
Computer Science Lecture 15, page 1 CS677: Distributed OS

Timestamp-based Concurrency Control!

•  Each transaction Ti is given timestamp ts(Ti)
•  If Ti wants to do an operation that conflicts with Tj

–  Abort Ti if ts(Ti) < ts(Tj)

•  When a transaction aborts, it must restart with a new
(larger) time stamp

•  Two values for each data item x
–  Max-rts(x): max time stamp of a transaction that read x
–  Max-wts(x): max time stamp of a transaction that wrote x

Computer Science Lecture 15, page 2 CS677: Distributed OS

Reads and Writes using Timestamps!

•  Readi(x)
–  If ts(Ti) < max-wts(x) then Abort Ti

–  Else
•  Perform Ri(x)
•  Max-rts(x) = max(max-rts(x), ts(Ti))

•  Writei(x)
–  If ts(Ti)<max-rts(x) or ts(Ti)<max-wts(x) then Abort Ti

–  Else
•  Perform Wi(x)
•  Max-wts(x) = ts(Ti)

Computer Science Lecture 15, page 3 CS677: Distributed OS

Consistency and Replication!

•  Today:

–  Consistency models
•  Data-centric consistency models
•  Client-centric consistency models

Computer Science Lecture 15, page 4 CS677: Distributed OS

Why replicate?!

•  Data replication: common technique in distributed systems
•  Reliability

–  If one replica is unavailable or crashes, use another
–  Protect against corrupted data

•  Performance
–  Scale with size of the distributed system (replicated web servers)
–  Scale in geographically distributed systems (web proxies)

•  Key issue: need to maintain consistency of replicated data
–  If one copy is modified, others become inconsistent

Computer Science Lecture 15, page 5 CS677: Distributed OS

Object Replication!

• Approach 1: application is responsible for replication
–  Application needs to handle consistency issues

• Approach 2: system (middleware) handles replication
–  Consistency issues are handled by the middleware
–  Simplifies application development but makes object-specific solutions harder

Computer Science Lecture 15, page 6 CS677: Distributed OS

Replication and Scaling!
•  Replication and caching used for system scalability
•  Multiple copies:

–  Improves performance by reducing access latency
–  But higher network overheads of maintaining consistency
–  Example: object is replicated N times

•  Read frequency R, write frequency W
•  If R<<W, high consistency overhead and wasted messages
•  Consistency maintenance is itself an issue

–  What semantics to provide?
–  Tight consistency requires globally synchronized clocks!

•  Solution: loosen consistency requirements
–  Variety of consistency semantics possible

Computer Science Lecture 15, page 7 CS677: Distributed OS

Data-Centric Consistency Models!

•  Consistency model (aka consistency semantics)
–  Contract between processes and the data store

•  If processes obey certain rules, data store will work correctly
–  All models attempt to return the results of the last write for a read operation

•  Differ in how “last” write is determined/defined

Computer Science Lecture 15, page 8 CS677: Distributed OS

Strict Consistency!

•  Any read always returns the result of the most recent
write
–  Implicitly assumes the presence of a global clock
–  A write is immediately visible to all processes

•  Difficult to achieve in real systems (network delays can be
variable)

Computer Science Lecture 15, page 9 CS677: Distributed OS

Sequential Consistency!

• Sequential consistency: weaker than strict consistency
–  Assumes all operations are executed in some sequential order and each

process issues operations in program order
•  Any valid interleaving is allowed
•  All agree on the same interleaving
•  Each process preserves its program order
•  Nothing is said about “most recent write”

Computer Science Lecture 15, page 10 CS677: Distributed OS

Linearizability!

• Assumes sequential consistency and
–  If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
–  Stronger than sequential consistency
–  Difference between linearizability and serializbility?

•  Granularity: reads/writes versus transactions

• Example:

Process P1 Process P2 Process P3

x = 1;
print (y, z);

y = 1;
print (x, z);

z = 1;
print (x, y);

Computer Science Lecture 15, page 11 CS677: Distributed OS

Linearizability Example!

•  Four valid execution sequences for the processes of the previous
slide. The vertical axis is time.

x = 1;
print ((y, z);
y = 1;
print (x, z);
z = 1;
print (x, y);

Prints: 001011

Signature:
 001011
 (a)

x = 1;
y = 1;
print (x,z);
print(y, z);
z = 1;
print (x, y);

Prints: 101011

Signature:
 101011
 (b)

y = 1;
z = 1;
print (x, y);
print (x, z);
x = 1;
print (y, z);

Prints: 010111

Signature:
 110101
 (c)

y = 1;
x = 1;
z = 1;
print (x, z);
print (y, z);
print (x, y);

Prints: 111111

Signature:
 111111
 (d)

Computer Science Lecture 15, page 12 CS677: Distributed OS

Causal consistency!

•  Causally related writes must be seen by all processes in
the same order.
–  Concurrent writes may be seen in different orders on different

machines

Not permitted Permitted

Computer Science Lecture 15, page 13 CS677: Distributed OS

Other models!
•  FIFO consistency: writes from a process are seen by

others in the same order. Writes from different processes
may be seen in different order (even if causally related)
–  Relaxes causal consistency
–  Simple implementation: tag each write by (Proc ID, seq #)

•  Even FIFO consistency may be too strong!
–  Requires all writes from a process be seen in order

•  Assume use of critical sections for updates
–  Send final result of critical section everywhere
–  Do not worry about propagating intermediate results

•  Assume presence of synchronization primitives to define
semantics

Computer Science Lecture 15, page 14 CS677: Distributed OS

Other Models !
Use granularity of critical sections, instead of individual

read/write
•  Weak consistency

–  Accesses to synchronization variables associated with a data
store are sequentially consistent

–  No operation on a synchronization variable is allowed to be
performed until all previous writes have been completed
everywhere

–  No read or write operation on data items are allowed to be
performed until all previous operations to synchronization
variables have been performed.

•  Entry and release consistency
–  Assume shared data are made consistent at entry or exit

points of critical sections

Computer Science Lecture 15, page 15 CS677: Distributed OS

Summary of Data-centric Consistency Models!

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability All processes must see all shared accesses in the same order. Accesses are furthermore ordered
according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order. Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO All processes see writes from each other in the order they were used. Writes from different processes
may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)

Computer Science Lecture 15, page 16 CS677: Distributed OS

Eventual Consistency!

•  Many systems: one or few processes perform updates
–  How frequently should these updates be made available to other

read-only processes?
•  Examples:

–  DNS: single naming authority per domain
–  Only naming authority allowed updates (no write-write conflicts)
–  How should read-write conflicts (consistency) be addressed?
–  NIS: user information database in Unix systems

•  Only sys-admins update database, users only read data
•  Only user updates are changes to password

Computer Science Lecture 15, page 17 CS677: Distributed OS

Eventual Consistency!

•  Assume a replicated database with few updaters and many readers
•  Eventual consistency: in absence of updates, all replicas converge

towards identical copies
–  Only requirement: an update should eventually propagate to all replicas
–  Cheap to implement: no or infrequent write-write conflicts
–  Things work fine so long as user accesses same replica
–  What if they don’t:

Computer Science Lecture 15, page 18 CS677: Distributed OS

Client-centric Consistency Models!

•  Assume read operations by a single process P at two different
local copies of the same data store
–  Four different consistency semantics

•  Monotonic reads
–  Once read, subsequent reads on that data items return same or more recent

values
•  Monotonic writes

–  A write must be propagated to all replicas before a successive write by the
same process

–  Resembles FIFO consistency (writes from same process are processed in
same order)

•  Read your writes: read(x) always returns write(x) by that process
•  Writes follow reads: write(x) following read(x) will take place on

same or more recent version of x

Computer Science Lecture 15, page 19 CS677: Distributed OS

Epidemic Protocols!

•  Used in Bayou system from Xerox PARC
•  Bayou: weakly connected replicas

–  Useful in mobile computing (mobile laptops)
–  Useful in wide area distributed databases (weak connectivity)

•  Based on theory of epidemics (spreading infectious diseases)
–  Upon an update, try to “infect” other replicas as quickly as possible
–  Pair-wise exchange of updates (like pair-wise spreading of a disease)
–  Terminology:

•  Infective store: store with an update it is willing to spread
•  Susceptible store: store that is not yet updated

•  Many algorithms possible to spread updates

Computer Science Lecture 15, page 20 CS677: Distributed OS

Spreading an Epidemic!

•  Anti-entropy
–  Server P picks a server Q at random and exchanges updates
–  Three possibilities: only push, only pull, both push and pull
–  Claim: A pure push-based approach does not help spread updates quickly (Why?)

•  Pull or initial push with pull work better
•  Rumor mongering (aka gossiping)

–  Upon receiving an update, P tries to push to Q
–  If Q already received the update, stop spreading with prob 1/k
–  Analogous to “hot” gossip items => stop spreading if “cold”
–  Does not guarantee that all replicas receive updates

•  Chances of staying susceptible: s= e-(k+1)(1-s)

Computer Science Lecture 15, page 21 CS677: Distributed OS

Removing Data!

•  Deletion of data items is hard in epidemic protocols
•  Example: server deletes data item x

–  No state information is preserved
•  Can’t distinguish between a deleted copy and no copy!

•  Solution: death certificates
–  Treat deletes as updates and spread a death certificate

•  Mark copy as deleted but don’t delete
•  Need an eventual clean up

–  Clean up dormant death certificates

