b t wi th Pt true c r i t i c a l  section 

Process 2 in e z Process 2 forever 

in i t s  n o n c r i t i c a l  
section 

/ 
PZ fo rever  false 

contradiction 

Fig. 13. Informal proof of Process i liveness property. 

2. This  is a s imple appl icat ion of the Atomic  Liveness  Axiom. 
3. Th is  follows f rom the Single Exit  Rule.  I t  sets  up two cases: e i ther  control  

eventual ly  enters  the  critical section and  we are immedia te ly  finished, or it  
r emains  forever  in bl. 

4. We use eq. (2) and  the  in $2 clause f rom I on the  outer  box. 
5. Since we can assume [ ] I  (by the  outer  box}, we have  [](in bl D pl) .  By TL5, 

[] in bl then  implies [ ]p l .  Hence,  we can create  a new box, in which we assume 
[ ]p l .  

6. Since in w2 is equivalent  to at  a2 V in b2 V in CS2 V at  d2 V in NC2, this  s tep 
follows f rom TL9, with at a2 V in b2 subs t i tu ted  for Q and in CS2 V at  d2 V 
in NC2 subs t i tu ted  for P. 

7. Here  we  are using local reasoning abou t  control  flow in Process  2, under  the  
assumpt ion  V]pl. No te  t ha t  this assumpt ion  comple te ly  de te rmines  the  direct ion 
t ha t  will be t aken  a t  each  w h i l e  test. T h u s  it is easy to see t ha t  if control  is 
anywhere  in a2 or b2, then  it will eventual ly  reach  e2 and r ema in  there.  

8. We can assume [ ]L  so we have  • ( i n  e2 D ~p2). By  TL5,  [] in e2 t hen  implies 

[ ]  ~ p 2 .  
9. I t  follows f rom the w h i l e  Exit  Rule  t ha t  • ~ p 2  implies t ha t  Process  1 mus t  

eventual ly  leave s t a t e m e n t  bl. Since this node is inside a box labeled [] in bl, we 
have  a contradiction.  

10. Here  we use the  trivial implicat ion false D P for any  P.  
11. Since we are assuming <> ~ in CS2, the Single Exi t  Rule  implies t ha t  in CS2 

~ .  at  d2, and the  Atomic Liveness  Axiom implies t ha t  at d2 ~ .  at  NC2. 
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1 

D (  I A <> -in CS 2 } 

at  a I 

[] 

at b 1 

ha b I 

5 
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[] -Pz 

false 
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at CS 1 

[] in b I A [] in w z 

baAPlAin W z ) / /  NNN~ 

at a z V in b z • ( i n  CS z V 

[] in e z 

at d 2 V in NC z ) 

11 

[] in NC 2 

Fig. 14. Lattice proof of Process I liveness property. 

12. I t  follows from I tha t  in  NC2 ~ ~p2.  

This completes the proof  of the Process 1 liveness property.  To prove the 
Process 2 liveness property, we use the proof lattice of Figure 15 to show tha t  
D ( I  A ~[:3 ~ i n  CS1) implies a t  a2 ~ ,  in  CS2. Using this result, we can prove the 
Process 2 liveness property with the same kind of reasoning used for the Process 
1 liveness property. The steps in the lattice are explained below. 
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o (  I A <>D - in  CS~ ) 

E3(in b z 

at  a~ 

L, 
at b z 

r-I in b 2 

[] (bl b 2 A -bl CS I A in wl) 

[] ha b 1 r'l in NC 1 

in CS 1 [] - P l  

~in b z 

, /  
false 

al CS 2 

Fig. 15. Lat t ice  proof  of  Process  2 l iveness property .  

1. As in the  preceding lattice, we a t t ach  the  assumpt ion  to a box t h a t  contains  
the entire proof. 

2. Th is  step is based on control  flow reasoning for Process  2. 
3. As before, we use the  Single Exit  Rule to b reak  our proof  into two cases, and  

prove  by  contradict ion t ha t  control  cannot  r emain  forever  in the  loop. 
4. We use eq. (2) and the in  $1 clause f rom I on the outer  box, together  with 

~[:] ~ in  CS1 also on the outer  box. 
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5. Simple control flow reasoning about Process 1 shows that if it stays in wl 
and never enters its critical section, then eventually it must stay in bl or in its 
noncritical section. 

6. The Process 1 liveness property, which we have already proved, guarantees 
that Process 1 will be able to enter its critical section if Process 2 does not stay 
forever inside its critical section. But here we may assume that [] in b2, so Process 
1 must eventually enter its critical section. 

7. Having Process 1 in its critical section gives a contradiction, since within the 
inner box we can assume [] ~ in CSI. 

8. Here we are again using the trivial fact that  false implies anything. 
9. This follows from the assumption that []I  holds. 
10. Local reasoning about Process 2 shows that  control cannot remain forever 

in b2 if pl remains false. 
11. Process 2's leaving b2 contradicts the assumption from the inner box. 

This completes the proof of the two liveness properties for the program of 
Figure 12. 

7. SYNCHRONIZATION PRIMITIVES 

For programs written in our simple language, a nonterminated process can never 
stop. A process can wait for something to happen only by executing a "busy 
waiting" loop. Thus, the processes in our mutual exclusion algorithm had to wait 
in whi le  (pi) do . . .  od loops. This is undesirable in a multiprogramming 
environment, since a waiting process could tie up the processor in a pointless 
loop. It is common in such environments to provide synchronization primitives 
that release the processor until the desired condition is true. Our basic method 
for proving liveness properties can be applied to programs using such synchroni- 
zation primitives. We illustrate this by considering the well-known semaphore 
primitives introduced by Dijkstra [2]. 

7.1 The Fair Semaphore 

A semaphore is a nonnegative integer variable that can be accessed by two 
primitive operations: P and V. A V operation increments the value of the 
semaphore by one, while a P operation decrements it by one. However, since the 
semaphore's value must be nonnegative, a P operation can only be performed 
when the value is positive. This means that if a process's control is at a P(s) 
operation when the value of the semaphore s is zero, then the process must wait 
until another process has performed a V(s) operation before it can proceed. A 
V(s) operation can always be performed. 

In order to prove properties of programs that use the semaphore primitives, we 
need a precise definition of the semantics of these primitives. It is not hard to 
define their safety properties, and various axiomatizations have been given--for 
example, in [5] and [9]. Specifying their liveness properties presents a more 
interesting problem. In fact, the liveness properties of the semaphore operations 
were not fully specified in their original definition, and several different versions 
have been implemented. The differences result from different methods of choosing 
which process to activate when a V(s) operation is executed and several processes 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982. 



486 S. Owicki and L. Lamport 

are waiting to execute P(s)  operations. Lipton [12] distinguishes several different 
ways of making that choice, each leading to different liveness properties for the 
semaphore operations. For our example, we assume that  the choice is made 
"fairly". 

We define the P and V operations to be atomic. The axioms defining the V 
operation are quite straightforward: 

Y OPERATION AXIOMS. For the statement l: { V(s)): 

Safety: {Q[s + 1 / s]} V(s) {Q} 
Liveness: at 1 ~ after 1 

where Q [s + 1 / s] is the formula obtained by replacing every free occurrence 
o f s i n Q b y s +  l. 

The safety axiom states that  the V operation adds 1 to the semaphore; the 
liveness axiom that the V operation always terminates. 

The subtle part of axiomatizing the semaphore operations lies in specifying 
under what conditions a P operation must eventually terminate. It is obviously 
not enough that  the semaphore be positive when control reaches the P operation, 
because it could be decremented by another process before that  operation is 
executed. The following axiom states that  a process trying to perform a P 
operation will not have to wait forever while other processes keep executing P 
operations on that  semaphore: 

P OPERATION AXIOMS. For the statement l: (P(s)):  

Safety: {Q[s - 1 / s]} P(s)  {Q A s >_ 0}. 
Liveness: (at 1 A [3O(s > 0)) ~- after 1. 

The safet axiom states that P decrements the semaphore, and that  the 
semaphore's value will be nonnegative after the operation is executed. This 
prevents the operation from being executed when the semaphore is 0. The liveness 
axiom states that a P operation will be executed if the semaphore repeatedly 
assumes a positive value. (The formula E]O(s > 0) states that  s is positive 
infinitely often.) 

The Atomic Liveness Axiom and the Atomic Statement Rule of Section 5 hold 
for all the atomic statements of our original language. They also hold for a { V(s) ) 
statement, but do not hold for a (P(s)} statement. However, the remaining rules 
from Section 5--in particular, the Single Exit and General Statement Rules--do 
hold for these new statements. {Their proofs, given in the appendix, are not 
affected by the introduction of the new statements into the language.) 

7.2 A Simple Example 

We illustrate the use of these semaphore axioms with the simple mutual exclusion 
algorithm of Figure 16. To prove mutual exclusion, we first show the invariance 
of the following immediate assertion: 

I: 0 ~ s <_ 1 A 1 - s = number of processes i such that  near CSi is true 

where near CSi - in CSi V after CSi. 
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semaphore s ; 

ao: < s := 1 > ; 
cobegin 

wl: while < true > 

do 
NC 1 : noncritical section 1 

a 1 : < P(s)> ; 

CS 1 : critical section 1 ; 

d~ : < V(s) > 

od 

coentl 

while < true > 
do 

NC2 : noncritical section 2 ; 

a 2 : < P(s)> ; 

CS 2 : critical section 2 ; 

d 2 : < V ( s ) >  

od 

Fig. 16. Mutual exclusion algorithm using semaphores. 

(We could, of course, write a more formal s ta tement  of the clause "1 - s = 
number  o f . . . " . )  This  allows us to conclude tha t  

a t  ao D 0 I ,  (4) 

from which mutual  exclusion follows. The  details of this safety proof  are straight- 
forward and are omitted. 

Our liveness axiom for the P operat ion guarantees tha t  any process tha t  wants 
to enter  its critical section will eventual ly do so, unless the other  process remains 
forever inside its critical section. Thus,  we have the following liveness proper ty  
for Process 1: 

( a t  ao /k  D O  ~ i n  CS~) D ( a t  a l  ~-, i n  CS1).  (5) 

Note  tha t  this is essentially the same as the Process 1 liveness proper ty  of the 
previous example. A similar liveness proper ty  holds for Process 2. 

To  prove eq. (5), we first prove the following formula, which states tha t  the 
semaphore repeatedly assumes a positive value unless some process stays inside 
its critical section forever: 

( O I  /k  D O ~ n e a r  CS1 /x  D O ~ n e a r  CS2) D ( s = O ~ , ~  s =  l ) .  (6) 

Its proof  is given by the lattice of Figure 17, with the steps explained below. 

1. This  is the usual introduction of an assumption to be used in the remainder  
of the proof. 

2. The  safety invariant  implies tha t  when the semaphore  has the value 0, one 
of the processes is near  its critical section. 
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! 
[] (I A O -near CS 1 

Lamport 

A O -near  CS z ) 

s = O  

~ 2 

near C S  1 

after CS 1 

\ 

\ 
near C S  z 

3 

after CS z 

s = 1 

Fig. 17. Proof lattice for eq. (6). 

3. The assumption that  a process does not remain in its critical section, 
together with the Single Exit Rule, guarantees that  if a process is near its critical 
section, then it is eventually after it. 

4. The liveness axiom for the V operation implies that  if control is after CSi, 
then the subsequent V operation will terminate. We can then apply the General 
Liveness Rule to conclude that s will equal 1 when the V(s) operation terminates. 
This is based on the truth of (s >_ 0} V(s) (s > 0) and on the fact that  the 
invariant implies that s is always 0 or 1. 

Using eq. (6), we now prove eq. (5) with the lattice of Figure 18, whose steps 
are explained below. 

1. As usual, we put a box around the whole lattice labeled with the hypothesis. 
2. This is an application of the Single Exit Rule, noting that  at al = in al since 

al is atomic. 
3. Since at al implies ~near CS~, we can conclude from eq. (6) that  s = 0 

s - 1. Since s is always nonnegative, this implies [~O(s > 0). 
4. The liveness axiom for the P(s) operation implies that  if control is at al and 

DO(s > 0) is true, then eventually the P(s) operation will be executed and control 
will be after al, contradicting the assumption of the inner box that  control is 
forever at al. 

This completes the proof of eq. (5), the liveness property for Process 1. The 
corresponding property for Process 2 is proved in exactly the same way. 

7.3 Other Semaphores 

The above proof may have seemed rather long for the simple program of Figure 
16, whose correctness seems obvious. However, liveness properties for programs 
using semaphores tend to be rather subtle, and there are quite reasonable ways 
of defining the semaphore operations for which the algorithm would not guarantee 
the liveness property (5). 
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1 
[] ( !  A 0 -in CSz) 

489 

[] at a I 

al a 1 

[ ]  a t  a I 

n o s > 0  

4 

false 
\ 

\ /  
hz CS 1 

Fig. 18. Proof  lattice for s emaphore  program.  

The P operation liveness axiom we gave above is called the fairness axiom. 
Some semaphore implementations are not fair; these implementations are de- 
scribed by a weaker liveness axiom. 

WEAK LIVENESS AXIOM. For the s tatement  l: (P(s) ): 

(at 1 A O(s > 0)) ~ after 1. 

This axiom states that a process cannot wait forever at a P operation if the 
semaphore remains positive. However, it does not prevent the process from 
waiting forever if other processes keep performing P operations that reset the 
value to 0. This axiom is not enough to guarantee property (5) for our mutual 
exclusion algorithm, because it does not rule out the possibility that  Process 1 
waits forever while Process 2 repeatedly enters and leaves its critical section. 

Two other kinds of semaphores have also been proposed, defined by the 
following properties: 

First-Come-First-Served.  Waiting processes must complete their P operations 
in the order in which they began them. 

Latch ing  Property. If a process executes a V operation when there are other 
processes waiting on the semaphore, then it cannot complete a subsequent P 
operation before one of the waiting processes completes its P operation. 

These are safety properties, since they state that "something bad cannot 
happen". (This becomes more apparent if the first property is expressed as 
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"processes cannot complete their P operations out of order".) They are usually 
combined with the weak liveness property. For a bounded number of processes, 
first-come-first-served plus weak liveness implies fairness. 

In order to state these properties precisely, some additional structure must be 
given to the semaphore operations. In particular, the P operation cannot be 
atomic, because a process must do something after it reaches the P operation to 
announce that  it is waiting. The formalization of these properties is beyond the 
scope of this paper. 

8. CONCLUSION 

We have considered two kinds of correctness properties for concurrent programs: 

Safety properties:--stating that  some assertion always holds. 
Liveness properties--stating that  some assertion will eventually hold. 

We have used temporal logic to provide a simple, uniform logical formalism for 
expressing and reasoning about these properties. 

Several methods for proving safety properties of concurrent programs have 
appeared. In this paper, we have presented a method for proving liveness 
properties. The method seems powerful enough to prove a large class of such 
properties, although we have not characterized precisely what can and cannot be 
proved by it. The method provides a straightforward way of turning an intuitively 
clear informal proof--one that  captures our understanding of why the program 
works--into a logically rigorous proof. We have found it better to separate proofs 
of safety and liveness properties, rather than to combine them as in [16]. 

Our method is independent of any particular programming language. Each 
language has its own axioms, but the basic proof method does not change. For 
example, synchronization mechanisms other than semaphores have liveness ax- 
ioms that  describe their conditions for termination. If programs based upon the 
same algorithm were written in two different languages, we would expect the 
proof lattices used in their correctness proofs to have the same structure. 

Safety and liveness are not the only kinds of program properties. There are 
others that  we have not considered, such as the following: 

(1) Some assertion will become true within a certain number of process execution 
steps. 

(2) Some assertion might possibly become true. 
(3) The program is equivalent to some other program. 

In fact, these properties cannot be expressed in our temporal logic. Their omission 
was deliberate, since we could have chosen other modal logics in which such 
properties are expressible. The simplicity of our approach is due largely to a very 
careful limitation of its scope. We have deliberately eschewed unnecessary 
generality, devising a method for proving exactly what we want to prove and no 
more. We have been guided by the desire to provide a practical method for 
proving properties of concurrent programs, and have rejected irrelevant general- 
ity. 

We do not wish to imply that  we have said the last word on proving properties 
of concurrent programs. We feel that  we have provided the foundation for a 
useful system for proving properties of real concurrent programs. However, 
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constructing a useful edifice upon this foundation will require the ability to 
handle more sophisticated language features, and further work in this direction 
is needed. 

The logical system described in this paper is an endogenous one, meaning that 
each program defines its own separate formal system. In an endogenous system, 
one is always reasoning about the entire program. An exogenous system is one in 
which there is a single formal system within which one can reason about a large 
class of programs, such as all programs written in a certain language. In such a 
system, the formulas explicitly mention programs. The logic of [9] for manipulat- 
ing (P} S {Q} formulas is an example of an exogenous system. Such systems are 
convenient because they provide a formal framework for structured proofs, in 
which one derives properties of a statement from the properties of its components. 

The temporal logic we have used is endogenous, and there is no way to base an 
exogenous system upon it. For example, the property (P} S (Q} cannot be 
expressed in this temporal logic if S is not the entire program. We are currently 
developing an exogenous temporal logic for proving both safety and liveness 
properties of concurrent programs. 

Dynamic logic [18] is a well-known exogenous logic for programming language 
semantics. However, it is less attractive than temporal logic for reasoning about 
concurrent programs because it is based on a branching time rather than a linear 
time model of computation, a difference discussed in [10]. Process logic [6, 17] is 
an exogenous logic that can express characteristics of both the linear and 
branching models, so it is more general than temporal logic. However, this is the 
sort of generality that we see as inappropriate for a practical verification method. 

APPENDIX. DERIVED PROOF RULES 

We now prove the validity of the derived proof rules of Section 5. To do this, we 
have to prove a more general kind of safety property than has been discussed so 
far: properties of the form (P /~ []R) D E]Q. The method of proving these 
properties is similar to that used for ordinary safety properties and involves 
finding an assertion I satisfying the following conditions: 

• ( P A R ) • I ,  
• ( I A R )  D Q ,  and 
• ( I A D R ) ~ I 1 L  

The last condition is a generalized form of invariance. To verify it, one shows 
that starting in a state in which I A R is true, executing a single atomic action 
yields a new state in which I is true or R is false. In the notation of [9], this is 
expressed by the formula R ~- (I} S (I}, where S is the entire program. (This 
actually proves the stronger assertion I D R [ ] / ,  where the binary operator [] is 
defined in [10], but we will not need this stronger assertion.) When a proof 
depends on such a generalized safety property, we give the assertion I and argue 
informally that it is invariant if R is always true. 

CONCATENATION CONTROL FLOW. For the s ta tement  S ; T, 

at S ~¢* after S, at T ~* after T 

at S ~ ,  after T. 
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PROOF. The definition of at implies that  after S -= at T ,  so the first hypothesis 
can be rewritten as at S ~ at T. The second hypothesis, together with the 
transitivity of ~* (TL7), then implies the conclusion. [3 

SINGLE EXIT RULE. For any s tatement  S: 

in S D ([] in S k~ <> after S) .  

PROOF. The proof is based on the following safety property: 

(in S / k  [] ~af ter  S )  D [] in S. (7) 

Intuitively, this states that  if control starts in S and never reaches the control 
point after S, then it stays in S forever. It is proved by observing that  any atomic 
action in our programming language transforms a state where in S is true to a 
state where either in S or after S is true. 

The safety property (7) can be rewritten as 

in S D ([] in S V ~ [] ~af ter  S) .  

The duality of [] and <> implies that  this is equivalent to 

in S D (• in S V ~ after S ). 

Finally, we apply TL2 to obtain the desired result. 0 

cobegin  CONTROL FLOW. For the s ta tement  c:cobegin S II T coend, 

at S ,~* after S, at  T ~* after T 

at  c ~ ,  after c. 

PROOF. The proof requires the safety property 

I: ([3 in c) D ((after S D [] after S )  A (after T D [] after T) ) ,  

which states that if control never leaves the cobegin  statement, then once it 
reaches the end of one of the processes it remains there forever. This follows 
from the definition of after and the fact that  any atomic action that  makes after 
S or after T false has to make after c false too. 

Termination of the cobegin is proved by the lattice of Figure 19, whose steps 
are justified as follows: 

1. This is an application of the Single Exit Rule. 
2. This step is just a rewriting, since at c = (at S A at T ) .  
3. The hypothesis (recorded on the outermost box) implies that both S and T 

terminate. 
4. The safety property I (from the outermost box) implies that  once control 

reaches the end of S or T, it remains there as long as the cobegin  does not 
terminate. 

5. This is implied by the temporal logic theorem (<>E]P A ~[~Q) D <>E](P A Q). 
6. This is a rewriting, based on the fact that  (after S A after T )  = after c. [3 

G E N E R A L  S T A T E M E N T  R U L E .  

{P} S [Q}, • ( i n  S D P), in S ~ after S 

in S ~-~ (after S /~  Q). 
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I A (a t  S ~ afte r s)  A (a t  I ~ af ter t) 

[] in c 

a l  ¢ 

at c A D m c 

2 

at s A at I 

3 

0 cCer s A 0 after t 

<>1"3 after s A <>['3 after t 

1"3 after s A I-I after I 

ofter c 

Fig. 19. Proof  lattice for c o b e g i n  terminat ion.  

PROOF. The  proof  is similar to tha t  of the Single Exit  Rule. We make use of 
the safety property:  

(in S A [][(in S ~ P) A ~(after S/X Q)]) ~ [] in S, 

whose validity can be intuitively justified as follows. We assume {P} S {Q} and 
Q(in S ~ P), so for any execution starting in S with P true, if S terminates  then  
it must  te rminate  with after S A Q true. Thus,  if S terminates,  it contradicts  the 
assumption • - ( a f t e r  S A Q), so control can never  reach after S. Hence,  by the 
Single Exit  Rule, control  must  remain forever in S. 

Manipulat ing this safety proper ty  as before, we can obtain 

(in S A [=](in S ~ P)) ~ (E] in S V ~(after S A Q)). 

Since we assume tha t  S terminates,  this can be simplified to 

(in S A El(in S ~ P)) ~ ~(after S A Q). 

Since the second hypothesis  of this implication is one of the assumptions of the 
General  S ta t ement  Rule, we can conclude tha t  in S ~ <>(after S A Q). Th e  result  
now follows from TL2. 
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ATOMIC STATEMENT RULE. For  any atomic s ta tement  (S): 

{P} (S) {Q}, [:](at (S)  D P) 

at  (S)  ~ .  (after (S)  /k Q). 

PROOF. This is an obvious corollary of the Atomic Liveness Axiom and the 
General Statement Rule. The former guarantees that the atomic statement 
terminates, while the latter guarantees that if it terminates, it terminates with Q 
true. D 

whi le  TEST RULE. For  the s ta tement  w:whi le  (B) do S od: 

at  w ~-~ ((at S A B) V (after w A ~B)). 

PROOF. This proof is similar to the proofs of the Single and General Statement 
Rules. In this case the starting safety property is 

[at w A []~( (a t  S A B) k/ (after w A - B ) ) ]  ~ [] at  w. 

This is true because the semantics of the whi le  test imply that if control leaves 
the point at w, then it reaches a state where either at S A B or after w A - B  is 
true. The above implication can be rewritten as 

at w ~ [[] at  w V <>((at S A B) V (after w A ~B))]. 

But  the whi le  Control Flow Axiom implies - ~  at w, so this reduces to 

at  w ~ <>((at S A B) V (after w A - B ) ) .  

Applying TL2 gives the desired result. D 

whi le  EXIT RULE. For  the s ta tement  w: whi le  (B) do S od: 

(at w A [](at w ~ B)) ~ at  S; 
(at w A [](at w ~ ~ B ) )  ~.~ after w. 

PROOF. We give the proof for the first rule; the proof for the second is quite 
similar. We start with the safety property 

[at w A [ ](at w ~ B) A [] Mat S]  ~ [] at  w. 

Rewriting it in the standard way gives 

[ a t w A [ ] ( a t w ~ B ) ]  ~ [ • a t w V < > a t S ] .  

Since the whi le  Control Flow Axiom guarantees - [ ]  at w, this reduces to 

(at w A [](at w D B)) ~ <> at  S, 

which, after application of TL2, yields the desired result. [] 
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