
A New Approach to Proving
the Correctness of Multiprocess

LESLIE LAMPORT

SRI International

Programs

A new, nonassertional approach to proving multiprocess program correctness is described by proving
the correctness of a new algorithm to solve the mutual exclusion problem. The algorithm is an
improved version of the bakery algorithm. It is specified and proved correct without being decomposed
into indivisible, atomic operations. This allows two different implementations for a conventional,
nondistributed system. Moreover, the approach provides a sufficiently general specification of the
algorithm to allow nontrivial implementations for a distributed system as well.

Key Words and Phrases: program correctness, multiprocessing, concurrent processing, mutual exclu-
sion
CR Categories: 4.32, 5.24

1. INTRODUCTION

Even a simple multiprocess program can exhibit very complicated behavior when
it is executed, and it is hopeless to try to verify its correctness by exhaustive
testing. The only way to guarantee the absence of errors in a mnltipr0cess
program is with a rigorous proof of its correctness. Recently the assertional
techniques used for proving sequential programs correct have been extended to
multiprocess programs by Owicki [7], Keller [2], Lamport [3], and others. How-
ever, these techniques have the following three limitations:

(1) Assertional techniques developed thus far require that a program be
decomposed into indivisible, atomic operations (or operations that act as if they
were atomic). This has prevented a general method for the hierarchical decom-
position of correctness proofs. {Although a hierarchical design methodology is
outlined in [3], a rigorous correctness proof is obtained only for the final low level
program.)

(2) Assertional techniques require that the correctness conditions be expressed
in terms of the objects (such as program variables) used in the implementation.
This is satisfactory for proving the correctness of an individual subroutine.
However, for a large program such as an entire airline reservation system, one
would like the correctness conditions to be stated in terms of higher level
concepts.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commerical advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
Author's address: SRI International, 333 Ravenswood Avenue, 415 Menlo Park, CA 94025.
© 1979 ACM 0164-0925/79/0700-0084 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979, Pages 84-97.

Proving the Correctness of Multiprocess Programs 85

(3) Assertional techniques have so far been useful only for traditional nondis-
tributed multiprocess systems, in which processes communicate via shared mem-
ory. We would like a method which is also applicable to distributed systems, in
which processes communicate by sending signals to one another.

In this paper, we present a new, nonassertional approach to proving the
correctness of multiprocess programs which overcomes these limitations. We use
the term "approach" to avoid suggesting that we have a well developed method-
ology. However, the concepts presented here are not introduced casually. They
have been distilled from several years of experience with various aspects of
concurrent processing. Our approach is related to the work of Greif [1], but differs
significantly from it because we consider nonatomic operations.

Rather than giving an abstract general discussion of our ideas, we have chosen
in this paper to introduce our approach through a single example. (It is our
opinion that good examples are more instructive than formal theories.) A future
paper will discuss in more generality the concepts introduced here.

The example we use is an improved version of the bakery algorithm [4] for
solving the mutual exclusion problem. This algorithm was chosen because it is
short and easy to follow, yet quite subtle; and the proof of its correctness is not
trivial. With this example, we show how an algorithm involving complex, nona-
tomic operations can be proved correct without first specifying how these oper-
ations are implemented. The meaning of the operations is specified in a way
which allows us to give two quite different implementations of the algorithm for
a nondistributed system. We also sketch how the specifications permit nontrivial
implementations for a distributed system. However, a thorough discussion of
distributed systems must be deferred to a future paper. We also defer discussion
of why this approach leads to more natural specifications of correctness condi-
tions.

2. THE ALGORITHM

We assume N processes, each with a cri t ical section. The problem is to synchro-
nize the processes so that the following m u t u a l exclusion condi t ion is satisfied:
two different processes may not execute their critical sections at the same time.
There are a number of other properties which are required of a solution, but they
will not concern us here. The reader is referred to [4] for a more complete
statement of the problem.

Our algorithm is a variant of the bakery algorithm of [4]. We describe the new
algorithm here without attempting to give any intuitive explanation of "why it
works." The reader who wants a better understanding of this algorithm should
first study the original bakery algorithm.

We wish to express the algorithm in its most general form, in order to allow the
widest possible choice of implementations. This requires introducing some new
notation. We let ":>" mean "set to any value greater than" {just as ":=" means
"set to the value equal to"}. The statement

for al l j E { 1 N} do Sj od

means that the statements $1 SN are to be executed concurrently (or in any
order), where $1 is the statement obtained by substituting 1 for j in Sj, etc. We

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

86 Leslie Lamport

also introduce the statement

wait until condition

as an abbreviation for

L: if not condition then goto L ft.

The relation ">" on ordered pairs of integers is defined by (a, b) > (a', b') if
either (i) a > a' or (ii) a = a ' and b > b'. The remaining notation should be self-
explanatory.

The global variables consist of the array n[1 :N] of nonnegative integers. Each
n[i] is initially equal to zero. The following is the algorithm for process i. (Labels
are inserted for future reference.)

integer j;
repeat noncritical section;

LI: n[i] :>0;
L2: n[i] :> maximum (n[1] n[N]);
L3: for a l l j E {1 N} do

wait until n[j] = 0 or (n[j],j) >_ (n[i], i) od;
critical section;

L4: n[i] := 0
end repeat

This type of description would suffice to specify a single process algorithm.
However, for a multiprocess algorithm, we must also specify what kind of
interaction is permitted between the concurrent executions of the different
processes. For our algorithm, this requires specifying the result of concurrent
accessing of the variable n[i] by two different processes. This has traditionally
been done by specifying that certain operations are to behave as if they were
instantaneously executed indivisible atomic operations. Thus we could specify
that fetching or writing the value of n[i] is an atomic operation. However, this
would be unacceptable for our algorithm. The value of n[i] can become arbitrarily
large, so it may have to be stored in several separate memory registers--especially
for machines with shorter word lengths. Implementing the fetch and write
operations to be atomic would then be nontrivial, so simply defining them to be
atomic in our algorithm would sweep a significant implementation problem under
the rug.

Note. The unboundedness of n[i] has nothing to do with the nondeterministic
":>" statements, but is inherent in the bakery algorithm. It seems to be the price
one must pay for the elegance and simplicity of the algorithm. The problem of
finding practical bounds on the values assumed by n[i] is discussed in Section
6. []

We could define each n[i] to consist of an array of elementary variables, and
specify the fetch and write operations in terms of atomic operations on these
elementary variables. However, this would overly specify the algorithm, and
would rule out other valid implementations. In Section 6, we describe two quite
different ways of implementing the fetch and write operations in terms of atomic
operations on elementary variables.

Our approach is to specify directly what the effect of concurrent operations on
the variable n[i] must be. The correctness of any particular implementation can
ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

Proving the Correctness of Multiprocess Programs 87

then be verified by showing that it meets this specification. We can state the
requirements informally as follows. They are stated more precisely in Section 4.

R1. A fetch of n[i] which does not overlap any write of n[i] must obtain the
correct value.

R2. A fetch of n[i] in statement L3 (by a process i' # i) which overlaps the write
of n[i] in statement L2 (by process i) must obtain a value which is greater
than zero and less than or equal to the value being written.

Note that a fetch which overlaps a write is allowed to return any value at all if
either (a) the write is performed while executing statement L1 or IA, or (b) the
fetch is performed while executing statement L2. Requirement R1 implies that
concurrent fetches of n[i] by different processes do not interfere with one another.
(Concurrent writing of n[i] by different processes is impossible, since process i is
the only one which modifies n[i].)

The major advantage of this algorithm over the original bakery algorithm is
that process i executes only one wa i t unt i l loop for each other process j, rather
than two. However, an implementation must satisfy the additional requirement
R2. (The original bakery algorithm required only R1.)

The new algorithm has all of the same properties as the original bakery
algorithm; e.g. it behaves the same way in the presence of process failure, and
processes enter their critical sections on a first-come, first-served basis. (The
"doorway" consists of statements L1 and L2.) However, we will not bother to
prove these properties. Their informal correctness proofs are essentially the same
as for the original bakery algorithm. We restrict ourselves to proving the mutual
exclusion condition, both because it is the most difficult property to verify, and
because it requires a completely new proof.

3. OPERATIONS

We now introduce some general concepts and notation. In a future paper, we will
discuss these concepts in more detail, and show how they can be applied in a
wider variety of situations. Here, we restrict ourselves to a brief exposition, and
we do not try to justify the choice of these particular concepts.

We consider an execution of our algorithm to consist of a collection of opera-
tions. Each operation is composed of a set of indivisible actions. To be consistent
with the terminology of [5], we use the term "event" instead of "action." Figure
1 shows some of the operations which are generated by a single process. Note
that an execution of the entire statement L2 is considered to be a single operation.
Each "test n[/T' operation consists of executing a single iteration of the wa i t
unt i l loop in statement L3. We do not specify what the operations are in the
noncritical section. In particular, we do not assume that an execution of the
noncritical section must terminate.

To describe the temporal ordering of operations, we define two relations
between a pair of operations A and B: (1) A -* B {read A precedes B), and
(2) A ---~ B (read A can influence B). In a nondistributed system, they can be
defined as follows: (1) A -* B if A is completed before B is begun, and (2) A ---~
B if A is begun before B is completed. For a distributed system, they may be

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

88 Leslie Lamport

(

(

EXECUTION OF NON-CRITICAL SECTION

(

(
J

TEST n[1])

TEST n{1})

EXECUTION OF L1)

EXECUTION OF L2)

EXECUTION OF CRITICAL SECTION

TEST n[N}

TEST n(N}

. J

(E,Eco oNo L4)

EXECUTION OF NON-CRITICAL SECTION

Fig. 1

)

)

defined as follows in terms of the precedence relation between events defined in
[5]: (1) A --, B if every event in A precedes every event in B, and (2) A ---~ B if
some event in A precedes some event in B. We say that A and B are concurrent
if A -/-> B and B ~ A.

Figure 1 describes all the relations ~ between the operations of a single process
which are specified by the algorithm. For example, the algorithm specifies that
an execution of statement L1 must precede the execution of the subsequent
s tatement L2. However, the algorithm specifies no temporal ordering between a
"test n [j]" operation and a "test n[j']" operation during a single execution of
s tatement L3, for j ~ j ' . Any ~ or ---~ relation that exists between these two
ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

Proving the Correctness of Multiprocess Programs 89

operat ions is due to the detaii.~ of how the a lgor i thm is implemented , and is
ex t raneous to its correctness.

E i ther of our definitions of the relat ions --) and ---) allow us to derive the
following simple laws. (The proofs are trivial.)

A1. T h e relat ion ---) is t ransi t ively closed (A --) B ---) C implies A ---) C) and
irreflexive (A -/~ A).

A2. I f A ---) B t h e n A ---) B and B ---~ A.
A3. I f A ---) B ---~ C or A ---~ B --) C then A --~, C.
A4. I f A --) B - --) C ---) D then A --* D.

We take A1-A4 to be axioms. This allows us to consider the operat ions to be the
fundamenta l entities, and to forget t ha t they are composed of indivisible events.

We mus t augment these axioms with an addit ional axiom A5. I t s ta tes
essentially tha t the a lgor i thm begins executing a t some t ime {rather t han having
been running forever), and t ha t each operat ion takes a finite, posit ive length of
time.

AS. For every opera t ion A there exist only a finite n u m b e r of operat ions B such
tha t B ---) A.

T h e mutua l exclusion condit ion can be s ta ted quite s imply as follows: execu-
t ions of the critical section by two different processes mus t not be concurrent.
T h a t is, if the opera t ion CS is an execution of the critical section by process i, and
CS' is an execut ion of the critical section by process i' ~ i, then ei ther CS ---) CS'
or CS' --~ CS. Observe t ha t this is a precise s t a t emen t of the mutua l exclusion
condit ion which is independent of the a lgor i thm used to implement it.

4. OPERATIONS INVOLVING n[i]

Having in t roduced a general nota t ion for discussing operations, we now consider
the special case of the opera t ions which fetch and write the shared var iable n[i].
Let W~, W2 denote the operat ions which write n[i]-- i .e . , all executions of
s t a t emen t s L1, L2, and IA by process i. We can assume tha t W1 --) W2 -* since
the a lgor i thm does not allow concurren t opera t ions to write n[i]. We let Wo
denote the opera t ion which initializes n[i] to zero, and assume tha t Wo precedes
any o ther opera t ion which fetches or writes the value of n[i].

As in [6], we let n[i] [r] denote the value wri t ten by Wr, and we say tha t an
operat ion which fetches the value of n[i] obtains the "value" n[i] [r's] if it observes
t races of the values n[i] [r], n[i] [r÷l] n[i] [sl. Th is can be defined more precisely
as follows.

Defini t ion. An operat ion R which fetches the value of n[i] is said to obtain the
value n[i] [r''~l where r = m a x i m u m {t: Wt --) R} and s = m a x i m u m {t: Wt - --) R}.

Note. T h e existence of the r and s follows f rom A2, A5, and the assumpt ion
t ha t Wo precedes R. []

I f the opera t ion R obtains the value 7 as the result of fetching the value of
n[i], then we write n[i] jr's] = 7. This nota t ion is not str ict ly correct, because
another opera t ion R ' executed concurrent ly with R by ano ther process could
obtain n[i] tr'~] = 17. However , it is convenient and should cause no confusion.

Axioms A1-A3 easily imply the following.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

90 Leslie Lamport

PROPOSITION. L e t R be a fe tch o f n[i] wh i ch ob ta ins the value n[i] tr''l" T h e n
r < _ s a n d (i) Wt--* R i f a n d o n l y i f t < _ r, (ii) Wt - - -~R i f a n d o n l y i f t < _ s.

We can now state requi rements R1 and R2 precisely as follows:

R1. For any r : n[i] [r'rl = n[i] [rl.

R2. Let Wr be an execution of L1 by process i, and let Wr+l be the subsequent
execution of L2. If a " tes t n[i]" operat ion in the execution of L3 by another
process obtains the value n[i] [r'r+~l, then 0 < n[i] [r'r+~] <_ n[i] t~+ll.

We will also need the following requirement :

R3. If Wr is an execution of L1 by process i, and R is a " tes t n[i]" operat ion in
the execution of L3 by another process, t hen e i ther W, --* R or R ---~ Wr.

This requ i rement is always satisfied in a nondis t r ibuted system, since for such
a system ei ther A ~ B or B - --~ A must hold for any pair of distinct operat ions A
and B. (This follows f rom the definitions of - -* and ---~ for a nondis t r ibuted
system given in Sect ion 3.) However, this is not t rue for a dis tr ibuted system. In
Sect ion 7, we discuss the imphcat ion of R3 for implementa t ions in a dis tr ibuted
system.

5. THE PROOF OF CORRECTNESS

We now use A1-A5 and R1-R3 to prove tha t our a lgori thm satisfies the mutual
exclusion condition. We begin by introducing some nota t ion needed for the proof.
We define I 1 - I4 and C S I to be the following operat ions executed during a single
i terat ion of the r e p e a t loop of process i, where i ' # i:

I1 execution of LI: n[i]ttl : > 0,
12 execution of L2: n[i]tt+'~ : > m a x i m u m (. . . . n [i '] tp'q!),
/3 last " tes t n[i'] tr'~j'' during execution of L3,
C S I execution of the critical section,
/4 execution of L4: n[i] t'+~'l := 0.

Thus the operat ion /2 is an execut ion of s t a t emen t L2 by process i. Th i s
operat ion is bo th a fetch of n[i '] which obtains the "va lue" n [i '] tp'ql and a write
of n[i] which writes the value n[i] [t+~]. Similarly, I3 is the last " tes t n[i ']"
operat ion performed by process i before enter ing its critical section. I t is a fetch
of n[i '] which obtains the "va lue" n[i '] tr''].

T h e following relat ions follow immediate ly from the algori thm and f rom our
definitions:

11 ~ 12--+ I3-'> CSI---> I4 (1)

r<_s and p < _ q (2)

0 < n[i] tt] < n[i] It+l] (3)

n[i '] tp.q] < n[i] It+l] (4)

n[i '] tr''l = 0 or (n[i] tt÷l], i) < (n[i '] tr''], i '). (5)

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

Proving the Correctness of Multiprocess Programs 91

Relation (5) follows from the fact that process i leaves its wa i t unt i l loop for j
= i ' after executing operation 13. (The strict inequality is because i ' # i.)

Note . Relations I1 and (3)-{5) can be viewed as a formal specification of the
algorithm described informally by the Algol style program of Section 2. For
example, the requirement that (4) hold for all i ' # i, and the inequality n[i] tt] <
n[i] It+l] of (3) constitute a precise specification of statement L2. []

The operations I i ' - I 4 ' and C S I ' in process i ' are defined in exactly the same
way, except with primed and unprimed values interchanged. For example, we
have

12' execution of L2: n[i '] tt'+ll :> m a x i m u m (.. . . n[i] [p''q']).

The relations (1')-(5') are similarly defined; e.g.

n[i] ~''q'l < n[i'] tt'+ll. (4')

To verify that our algorithm satisfies the mutual exclusion condition, we must
prove that either C S I ~ C S I ' or C S I ' ~ CSI. The proof is a matter of purely
formal manipulations, using al-A5, R1-R3, the proposition of Section 4, and
relations (1)-(5) and (1')-(5'). The reasoning involved can be formulated rigor-
ously enough to permit mechanical verification. However, to facilitate human
comprehension, the proof is presented in the style of ordinary, informal mathe-
matics.

We separately consider three cases:

Case I: r < t ' o r r ' < t .
Case II: s > t ' + l o r s ' > t + l .
CaseIII: t ' < _ r < - s < - t ' + l a n d t < - r ' <-s ' < - t + l.

By (2) and (2'), these (nondisjoint) cases cover all possibilities.
Case I. Assume r < t'. T h e proposition implies that I I ' 74 13. By R3, this

implies t h a t / 3 ---~ I l L Combining this with (1) and (1') gives 12 ~ / 3 ---~ I1' --,
I2' --~ I3'. Using A4 and A1, we can then conclude tha t /2 --* I2' and I2 --* I3'. The
proposition then implies that

p ' > _ t + l and r ' > _ t + l . (I.1)

Since q' >_ p ' [by (2')], (I.1) implies that we need only consider the following two
subcases:

Case Ia. q ' > t + 1.
CaseIb. q ' f p ' f t + l .

Case Ia. Assume q' > t + 1. The proposition then implies that 14 ---~/2'.
Combining this with (1) and (1'), we have C S I --* I4 ---~ 12' ---, CSI ' . Axiom A4
then implies that C S I ~ CSI ' .

Case Ib. Assume q ' = p ' = t + 1. By R1 and {4'), this implies

n[i] tt+q < n[i '] tt'+q. (Ib.1)

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

92 Leslie Lamport

By (I.1) and (2'), we need only consider the following two cases:

Case Ib(i): s ' > t + 1.
Case Ib(ii): s ' = r ' = t + 1.

C a s e Ib(i). Assume s ' > t + 1. T h e proposi t ion then implies t h a t / 4 ---~ I3' .
Using (1) and (1') this gives CSI - - - , I4 ---> 13' --, C S I ' , and we conclude f rom A4
tha t C S I ~ C S I ' .

C a s e Ib(ii). Assume s ' = r ' = t + 1. By R1, (3), and (5'), this implies tha t
(n[i '] tt'÷~l, i ') < (n[i] tt÷~l, i). However , this inequal i ty contradic ts (Ib.1) (which
still holds in the subcase), so this subcase is impossible.

Th is comple tes the proof of case I for r < t ' . T h e proof for r ' < t is the same,
except with p r imed and unpr imed quant i t ies interchanged. T h u s we have finished
with case I.

C a s e II. Assume s > t ' + 1. T h e proposi t ion then implies t h a t / 4 ' ---~/3. Using
(1) and (1'), we then obtain C S I ' ~ I4 ' ---> 13 ---, C S I , and use A4 to conclude tha t
C S I ' ---* C S I . T h e proof for s ' > t + 1 is obta ined by interchanging pr imed and
unpr imed quantit ies.

C a s e III . Assume tha t t ' __ r _< s _ t ' + 1. The re are th ree subcases to be
considered:

Case IIIa: r = s = t ' .
Case IIIb: r = s = t ' + 1.
Case IIIc: r = t ' and s = t ' + 1.

F rom (39, R1, and R2, it follows easily for each of these cases tha t 0 < n[i']tr'81
<- n[i '] [r+ll. We then conclude f rom (5) t ha t

(n[i '] tt+~], i) < (n[i '] tt'+ll, i ') . (III.1)

Star t ing f rom the assumpt ion t ha t t __ r ' __ s ' __< t + 1, the same reasoning with
p r imed and unpr imed quant i t ies in te rchanged yields

(n[i '] tr÷ll, i ') < (n[i] Et+~], i). (I I I . l ')

Since (III.1) and (I I I . l ') are contradictory, this case is impossible. Th is com-
pletes the proof.

N o t e . Axiom A5 was not used in the proof and could have been el iminated
ent irely by allowing r or s to equal infinity in the definition of Sect ion 4. In the
te rminology of [3], this is because A5 is needed only to prove "l iveness" propert ies,
whereas mutua l exclusion is a "safe ty" proper ty . One would need A5 to prove
tha t a process will eventual ly enter its critical section. []

I f the reader has not examined o ther r igorous correctness proofs, t hen he
m a y feel t ha t the above p roof is r a the r long and tedious. In this case, we urge h im
to consider the a m o u n t of detail involved in verifying the formal assert ional p roof
for the original bake ry a lgor i thm in [3]. Rigorous correctness proofs for mul t ipro-
cess p rograms are not easy. We feel t ha t our new approach compares quite
favorably to assert ional me thods in t e rms of the length and difficulty of the
proofs.

ACM Transactions on Programming Languages and Systems, Vol. l, No. 1, July 1979.

Proving the Correctness of Multiprocess Programs 93

6. IMPLEMENTATION IN A NONDISTRIBUTED SYSTEM

We now describe two different ways of implement ing our a lgor i thm in a "tradi-
t ional" nondis t r ibuted envi ronment , in which processes communica te via shared
memory . T h e value of an integer var iable is s tored as a mult idigit number ; i.e. as
a f ini te-length str ing of nonnegat ive integers in the usual way. T h u s the integer
1 is a lways represen ted by the str ing of digits 00 ... 01. We assume tha t fetching
or writing a single digit is an a tomic operat ion. T h e a lgor i thm is assumed to be
executed as if no two a tomic opera t ions are executed concurrent ly.

T h e obvious way to imp lemen t such an integer in a conventional mul t iprocess
compute r is with a fixed n u m b e r of digits, each occupying a single m e m o r y word.
Imp lemen ta t i ons with a var iable- length list of digits are also possible, bu t they
are nontr ivial and will be left as an exercise for the in teres ted reader.

Note. Like the original bake ry algori thm, the new algor i thm can be imple-
men ted even with t ruly concurren t operat ions to the same m e m o r y word. Hard-
ware imp lemen ted mutua l exclusion is not required. However , the discussion of
such an implementa t ion would lead us away f rom the ma in purpose of this paper,
so we s imply assume mutua l ly exclusive access to individual digits. []

With these assumptions , it is easy to see tha t condit ion R1 is satisfied by any
reasonable i m p l e m e n t a t i o n) As we ment ioned earlier, R3 is a lways satisfied in a
nondis t r ibuted system. More precisely, R3 follows f rom the assumpt ion t ha t the
a tomic events compris ing any two operat ions are total ly ordered in time. T h e
only implemen ta t ion difficulty is satisfying R2. We give two ways of doing this.

Implementat ion 1. We begin with the mos t s t ra ight forward implementa t ion .
T h e value of n[i] is s tored as a list of digits, as described above. S t a t e m e n t L1 is
imp lemen ted as follows:

LI: n[i] := 1.

In s t a t e m e n t L2, n[i] is set to the smallest integer grea ter t han m a x i m u m
(n[1] n[N]} whose r igh tmost {least significant) digit is nonzero. Each digit is
wri t ten a t mos t once. To show tha t R2 is satisfied, we observe t ha t the fetched
value n[i] tr'r÷tj in the s t a t emen t of R2 is composed of a str ing of digits each of
which is a digit of e i ther n[i] [r] -- 0 ... 01 or n[i] [r+l]. T h e r ight -hand digit of bo th
these number s is nonzero, so n[i] [r'r+l] > 0. Each digit of n[i] [r] is less t han or
equal to the corresponding digit of n[i] [r+l], so n[i] [r'r+ll ~_ n[i] [r+l]. Hence R2 is
satisfied.

T h e p rob lem with this implementa t ion is t ha t we do not know how fast the
value of n[i] can grow. T h e implementa t ion is sat isfactory if critical sect ions are
not executed too frequently, since the values of all the n[i] drop back to zero
when all processes are in their noncri t ical sections. However , this m a y never
happen if critical sections are executed frequently. Le t gj denote the to ta l n u m b e r
of i terat ions of the r e p e a t loop which process j has begun. In order to allow
pract ical implementa t ions with fixed-length integers, we would like some ine-
quali ty such as n[i] <_ k ~ g I to hold (where k is a small constant) . We do not know
if this is t rue for implementa t ion 1. However , the inequali ty n[i] <_ ~(gj + 1) is

i An example of an unreasonable implementation would be one in which a fetch of n[i] examines only
some of its digits and tries to guess the rest.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

94 Leslie Lamport

easily proved for the following implementat ion using the results of [6]:
Imp lemen ta t i on 2. We encode the value of n[i] in the following way, using an

integer variable nn[i] and a Boolean variable zf[i]:

n[i] =- i f zf[i] then 0 else nn[i] fi

Initially, zf[i] = t r u e and nn[i] = 0 ... 01. We use the nota t ion int roduced in
[6] tha t an arrow over a fetch or store instruct ion indicates tha t the individual
digits are to be fetched or s tored ei ther f rom left to right (most significant to least
significant) or right to left, depending upon the direction of the arrow, the
implementa t ion is given below. {Note tha t process i can read the digits of nn[i]
in any order, since no other process can change nn[i].)

r epea t noncritical section;
LI: zf[i] : = false;
L2: ,)

nn[i] := 1 + maximum (nn[1] nn- '~)
L3: for a l l j E {1 N} do

wait unti l z f[j] or {nn--~, j) >_ (nn[i], i) od;
critical section;

L4: zf[i] : = t rue
end . repea t

T h e fact tha t R2 is satisfied is an easy consequence of the following result: if a
" tes t n[i]" operat ion fetches the value nn[i] tr' s], then nn[i] tr' s] ~_ nn[i]!,]. Th i s
result in tu rn follows immediate ly from theorem 2 of [6].

7. IMPLEMENTATION IN A DISTRIBUTED SYSTEM

We now consider the implementa t ion of our algori thm in a distr ibuted system. A
rigorous, detailed discussion of this case would be ra the r long, and would involve
some fundamenta l issues which we prefer not to introduce in this paper. There fore
we will just briefly describe our approach, omit t ing the details.

We assume tha t there is no shared memory, but t ha t processes communicate
by sending signals to one another. A set of signals used to convey some unit of
informat ion is called a message. The actual mechanism by which messages are
t ransmi t ted does not concern us.

We implement a program variable by having each process mainta in its own
local copy of the variable. A fetch is per formed using tha t local copy. To store a
value into the variable, a process must send a message containing the new value
to every o ther process. We make the following requi rement on how this is done.

MX. For any pair of processes i and i': messages sent f rom process i to process
i' are acted upon by process i ' in the same order in which they were sent.

Thus, process i ' will perceive the changes to n[i] as occurring in the same order
tha t they are made by process i. How MX is implemented will depend upon the
details of how messages are t ransmit ted, and might require the use of sequencing
information in the message.

We first observe tha t in the correctness proof of Sect ion 5, we did not need to
assume tha t axioms A1-A5 hold for the entire set of operations. I t sufficed to
assume tha t these axioms are satisfied for every pair of processes. In o ther words,
we need only assume tha t for every pair of processes, A1-A5 hold for the set of

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

Proving the Correctness of Multiprocess Programs 95

operations generated by those two processes. For example, we did not have to
assume that A --* B --* C implies A --* C if A, B, and C are operations generated
by three different processes. It can be shown that with the proper definition of

and ---~ (i.e. with the proper identification of operations with sets of events),
MX implies that A1-A5 are satisfied for every pair of processes, and that R1 also
holds. 2 Moreover, the two implementations described in Section 6 guarantee that
R2 holds in this case too. (In some situations, it will be reasonable to implement
fetches and stores ~o an entire local copy of n[i] as atomic operations, making R2
trivially true.)

Note. For implementation 2, it is necessary to show that the theorems of [6]
can be proved using only axioms A1-A5. We leave this as an exercise for the
reader. []

Finally, we must insure that R3 holds. We can do this by adding the following
requirement for the implementation of statement LI:

After sending a store message to other processes, process i must wait until it
receives a message from every other process acknowledging that that process
has executed the stored operation in its local copy of n[i].

Any solution to the mutual exclusion problem in a distributed system must
involve some such waiting for acknowledgments from other processes. (Otherwise,
there would be a solution that worked despite infinitely long propagation delays--
i.e. without any interprocess communication at all.) We could simply have
required that a process await such an acknowledgment for every store operation.
This would have introduced all the delays needed to make our distributed system
behave exactly like a nondistributed one with a very slow central memory.
However, the precise statement of the requirements R1-R3 enabled us to imple-
ment the algorithm with the minimum amount of waiting for acknowledgments.

8. CONCLUSION

When multiprocess algorithms were first studied, their correctness was proved
using informal arguments based upon execution sequences, as in [4]. This method
of proving correctness was found to be unreliable--it was too easy to give
convincing correctness "proofs" for incorrect algorithms. The unreliability re-
sulted from the enormous variety of possible execution sequences allowed by a
multiprocess algorithm, and the difficulty of insuring that all possibilities had
been considered. This led to the development of assertional techniques by Owicki
[7], Keller [2], Lamport [3], and others which generalized the methods previously
developed for sequential programs. These assertional techniques are based upon
considering the states of the processes rather than their execution sequences.
Proofs based upon assertional techniques appear to be more reliable than the old
style of proof.

The approach introduced here, utilizing axioms A1-A5 and the definition and
proposition of Section 4, represents a step backwards in that it is based upon
execution sequences rather than assertions about states. However, it represents

2 For A1-A5 to be satisfied for the entire set of operations, MX would have to be s trengthened to
guarantee that information transmit ted indirectly from process i to process i ' via intermediary
processes is acted upon in the correct order.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

96 Leslie Lamport

an advance beyond the earlier, informal methods for two reasons. First, we have
introduced a collection of concepts and notations which seem to permit more
reliable, rigorous proofs. Second, we have reduced the complexity of the proofs
by allowing nonatomic operations. (For example, we could consider executing the
entire complex statement L2 to be a single operation.) With fewer individual
operations, there are fewer execution sequences to be considered.

Despite these advances, our approach still lacks the strong formal foundation
of assertional techniques. However, it offers some significant advantages over
those techniques. First of all, it can handle nonatomic operations. This permits a
multiprocess system to be designed by hierarchical decomposition. Because it is
so simple, our algorithm may appear to be an ordinary low level synchronization
algorithm. However, it is actually a higher level specification of an algorithm,
since it permits the two very different implementations of Section 6. We were
able to prove the correctness of the algorithm independently of the lower level
algorithms used to implement its operations. So far, assertional techniques have
not worked for nonatomic operations. We know no way of using assertional
techniques to prove the correctness of such a higher level specification.

Note. Recent work by Owicki and others has addressed the problem of deter-
mining when a sequence of atomic operations can be treated as a single atomic
operation. However, this is different from our approach which does not demand
that the operations behave as though they were atomic. []

The other advantages of our approach stem from its generality. We believe
that the relations --, and ---) and axioms A1-A5 are fundamental to all concurrent
systems. Thus our approach should permit natural specifications of the problem
to be solved (or of the system to be implemented) in a manner that is completely
independent of the solution. In contrast, assertional methods require that the
correctness conditions be stated in terms of the objects {such as program varia-
bles) used in the solution. Notice how natural the statement of the mutual
exclusion condition is in terms of the relation --,. This is in sharp contrast with
the indirect method of proving mutual exclusion described by Owicki [7]. The
other requirements for a solution to the mutual exclusion problem, described
informally in [4], can also be expressed quite naturally with our notation. A
similar conclusion has been reached by Greif [1].

The generality of our approach also means that it is applicable to any kind of
multiprocess system. Assertional techniques have so far proved useful only for
traditional, nondistributed multiprocess systems. Our approach is applicable to
distributed systems as well. Thus, our specification of the algorithm permitted
nontrivial implementations with a distributed system, as well as conventional
implementations using shared memory.

We expect that ultimately our approach will be used in the high level design of
a multiprocess system, while assertional techniques will be used to verify the
correct implementation of the higher level operations. However, much more
experience is needed to determine the approach's range of applicability and its
relation to assertional techniques. In a future paper, we intend to describe in
more detail the concepts introduced in Section 3, and to discuss some fundamental
issues of distributed systems which we could not deal with in this paper. The
example we have considered here should illustrate the application of our approach
to traditional multiprocessing problems in a nondistributed environment.
ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

Proving the Correctness of Multiprocess Programs 97

ACKNOWLEDGMENTS

The final version of the algorithm described here was discovered during a
discussion with C.S. Scholten and E.W. Dijkstra. The excellent Dutch beer
consumed on that occasion and the subsequent passage of time have conspired to
prevent us from accurately apportioning the credit for its discovery.

REFERENCES

1. GREIF, I. A language for formal problem specifications. Comm. ACM20, 12 (Dec. 1977), 931-935.
2. KELLER, R. Formal verification of parallel programs. Comm. A C M 19, 7 (July 1976), 371-384.
3. LAMPORT, L. Proving the correctness of multiprocess programs. I E E E Trans. Software Eng.

SE.3, 7 (March 1977), 125-143.
4. LAMPORT, L. A new solution of Dijkstra's concurrent programming problem. Comm. A C M 17, 8

(Aug. 1974), 453-455.
5. LAMPORT, L. Time, clocks and the ordering of events in a distributed system. Comm. A C M 21, 7

(July 1978), 558-565.
6. LAMPORT, L. Concurrent reading and writing. Comm. A C M 20, 11 (Nov. 1977), 806-811.
7. OWICKI, S., AND GRIES, D. Verifying properties of parallel programs: an axiomatic approach.

Comm. A C M 19, 5 (May 1976), 279-285.

Received January 1978; revised November 1978

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

