
Computer Science Lecture  18, page 1 CS677: Distributed OS 

Recovery!

•  Techniques thus far allow failure handling 
•  Recovery: operations that must be performed after a 

failure to recover to a correct state 
•  Techniques: 

–  Checkpointing: 
•  Periodically checkpoint state  
•  Upon a crash roll back to a previous checkpoint with a 

consistent state 

Computer Science Lecture  18, page 2 CS677: Distributed OS 

Independent Checkpointing!

•  Each processes periodically checkpoints independently of other 
processes 

•  Upon a failure, work backwards to locate a consistent cut 
•  Problem: if most recent checkpoints form inconsistenct cut, will need 

to keep rolling back until a consistent cut is found 
•  Cascading rollbacks can lead to a domino effect. 



Computer Science Lecture  18, page 3 CS677: Distributed OS 

Coordinated Checkpointing!

•  Take a distributed snapshot [discussed in Lec 11] 

•  Upon a failure, roll back to the latest snapshot  
–  All process restart from the latest snapshot 

Computer Science Lecture  18, page 4 CS677: Distributed OS 

Message Logging!

•  Checkpointing is expensive 
–  All processes restart from previous consistent cut 
–  Taking a snapshot is expensive 
–  Infrequent snapshots => all computations after previous 

snapshot will need to be redone [wasteful] 
•  Combine checkpointing (expensive) with message 

logging (cheap) 
–  Take infrequent checkpoints 
–  Log all messages between checkpoints to local stable storage 
–  To recover: simply replay messages from previous checkpoint 

•  Avoids recomputations from previous checkpoint 



Computer Science Lecture  18, page 5 CS677: Distributed OS 

Recovery Oriented Computing!

•  Cheaper to optimize for recover than to design the system to 
prevent faults 

•  Need to restart the system upon failure 

•  Naïve case: reboot 
•  Reboot part of the system: modular system, where components 

can be restarted independently 
–  Unix /etc/rc service 

•  Stateful recovery 
–  Database recovery 
–  Use of checpointing 

Computer Science Lecture  18, page 6 

 Security in Distributed Systems!

•  Introduction  
•  Cryptography  
•  Authentication  
•  Key exchange  
•  Readings: Tannenbaum, chapter 9 
           Ross/Kurose, Ch 7  



Computer Science Lecture  18, page 7 

Network Security!

Intruder may  
•  eavesdrop  
•  remove, modify, and/or insert messages  
•  read and playback messages 
•  Security threats 

–  Interception, Interruption, Modification, Fabrication  

Computer Science Lecture  18, page 8 

Issues!

Important issues:  
•  Encryption/ cryptography: secrecy of info being 

transmitted  
•  authentication: proving who you are and having 

correspondent prove his/her/its identity 
•  Authorization: verify you have rights to perform 

requested action 
•  Auditing: log actions and do post-facto analysis 

(forensics)  



Computer Science Lecture  18, page 9 

Security in Computer 
Networks !

User resources:  
•  login passwords often transmitted unencrypted in 

TCP packets between applications (e.g., telnet, 
ftp)  

•  passwords provide little protection  

Computer Science Lecture  18, page 10 

Security Issues!

Network resources:  
•  often completely unprotected from intruder eavesdropping, 

injection of false messages  
•  mail spoofs, router updates, ICMP messages, network 

management messages  

Bottom line:  
•  intruder attaching his/her machine (access to OS code, root 

privileges) onto network can override many system-
provided security measures  

•  users must take a more active role  



Computer Science Lecture  18, page 11 

Encryption!

plaintext: unencrypted message  
ciphertext: encrypted form of message 
Intruder may  
•  intercept ciphertext transmission  
•  intercept plaintext/ciphertext pairs  
•  obtain encryption decryption algorithms  

Computer Science Lecture  18, page 12 

A simple encryption algorithm !

Substitution cipher:  

abcdefghijklmnopqrstuvwxyz !

poiuytrewqasdfghjklmnbvczx!
•  replace each plaintext character in message with matching 

ciphertext character:  

plaintext: Charlotte, my dear  

ciphertext: iepksgmmy, dz uypk 



Computer Science Lecture  18, page 13 

Encryption Algo (contd)!

•  key is pairing between plaintext characters and 
ciphertext characters  

•  symmetric key: sender and receiver use same key  
•  26! (approx 10^26) different possible keys: 

unlikely to be broken by random trials  
•  substitution cipher subject to decryption using 

observed frequency of letters  
–  'e' most common letter, 'the' most common word  

Computer Science Lecture  18, page 14 

DES: Data Encryption Standard !

•  encrypts data in 64-bit chunks  
•  encryption/decryption algorithm is a published 

standard  
–  everyone knows how to do it  

•  substitution cipher over 64-bit chunks: 56-bit key 
determines which of 56! substitution ciphers used  
–  substitution: 19 stages of transformations, 16 involving 

functions of key 
•  Replacements: DES3 and now AES 



Computer Science Lecture  18, page 15 

Symmetric Cryptosystems: DES (1)!

a)  The principle of DES 
b)  Outline of one encryption round 

Computer Science Lecture  18, page 16 

Symmetric Cryptosystems: DES (2)!

•  Details of per-round key generation in DES. 



Computer Science Lecture  18, page 17 

Key Distribution Problem !

Problem: how do communicant agree on symmetric 
key?  
–  N communicants implies N keys  

Trusted agent distribution:  
–  keys distributed by centralized trusted agent  
–  any communicant need only know key to communicate with 

trusted agent  
–  for communication between i and j, trusted agent will provide a 

key  

Computer Science Lecture  18, page 18 

Key Distribution!

We will cover in more detail shortly  



Computer Science Lecture  18, page 19 

Public Key Cryptography!

•  separate encryption/decryption keys  
–  receiver makes known (!) its encryption key  
–  receiver keeps its decryption key secret  

•  to send to receiver B, encrypt message M using 
B's publicly available key, EB  
–  send EB(M)  

•  to decrypt, B applies its private decrypt key DB to 
receiver message:  
–  computing DB( EB(M) ) gives M  

Computer Science Lecture  18, page 20 

Public Key Cryptography!

•  knowing encryption key does not help with decryption; decryption 
is a non-trivial inverse of encryption  

•  only receiver can decrypt message  
Question: good encryption/decryption algorithms  



Computer Science Lecture  18, page 21 

RSA: public key encryption/
decryption !

RSA: a public key algorithm for encrypting/decrypting  

Entity wanting to receive encrypted messages:  
•  choose two prime numbers, p, q greater than 10^100  
•  compute n=pq and z = (p-1)(q-1)  
•  choose number d which has no common factors with z  
•  compute e such that ed = 1 mod z, i.e.,  
         integer-remainder( (ed) / ((p-1)(q-1)) ) = 1, i.e.,  
        ed = k(p-1)(q-1) +1  
•  three numbers:  

–  e, n made public  
–  d kept secret  

Computer Science Lecture  18, page 22 

RSA (continued)!

to encrypt: 
•  divide message into blocks, {b_i} of size j: 2^j < n  
•  encrypt: encrypt(b_i) = b_I^e mod n  

to decrypt:  
•  b_i = encrypt(b_i)^d  

to break RSA: 
•  need to know p, q, given pq=n, n known  
•  factoring 200 digit n into primes takes 4 billion years using known 

methods  



Computer Science Lecture  18, page 23 

RSA example!

•  choose p=3, q=11, gives n=33, (p-1)(q-1)
=z=20  

•  choose d = 7 since 7 and 20 have no common 
factors  

•  compute e = 3, so that ed = k(p-1)(q-1)+1 
(note: k=1 here)  

Computer Science Lecture  18, page 24 

Further notes on RSA!
why does RSA work? 
•  crucial number theory result: if p, q prime then   
        b_i^((p-1)(q-1)) mod pq = 1  
•  using mod pq arithmetic:  
(b^e)^d = b^{ed}  

               = b^{k(p-1)(q-1)+1} for some k  

               = b b^(p-1)(q-1) b^(p-1)(q-1) ... b^(p-1)(q-1)  

               = b 1 1 ... 1  

               = b  
Note: we can also encrypt with d and encrypt with e.  
•  this will be useful shortly  



Computer Science Lecture  18, page 25 

How to break RSA?!
Brute force: get B's public key  
•  for each possible b_i in plaintext, compute b_i^e  
•  for each observed b_i^e, we then know b_i  
•  moral: choose size of b_i "big enough"  

Computer Science Lecture  18, page 26 

Breaking RSA!

man-in-the-middle: intercept keys, spoof 
identity: 


