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1. INTRODUCTION 

Even a simple multiprocess program can exhibit very complicated behavior when 
it is executed, and it is hopeless to try to verify its correctness by exhaustive 
testing. The only way to guarantee the absence of errors in a mnltipr0cess 
program is with a rigorous proof of its correctness. Recently the assertional 
techniques used for proving sequential programs correct have been extended to 
multiprocess programs by Owicki [7], Keller [2], Lamport [3], and others. How- 
ever, these techniques have the following three limitations: 

(1) Assertional techniques developed thus far require that a program be 
decomposed into indivisible, atomic operations (or operations that  act as if they 
were atomic). This has prevented a general method for the hierarchical decom- 
position of correctness proofs. {Although a hierarchical design methodology is 
outlined in [3], a rigorous correctness proof is obtained only for the final low level 
program.) 

(2) Assertional techniques require that  the correctness conditions be expressed 
in terms of the objects (such as program variables) used in the implementation. 
This is satisfactory for proving the correctness of an individual subroutine. 
However, for a large program such as an entire airline reservation system, one 
would like the correctness conditions to be stated in terms of higher level 
concepts. 
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Proving the Correctness of Multiprocess Programs 85 

(3) Assertional techniques have so far been useful only for traditional nondis- 
tributed multiprocess systems, in which processes communicate via shared mem- 
ory. We would like a method which is also applicable to distributed systems, in 
which processes communicate by sending signals to one another. 

In this paper, we present a new, nonassertional approach to proving the 
correctness of multiprocess programs which overcomes these limitations. We use 
the term "approach" to avoid suggesting that we have a well developed method- 
ology. However, the concepts presented here are not introduced casually. They 
have been distilled from several years of experience with various aspects of 
concurrent processing. Our approach is related to the work of Greif [1], but differs 
significantly from it because we consider nonatomic operations. 

Rather than giving an abstract general discussion of our ideas, we have chosen 
in this paper to introduce our approach through a single example. (It is our 
opinion that  good examples are more instructive than formal theories.) A future 
paper will discuss in more generality the concepts introduced here. 

The example we use is an improved version of the bakery algorithm [4] for 
solving the mutual exclusion problem. This algorithm was chosen because it is 
short and easy to follow, yet quite subtle; and the proof of its correctness is not 
trivial. With this example, we show how an algorithm involving complex, nona- 
tomic operations can be proved correct without first specifying how these oper- 
ations are implemented. The meaning of the operations is specified in a way 
which allows us to give two quite different implementations of the algorithm for 
a nondistributed system. We also sketch how the specifications permit nontrivial 
implementations for a distributed system. However, a thorough discussion of 
distributed systems must be deferred to a future paper. We also defer discussion 
of why this approach leads to more natural specifications of correctness condi- 
tions. 

2. THE ALGORITHM 

We assume N processes, each with a cri t ical  section. The problem is to synchro- 
nize the processes so that  the following m u t u a l  exclusion condi t ion is satisfied: 
two different processes may not execute their critical sections at the same time. 
There are a number of other properties which are required of a solution, but they 
will not concern us here. The reader is referred to [4] for a more complete 
statement of the problem. 

Our algorithm is a variant of the bakery algorithm of [4]. We describe the new 
algorithm here without attempting to give any intuitive explanation of "why it 
works." The reader who wants a better understanding of this algorithm should 
first study the original bakery algorithm. 

We wish to express the algorithm in its most general form, in order to allow the 
widest possible choice of implementations. This requires introducing some new 
notation. We let ":>" mean "set to any value greater than" {just as ":=" means 
"set to the value equal to"}. The statement 

for  al l  j E { 1 . . . . .  N} do  Sj od 

means that  the statements $1 . . . . .  SN are to be executed concurrently (or in any 
order), where $1 is the statement obtained by substituting 1 for j in Sj, etc. We 
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also introduce the statement 

wait  until condition 

as an abbreviation for 

L: if  not  condition then goto  L ft. 

The relation ">"  on ordered pairs of integers is defined by (a, b) > (a', b') if 
either (i) a > a' or (ii) a = a '  and b > b'. The remaining notation should be self- 
explanatory. 

The global variables consist of the array n[1 :N] of nonnegative integers. Each 
n[i] is initially equal to zero. The following is the algorithm for process i. (Labels 
are inserted for future reference.) 

integer j; 
repeat noncritical section; 

LI: n[i] :>0; 
L2: n[i] :> maximum (n[1] ..... n[N]); 
L3: for a l l j  E {1 ..... N} do 

wait until n[j] = 0 or (n[j],j) >_ (n[i], i) od; 
critical section; 

L4: n[ i] := 0 
end repeat 

This type of description would suffice to specify a single process algorithm. 
However, for a multiprocess algorithm, we must also specify what kind of 
interaction is permitted between the concurrent executions of the different 
processes. For our algorithm, this requires specifying the result of concurrent 
accessing of the variable n[i] by two different processes. This has traditionally 
been done by specifying that certain operations are to behave as if they were 
instantaneously executed indivisible atomic operations. Thus we could specify 
that fetching or writing the value of n[i] is an atomic operation. However, this 
would be unacceptable for our algorithm. The value of n[i] can become arbitrarily 
large, so it may have to be stored in several separate memory registers--especially 
for machines with shorter word lengths. Implementing the fetch and write 
operations to be atomic would then be nontrivial, so simply defining them to be 
atomic in our algorithm would sweep a significant implementation problem under 
the rug. 

Note. The unboundedness of n[i] has nothing to do with the nondeterministic 
":>" statements, but is inherent in the bakery algorithm. It seems to be the price 
one must pay for the elegance and simplicity of the algorithm. The problem of 
finding practical bounds on the values assumed by n[i] is discussed in Section 
6. [] 

We could define each n[i] to consist of an array of elementary variables, and 
specify the fetch and write operations in terms of atomic operations on these 
elementary variables. However, this would overly specify the algorithm, and 
would rule out other valid implementations. In Section 6, we describe two quite 
different ways of implementing the fetch and write operations in terms of atomic 
operations on elementary variables. 

Our approach is to specify directly what the effect of concurrent operations on 
the variable n[i] must be. The correctness of any particular implementation can 
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then be verified by showing that  it meets this specification. We can state the 
requirements informally as follows. They are stated more precisely in Section 4. 

R1. A fetch of n[i] which does not overlap any write of n[i] must obtain the 
correct value. 

R2. A fetch of n[i] in statement L3 (by a process i' # i) which overlaps the write 
of n[i] in statement L2 (by process i) must obtain a value which is greater 
than zero and less than or equal to the value being written. 

Note that  a fetch which overlaps a write is allowed to return any value at all if 
either (a) the write is performed while executing statement L1 or IA, or (b) the 
fetch is performed while executing statement L2. Requirement R1 implies that  
concurrent fetches of n[i] by different processes do not interfere with one another. 
(Concurrent writing of n[i] by different processes is impossible, since process i is 
the only one which modifies n[i].) 

The major advantage of this algorithm over the original bakery algorithm is 
that  process i executes only one wa i t  unt i l  loop for each other process j, rather 
than two. However, an implementation must satisfy the additional requirement 
R2. (The original bakery algorithm required only R1.) 

The new algorithm has all of the same properties as the original bakery 
algorithm; e.g. it behaves the same way in the presence of process failure, and 
processes enter their critical sections on a first-come, first-served basis. (The 
"doorway" consists of statements L1 and L2.) However, we will not bother to 
prove these properties. Their informal correctness proofs are essentially the same 
as for the original bakery algorithm. We restrict ourselves to proving the mutual 
exclusion condition, both because it is the most difficult property to verify, and 
because it requires a completely new proof. 

3. OPERATIONS 

We now introduce some general concepts and notation. In a future paper, we will 
discuss these concepts in more detail, and show how they can be applied in a 
wider variety of situations. Here, we restrict ourselves to a brief exposition, and 
we do not try to justify the choice of these particular concepts. 

We consider an execution of our algorithm to consist of a collection of opera- 
tions. Each operation is composed of a set of indivisible actions. To be consistent 
with the terminology of [5], we use the term "event" instead of "action." Figure 
1 shows some of the operations which are generated by a single process. Note 
that  an execution of the entire statement L2 is considered to be a single operation. 
Each "test n[/T' operation consists of executing a single iteration of the wa i t  
unt i l  loop in statement L3. We do not specify what the operations are in the 
noncritical section. In particular, we do not assume that an execution of the 
noncritical section must terminate. 

To describe the temporal ordering of operations, we define two relations 
between a pair of operations A and B: (1) A -* B {read A precedes B), and 
(2) A ---~ B (read A can influence B). In a nondistributed system, they can be 
defined as follows: (1) A -* B if A is completed before B is begun, and (2) A ---~ 
B if A is begun before B is completed. For a distributed system, they may be 
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defined as follows in terms of the precedence relation between events defined in 
[5]: (1) A --, B if every event in A precedes every event in B, and (2) A ---~ B if 
some event in A precedes some event in B. We say that  A and B are concurrent 
if A -/-> B and B ~ A. 

Figure 1 describes all the relations ~ between the operations of a single process 
which are specified by the algorithm. For example, the algorithm specifies that  
an execution of statement L1 must  precede the execution of the subsequent  
s tatement  L2. However,  the algorithm specifies no temporal ordering between a 
"test n [ j ]"  operation and a "test n[j']" operation during a single execution of 
s tatement  L3, for j ~ j ' .  Any ~ or ---~ relation that  exists between these two 
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operat ions  is due to the  detaii.~ of how the a lgor i thm is implemented ,  and is 
ex t raneous  to its correctness.  

E i ther  of our definitions of the  relat ions --) and ---) allow us to derive the 
following simple laws. (The  proofs are trivial.) 

A1.  T h e  relat ion ---) is t ransi t ively closed (A --) B ---) C implies A ---) C) and 
irreflexive (A -/~ A). 

A2.  I f A  ---) B t h e n A  ---) B and B ---~ A. 
A3.  I f A  ---) B ---~ C or A ---~ B --) C then  A --~, C. 
A4.  I f  A --) B - --) C ---) D then  A --* D. 

We take  A1-A4 to be  axioms. This  allows us to consider the operat ions  to be the  
fundamenta l  entities, and to forget  t ha t  they  are composed  of indivisible events.  

We mus t  augment  these axioms with an addit ional  axiom A5. I t  s ta tes  
essentially tha t  the a lgor i thm begins executing a t  some t ime {rather t han  having 
been  running forever),  and t ha t  each operat ion takes  a finite, posit ive length of 
time. 

AS. For  every  opera t ion A there  exist only a finite n u m b e r  of operat ions  B such 
tha t  B ---) A. 

T h e  mutua l  exclusion condit ion can be s ta ted  quite s imply as follows: execu- 
t ions of  the  critical section by  two different processes mus t  not  be concurrent.  
T h a t  is, if the  opera t ion CS is an execution of the  critical section by  process i, and 
CS'  is an execut ion of the  critical section by process i' ~ i, then  ei ther  CS ---) CS'  
or CS'  --~ CS. Observe t ha t  this is a precise s t a t emen t  of the mutua l  exclusion 
condit ion which is independent  of the  a lgor i thm used to implement  it. 

4. OPERATIONS INVOLVING n[i] 

Having  in t roduced a general  nota t ion  for discussing operations,  we now consider 
the  special case of  the opera t ions  which fetch and write the  shared  var iable  n[i]. 
Let  W~, W2 . . . .  denote  the operat ions  which write n[i]-- i .e . ,  all executions of 
s t a t emen t s  L1, L2, and IA by  process i. We can assume tha t  W1 --) W2 -*  .... since 
the a lgor i thm does not  allow concurren t  opera t ions  to write n[i]. We let Wo 
denote  the opera t ion which initializes n[i] to zero, and assume tha t  Wo precedes  
any o ther  opera t ion which fetches or writes the  value of n[i]. 

As in [6], we let n[i] [r] denote  the value wri t ten by  Wr, and we say tha t  an 
operat ion which fetches the  value of n[i] obtains  the  "value"  n[i] [r's] if it observes 
t races  of the values  n[i] [r], n[i] [r÷l] . . . . .  n[i] [sl. Th is  can be defined more  precisely 
as follows. 

Defini t ion.  An operat ion R which fetches the value of n[i] is said to obtain the 
value n[i] [r''~l where r = m a x i m u m  {t: Wt --) R} and s = m a x i m u m  {t: Wt - --) R}. 

Note.  T h e  existence of the  r and s follows f rom A2, A5, and  the  assumpt ion  
t ha t  Wo precedes  R. [] 

I f  the opera t ion R obtains  the value 7 as the result  of  fetching the value of 
n[i], then  we write n[i] jr's] = 7. This  nota t ion  is not  str ict ly correct,  because 
another  opera t ion R '  executed concurrent ly  with R by ano ther  process could 
obtain  n[i] tr'~] = 17. However ,  it is convenient  and should cause no confusion. 

Axioms A1-A3 easily imply  the following. 
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PROPOSITION. L e t  R be a fe tch  o f  n[i] wh i ch  ob ta ins  the value  n[i] tr''l" T h e n  
r < _ s a n d  (i) Wt--* R i f a n d o n l y  i f t  < _ r, (ii) Wt  - - -~R i f a n d o n l y  i f t  < _ s. 

We can now state requi rements  R1 and R2 precisely as follows: 

R1. For  any r :  n[ i ]  [r'rl = n[ i ]  [rl. 

R2. Let  Wr be an execution of L1 by process i, and let Wr+l be the subsequent  
execution of L2. If  a " tes t  n[i]" operat ion in the execution of L3 by another  
process obtains the value n[i] [r'r+~l, then  0 < n[i] [r'r+~] <_ n[i] t~+ll. 

We will also need the following requirement :  

R3. If  Wr is an execution of L1 by process i, and  R is a " tes t  n[i]" operat ion in 
the execution of L3 by another  process, t hen  e i ther  W, --* R or R ---~ Wr. 

This  requ i rement  is always satisfied in a nondis t r ibuted system, since for such 
a system ei ther  A ~ B or B - --~ A must  hold for any pair  of distinct operat ions A 
and B.  (This follows f rom the definitions of - -*  and ---~ for a nondis t r ibuted 
system given in Sect ion 3.) However,  this is not  t rue  for a dis tr ibuted system. In 
Sect ion 7, we discuss the imphcat ion of R3 for implementa t ions  in a dis tr ibuted 
system. 

5. THE PROOF OF CORRECTNESS 

We now use A1-A5 and R1-R3 to prove tha t  our  a lgori thm satisfies the mutual  
exclusion condition. We begin by introducing some nota t ion needed for the proof. 
We define I 1 - I4  and C S I  to be the following operat ions executed during a single 
i terat ion of the  r e p e a t  loop of process i, where i '  # i: 

I1 execution of LI: n[i]ttl : > 0, 
12 execution of L2: n[i]tt+'~ : > m a x i m u m  ( . . . .  n [ i ' ]  tp'q! . . . .  ), 
/3 last " tes t  n[i'] tr'~j'' during execution of L3, 
C S I  execution of the critical section, 
/4 execution of L4: n[i] t'+~'l := 0. 

Thus  the operat ion /2  is an execut ion of s t a t emen t  L2 by process i. Th i s  
operat ion is bo th  a fetch of n[i '] which obtains the "va lue"  n [ i ' ]  tp'ql and a write 
of n[i] which writes the value n[i] [t+~]. Similarly, I3 is the last " tes t  n[i ' ]"  
operat ion performed by process i before enter ing its critical section. I t  is a fetch 
of n[i '] which obtains the "va lue"  n[i ' ]  tr'']. 

T h e  following relat ions follow immediate ly  from the algori thm and f rom our  
definitions: 

11 ~ 12--+ I3-'> CSI---> I4 (1) 

r<_s  and p < _ q  (2) 

0 < n[i] tt] < n[i] It+l] (3) 

n[ i ' ]  tp.q] < n[i] It+l] (4) 

n[i '] tr''l = 0 or (n[i] tt÷l], i) < (n[i ']  tr''], i '). (5) 
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Relation (5) follows from the fact that process i leaves its wa i t  unt i l  loop for j 
= i '  after executing operation 13. (The strict inequality is because i '  # i.) 

Note .  Relations I1 and (3)-{5) can be viewed as a formal specification of the 
algorithm described informally by the Algol style program of Section 2. For 
example, the requirement that (4) hold for all i '  # i, and the inequality n[i] tt] < 
n[i] It+l] of (3) constitute a precise specification of statement L2. [] 

The operations I i ' - I 4 '  and  C S I '  in process i '  are defined in exactly the same 
way, except with primed and unprimed values interchanged. For example, we 
have 

12' execution of L2: n[i '] tt'+ll :> m a x i m u m  ( .. . .  n[i] [p''q'] . . . .  ). 

The relations (1')-(5') are similarly defined; e.g. 

n[i] ~''q'l < n[i'] tt'+ll. (4') 

To verify that our algorithm satisfies the mutual exclusion condition, we must 
prove that either C S I  ~ C S I '  or C S I '  ~ CSI.  The proof is a matter of purely 
formal manipulations, using al-A5, R1-R3, the proposition of Section 4, and 
relations (1)-(5) and (1')-(5'). The reasoning involved can be formulated rigor- 
ously enough to permit mechanical verification. However, to facilitate human 
comprehension, the proof is presented in the style of ordinary, informal mathe- 
matics. 

We separately consider three cases: 

Case I: r < t ' o r r ' < t .  
Case II: s > t ' + l o r s ' > t + l .  
CaseIII:  t '  < _ r < - s < - t '  + l a n d t < - r '  <-s '  < - t +  l. 

By (2) and (2'), these (nondisjoint) cases cover all possibilities. 
Case  I. Assume r < t'. T h e  proposition implies that I I '  74 13. By R3, this 

implies t h a t / 3  ---~ I l L  Combining this with (1) and (1') gives 12 ~ / 3  ---~ I1'  --, 
I2'  --~ I3'. Using A4 and A1, we can then conclude tha t /2  --* I2'  and I2 --* I3'. The 
proposition then implies that 

p ' > _ t + l  and r ' > _ t + l .  (I.1) 

Since q'  >_ p '  [by (2')], (I.1) implies that we need only consider the following two 
subcases: 

Case Ia. q '  > t + 1. 
CaseIb.  q ' f p ' f t + l .  

Case  Ia. Assume q'  > t + 1. The proposition then implies that 14 ---~/2'. 
Combining this with (1) and (1'), we have C S I  --* I4 ---~ 12' ---, CSI ' .  Axiom A4 
then implies that C S I  ~ CSI ' .  

Case  Ib. Assume q '  = p '  = t + 1. By R1 and {4'), this implies 

n[i] tt+q < n[i ']  tt'+q. (Ib.1) 
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By (I.1) and (2'), we need only consider the following two cases: 

Case Ib(i): s '  > t + 1. 
Case Ib(ii): s '  = r '  = t + 1. 

C a s e  Ib(i). Assume s '  > t + 1. T h e  proposi t ion then  implies t h a t / 4  ---~ I3' .  
Using (1) and (1') this gives CSI - - - ,  I4  ---> 13' --,  C S I ' ,  and we conclude f rom A4 
tha t  C S I  ~ C S I ' .  

C a s e  Ib(ii). Assume s '  = r '  = t + 1. By R1, (3), and (5'), this implies tha t  
(n[ i ' ]  tt'÷~l, i ' )  < (n[i] tt÷~l, i). However ,  this inequal i ty  contradic ts  (Ib.1) (which 
still holds in the subcase),  so this subcase is impossible.  

Th is  comple tes  the proof  of case I for r < t ' .  T h e  proof  for r '  < t is the same, 
except  with p r imed  and unpr imed  quant i t ies  interchanged.  T h u s  we have  finished 
with case I. 

C a s e  II. Assume s > t '  + 1. T h e  proposi t ion then  implies t h a t / 4 '  ---~/3. Using 
(1) and (1'), we then  obtain  C S I '  ~ I4 '  ---> 13 ---, C S I ,  and use A4 to conclude tha t  
C S I '  ---* C S I .  T h e  proof  for s '  > t + 1 is obta ined by interchanging pr imed  and 
unpr imed  quantit ies.  

C a s e  III .  Assume tha t  t '  __ r _< s _ t '  + 1. The re  are th ree  subcases  to be 
considered: 

Case IIIa:  r = s = t ' .  
Case IIIb:  r = s = t '  + 1. 
Case IIIc:  r = t '  and  s = t '  + 1. 

F rom (39, R1, and R2, it follows easily for each  of these  cases tha t  0 < n[i']tr'81 
<- n[ i ' ]  [r+ll. We then  conclude f rom (5) t ha t  

(n[ i ' ]  tt+~], i) < (n[ i ' ]  tt'+ll, i ' ) .  (III.1) 

Star t ing  f rom the assumpt ion  t ha t  t __ r '  __ s '  __< t + 1, the  same  reasoning with 
p r imed  and unpr imed  quant i t ies  in te rchanged yields 

(n[ i ' ]  tr÷ll, i ' )  < (n[i] Et+~], i).  ( I I I . l ' )  

Since (III.1) and  ( I I I . l ' )  are contradictory,  this case is impossible.  Th is  com- 
pletes the  proof. 

N o t e .  Axiom A5 was not  used in the proof  and could have  been el iminated 
ent irely by  allowing r or s to equal  infinity in the  definition of Sect ion 4. In the 
te rminology of [3], this is because  A5 is needed only to prove  "l iveness" propert ies,  
whereas  mutua l  exclusion is a "safe ty"  proper ty .  One would need A5 to prove  
tha t  a process will eventual ly  enter  its critical section. [] 

I f  the reader  has  not  examined  o ther  r igorous correctness  proofs, t hen  he 
m a y  feel t ha t  the above  p roof  is r a the r  long and tedious. In  this case, we urge h im 
to consider the  a m o u n t  of  detail  involved in verifying the formal  assert ional  p roof  
for the  original bake ry  a lgor i thm in [3]. Rigorous  correctness  proofs for mul t ipro-  
cess p rograms  are not  easy. We feel t ha t  our  new approach  compares  quite 
favorably  to assert ional  me thods  in t e rms  of the  length and  difficulty of  the 
proofs. 
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6. IMPLEMENTATION IN A NONDISTRIBUTED SYSTEM 

We now describe two different ways  of implement ing  our a lgor i thm in a "tradi-  
t ional" nondis t r ibuted  envi ronment ,  in which processes communica te  via shared  
memory .  T h e  value of an integer  var iable  is s tored as a mult idigit  number ;  i.e. as 
a f ini te-length str ing of nonnegat ive  integers in the  usual way. T h u s  the  integer  
1 is a lways represen ted  by the  str ing of digits 00 ... 01. We assume tha t  fetching 
or writing a single digit is an a tomic  operat ion.  T h e  a lgor i thm is assumed to be 
executed as if no two a tomic  opera t ions  are executed concurrent ly.  

T h e  obvious way to imp lemen t  such an integer  in a conventional  mul t iprocess  
compute r  is with a fixed n u m b e r  of  digits, each occupying a single m e m o r y  word. 
Imp lemen ta t i ons  with a var iable- length list of digits are also possible, bu t  they  
are nontr ivial  and will be  left as an exercise for the  in teres ted reader.  

Note. Like the  original bake ry  algori thm, the  new algor i thm can be imple- 
men ted  even with t ruly concurren t  operat ions  to the  same m e m o r y  word. Hard-  
ware imp lemen ted  mutua l  exclusion is not  required. However ,  the discussion of 
such an implementa t ion  would lead us away  f rom the ma in  purpose  of this paper,  
so we s imply  assume mutua l ly  exclusive access to individual digits. []  

With  these  assumptions ,  it is easy to see tha t  condit ion R1 is satisfied by  any  
reasonable  i m p l e m e n t a t i o n )  As we ment ioned  earlier, R3 is a lways satisfied in a 
nondis t r ibuted  system. More  precisely, R3 follows f rom the assumpt ion  t ha t  the 
a tomic  events  compris ing any  two operat ions  are total ly ordered in time. T h e  
only implemen ta t ion  difficulty is satisfying R2. We give two ways of doing this. 

Implementat ion 1. We begin with the mos t  s t ra ight forward implementa t ion .  
T h e  value of n[i] is s tored as a list of digits, as described above. S t a t e m e n t  L1 is 
imp lemen ted  as follows: 

LI:  n[i] := 1. 

In s t a t e m e n t  L2, n[i] is set  to the  smallest  integer  grea ter  t han  m a x i m u m  
(n[1] . . . . .  n[N]} whose r igh tmost  {least significant) digit is nonzero. Each  digit is 
wri t ten a t  mos t  once. To  show tha t  R2 is satisfied, we observe  t ha t  the  fetched 
value n[i] tr'r÷tj in the  s t a t emen t  of R2 is composed  of a str ing of digits each of 
which is a digit of  e i ther  n[i] [r] -- 0 ... 01 or n[i] [r+l]. T h e  r ight -hand digit of bo th  
these number s  is nonzero, so n[i] [r'r+l] > 0. Each  digit of n[i] [r] is less t han  or 
equal  to the corresponding digit of n[i] [r+l], so n[i] [r'r+ll ~_ n[i] [r+l]. Hence  R2 is 
satisfied. 

T h e  p rob lem with this implementa t ion  is t ha t  we do not  know how fast  the 
value of n[i] can grow. T h e  implementa t ion  is sat isfactory if critical sect ions are 
not  executed too frequently,  since the  values of all the  n[i] drop back to zero 
when all processes are in their  noncri t ical  sections. However ,  this m a y  never  
happen  if critical sections are executed frequently.  Le t  gj denote  the  to ta l  n u m b e r  
of i terat ions of  the  r e p e a t  loop which process j has  begun. In order  to allow 
pract ical  implementa t ions  with fixed-length integers, we would like some ine- 
quali ty such as n[i] <_ k ~ g  I to hold (where k is a small  constant) .  We do not  know 
if this is t rue for implementa t ion  1. However ,  the inequali ty n[i] <_ ~(gj + 1) is 

i An example of an unreasonable implementation would be one in which a fetch of n[i] examines only 
some of its digits and tries to guess the rest. 
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easily proved for the following implementat ion using the results of [6]: 
Imp lemen ta t i on  2. We encode the value of n[i] in the following way, using an 

integer variable nn[i] and a Boolean variable zf[i]: 

n[ i] =- i f  zf[ i] then 0 else nn[ i] fi 

Initially, zf[i] = t r u e  and nn[i] = 0 ... 01. We use the nota t ion int roduced in 
[6] tha t  an arrow over a fetch or store instruct ion indicates tha t  the individual 
digits are to be fetched or s tored ei ther  f rom left to right (most significant to least 
significant) or right to left, depending upon the direction of the arrow, the 
implementa t ion  is given below. {Note tha t  process i can read the digits of nn[i] 
in any order, since no other  process can change nn[i].) 

r epea t  noncritical section; 
LI: zf[i] : = false; 
L2: , ) 

nn[i] := 1 + maximum (nn[1] . . . . .  nn- '~)  
L3: for  a l l j  E {1 . . . . .  N} do 

wait  unti l  z f[ j]  or {nn--~, j )  >_ (nn[i], i) od; 
critical section; 

L4: zf[i] : = t rue  
end . repea t  

T h e  fact tha t  R2 is satisfied is an easy consequence of the following result: if a 
" tes t  n[i]"  operat ion fetches the value nn[i] tr' s], then  nn[i] tr' s] ~_ nn[i]!,]. Th i s  
result  in tu rn  follows immediate ly  from theorem 2 of [6]. 

7. IMPLEMENTATION IN A DISTRIBUTED SYSTEM 

We now consider the implementa t ion  of our  algori thm in a distr ibuted system. A 
rigorous, detailed discussion of this case would be ra the r  long, and would involve 
some fundamenta l  issues which we prefer  not  to introduce in this paper. There fore  
we will just  briefly describe our  approach,  omit t ing the details. 

We assume tha t  there  is no shared memory,  but  t ha t  processes communicate  
by sending signals to one another.  A set of signals used to convey some unit  of 
informat ion is called a message.  The  actual mechanism by which messages are 
t ransmi t ted  does not  concern us. 

We implement  a program variable by having each process mainta in  its own 
local copy of the variable. A fetch is per formed using tha t  local copy. To  store a 
value into the variable, a process must  send a message containing the new value 
to every  o ther  process. We make the following requi rement  on how this is done. 

MX. For  any pair of processes i and i': messages sent  f rom process i to process 
i' are acted upon by  process i '  in the  same order  in which they  were sent. 

Thus,  process i '  will  perceive the changes to n[i] as occurring in the same order  
tha t  they  are made  by process i. How MX is implemented  will depend upon the 
details of how messages are t ransmit ted,  and might  require the use of sequencing 
information in the message. 

We first observe tha t  in the correctness proof  of Sect ion 5, we did not  need to 
assume tha t  axioms A1-A5 hold for the  entire set of operations.  I t  sufficed to 
assume tha t  these axioms are satisfied for every  pair  of processes. In o ther  words, 
we need only assume tha t  for every  pair  of processes, A1-A5 hold for the set of 
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operations generated by those two processes. For example, we did not have to 
assume that A --* B --* C implies A --* C if A, B, and C are operations generated 
by three different processes. It can be shown that with the proper definition of 

and ---~ (i.e. with the proper identification of operations with sets of events), 
MX implies that A1-A5 are satisfied for every pair of processes, and that R1 also 
holds. 2 Moreover, the two implementations described in Section 6 guarantee that 
R2 holds in this case too. (In some situations, it will be reasonable to implement 
fetches and stores ~o an entire local copy of n[i] as atomic operations, making R2 
trivially true.) 

Note. For implementation 2, it is necessary to show that  the theorems of [6] 
can be proved using only axioms A1-A5. We leave this as an exercise for the 
reader. [] 

Finally, we must insure that  R3 holds. We can do this by adding the following 
requirement for the implementation of statement LI: 

After sending a store message to other processes, process i must wait until it 
receives a message from every other process acknowledging that  that  process 
has executed the stored operation in its local copy of n[i]. 

Any solution to the mutual exclusion problem in a distributed system must 
involve some such waiting for acknowledgments from other processes. (Otherwise, 
there would be a solution that  worked despite infinitely long propagation delays-- 
i.e. without any interprocess communication at all.) We could simply have 
required that  a process await such an acknowledgment for every store operation. 
This would have introduced all the delays needed to make our distributed system 
behave exactly like a nondistributed one with a very slow central memory. 
However, the precise statement of the requirements R1-R3 enabled us to imple- 
ment the algorithm with the minimum amount of waiting for acknowledgments. 

8. CONCLUSION 

When multiprocess algorithms were first studied, their correctness was proved 
using informal arguments based upon execution sequences, as in [4]. This method 
of proving correctness was found to be unreliable--it was too easy to give 
convincing correctness "proofs" for incorrect algorithms. The unreliability re- 
sulted from the enormous variety of possible execution sequences allowed by a 
multiprocess algorithm, and the difficulty of insuring that all possibilities had 
been considered. This led to the development of assertional techniques by Owicki 
[7], Keller [2], Lamport [3], and others which generalized the methods previously 
developed for sequential programs. These assertional techniques are based upon 
considering the states of the processes rather than their execution sequences. 
Proofs based upon assertional techniques appear to be more reliable than the old 
style of proof. 

The approach introduced here, utilizing axioms A1-A5 and the definition and 
proposition of Section 4, represents a step backwards in that it is based upon 
execution sequences rather than assertions about states. However, it represents 

2 For A1-A5 to be satisfied for the entire set of operations, MX would have to be s trengthened to 
guarantee that  information transmit ted indirectly from process i to process i '  via intermediary 
processes is acted upon in the correct order. 
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an advance beyond the earlier, informal methods for two reasons. First, we have 
introduced a collection of concepts and notations which seem to permit more 
reliable, rigorous proofs. Second, we have reduced the complexity of the proofs 
by allowing nonatomic operations. (For example, we could consider executing the 
entire complex statement L2 to be a single operation.) With fewer individual 
operations, there are fewer execution sequences to be considered. 

Despite these advances, our approach still lacks the strong formal foundation 
of assertional techniques. However, it offers some significant advantages over 
those techniques. First of all, it can handle nonatomic operations. This permits a 
multiprocess system to be designed by hierarchical decomposition. Because it is 
so simple, our algorithm may appear to be an ordinary low level synchronization 
algorithm. However, it is actually a higher level specification of an algorithm, 
since it permits the two very different implementations of Section 6. We were 
able to prove the correctness of the algorithm independently of the lower level 
algorithms used to implement its operations. So far, assertional techniques have 
not worked for nonatomic operations. We know no way of using assertional 
techniques to prove the correctness of such a higher level specification. 

Note. Recent work by Owicki and others has addressed the problem of deter- 
mining when a sequence of atomic operations can be treated as a single atomic 
operation. However, this is different from our approach which does not demand 
that the operations behave as though they were atomic. [] 

The other advantages of our approach stem from its generality. We believe 
that the relations --, and ---) and axioms A1-A5 are fundamental to all concurrent 
systems. Thus our approach should permit natural specifications of the problem 
to be solved (or of the system to be implemented) in a manner that  is completely 
independent of the solution. In contrast, assertional methods require that  the 
correctness conditions be stated in terms of the objects {such as program varia- 
bles) used in the solution. Notice how natural the statement of the mutual 
exclusion condition is in terms of the relation --,. This is in sharp contrast with 
the indirect method of proving mutual exclusion described by Owicki [7]. The 
other requirements for a solution to the mutual exclusion problem, described 
informally in [4], can also be expressed quite naturally with our notation. A 
similar conclusion has been reached by Greif [1]. 

The generality of our approach also means that  it is applicable to any kind of 
multiprocess system. Assertional techniques have so far proved useful only for 
traditional, nondistributed multiprocess systems. Our approach is applicable to 
distributed systems as well. Thus, our specification of the algorithm permitted 
nontrivial implementations with a distributed system, as well as conventional 
implementations using shared memory. 

We expect that ultimately our approach will be used in the high level design of 
a multiprocess system, while assertional techniques will be used to verify the 
correct implementation of the higher level operations. However, much more 
experience is needed to determine the approach's range of applicability and its 
relation to assertional techniques. In a future paper, we intend to describe in 
more detail the concepts introduced in Section 3, and to discuss some fundamental 
issues of distributed systems which we could not deal with in this paper. The 
example we have considered here should illustrate the application of our approach 
to traditional multiprocessing problems in a nondistributed environment. 
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