Today: More Canonical Problems

* Termination Detection
* Leader election

e Mutual exclusion

5§ Computer Science CS677: Distributed OS Lecture 13, page 1

Termination Detection

* Detecting the end of a distributed computation

* Notation: let sender be predecessor, receiver be successor

* Two types of markers: Done and Continue

 After finishing its part of the snapshot, process Q sends a Done or
a Continue to its predecessor

* Send a Done only when

— All of Q’s successors send a Done

— QO has not received any message since it check-pointed its local state and
received a marker on all incoming channels

— Else send a Continue

« Computation has terminated if the initiator receives Done
messages from everyone

omputer Science CS677: Distributed OS Lecture 13, page 2

Election Algorithms

Many distributed algorithms need one process to act as
coordinator
— Doesn’t matter which process does the job, just need to pick one

Election algorithms: technique to pick a unique
coordinator (aka leader election)

Examples: take over the role of a failed process, pick a
master in Berkeley clock synchronization algorithm

Types of election algorithms: Bully and Ring algorithms

Compu‘rer Science CS677: Distributed OS Lecture 13, page 3

Bully Algorithm

Each process has a unique numerical ID

Processes know the Ids and address of every other process
Communication is assumed reliable

Key Idea: select process with highest ID

Process initiates election if it just recovered from failure or
if coordinator failed

3 message types: election, OK, I won

Several processes can initiate an election simultaneously
— Need consistent result

O(n’) messages required with n processes

Compu‘rer Science CS677: Distributed OS Lecture 13, page 4

Bully Algorithm Details

Any process P can initiate an election

P sends Election messages to all process with higher Ids
and awaits OK messages

If no OK messages, P becomes coordinator and sends /
won messages to all process with lower Ids

If it receives an OK, it drops out and waits for an / won

If a process receives an Election msg, it returns an OK and
starts an election

If a process receives a I won, it treats sender an
coordinator

5§ Computer Science CS677: Distributed OS Lecture 13, page 5

Bully Algorithm Example
Election /é\ w‘
® @) & ©

Previous coordinator
has crashed

@) (b) ©

. The bully election algorithm

. Process 4 holds an election
. Process 5 and 6 respond, telling 4 to stop
. Now 5 and 6 each hold an election

omputer Science CS677: Distributed OS Lecture 13, page 6

Bully Algorithm Example

(d) (e)

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

5 Computer Science CS677: Distributed OS Lecture 13, page 7

Ring-based Election

* Processes have unique Ids and arranged in a logical ring

» Each process knows its neighbors
— Select process with highest ID

* Begin election if just recovered or coordinator has failed

* Send Election to closest downstream node that is alive
— Sequentially poll each successor until a live node is found

» Each process tags its ID on the message
* Initiator picks node with highest ID and sends a coordinator message

Multiple elections can be in progress

— Wastes network bandwidth but does no harm

5 Computer Science CS677: Distributed OS Lecture 13, page 8

A Ring Algorithm

500, (1)
@ 5 ‘Efction message
A [2]

Previous coordinator ’"“
has crashed [5.,6]
k
[2,3]
\
No response
Computer Science CS677: Distributed OS Lecture 13, page 9

Comparison

Assume 7 processes and one election in progress

 Bully algorithm
— Worst case: initiator is node with lowest ID
« Triggers n-2 elections at higher ranked nodes: O(n?) msgs
— Best case: immediate election: n-2 messages
* Ring

— 2 (n-1) messages always

Computer Science CS677: Distributed OS Lecture 13, page 10

Elections in Wireless Environments (1)

c c
Capacity (8 d
@ Broadcasting
b node
a (&) (1)
& f
(2)
(4) ,

j
(@) (b)

 Election algorithm in a wireless network, with node a as the
source. (a) Initial network. (b)—(e) The build-tree phase

omputer Science CS677: Distributed OS Lecture 13, page 11

Elections in Wireless Environments (2)

e receives
broadcast from
g first

g receives
broadcast

from b first

5§ Computer Science CS677: Distributed OS Lecture 13, page 12

Elections in Large-Scale Systems (1)

* Requirements for superpeer selection:

1.Normal nodes should have low-latency access to
superpeers.

2.Superpeers should be evenly distributed across
the overlay network.

3. There should be a predefined portion of
superpeers relative to the total number of nodes in
the overlay network.

4.Each superpeer should not need to serve more
than a fixed number of normal nodes.

Compu‘rer Science CS677: Distributed OS Lecture 13, page 13

Elections in Large-Scale Systems (2)

A
(}\ Token-holding node
Repulsion RS

force of Aon C O Normal node

B
ﬁ\ Resulting movement by which
the token at C is passed to another node
\O

Node D will become token holder

* Moving tokens in a two-dimensional space using repulsion forces.

Compu‘rer Science CS677: Distributed OS Lecture 13, page 14

Distributed Synchronization

Distributed system with multiple processes may need to
share data or access shared data structures

— Use critical sections with mutual exclusion

Single process with multiple threads

— Semaphores, locks, monitors
How do you do this for multiple processes in a
distributed system?

— Processes may be running on different machines

Solution: lock mechanism for a distributed environment
— Can be centralized or distributed

Compu‘rer Science CS677: Distributed OS Lecture 13, page 15

Centralized Mutual Exclusion

Assume processes are numbered
One process is elected coordinator (highest ID process)

Every process needs to check with coordinator before
entering the critical section

To obtain exclusive access: send request, await reply
To release: send release message

Coordinator:

— Receive request: if available and queue empty, send grant; if
not, queue request

— Receive release: remove next request from queue and send
grant

omputer Science CS677: Distributed OS Lecture 13, page 16

Mutual Exclusion:
A Centralized Algorithm

Request Release

OK

Request LT / oK
*"No reply

Queue is
. empty
Coordinator

(@) (b) (©)

a) Process 1 asks the coordinator for permission to enter a critical region. Permission is
granted

b) Process 2 then asks permission to enter the same critical region. The coordinator does
not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then replies to 2

Computer Science CS677: Distributed OS Lecture 13, page 17

Properties

» Simulates centralized lock using blocking calls
» Fair: requests are granted the lock in the order they were received
« Simple: three messages per use of a critical section (request, grant, release)
* Shortcomings:

— Single point of failure

— How do you detect a dead coordinator?

* A process can not distinguish between “lock in use” from a dead coordinator
— No response from coordinator in either case

— Performance bottleneck in large distributed systems

Computer Science CS677: Distributed OS Lecture 13, page 18

Decentralized Algorithm

Use voting

* Assume n replicas and a coordinator per replica

To acquire lock, need majority vote m > n/2
coordinators

— Non blocking: coordinators returns OK or “no”

Coordinator crash => forgets previous votes
— Probability that k coordinators crash P(k) = ™C, p* (1-p)™k
— Atleast 2m-n need to reset to violate correctness

¢ Z 2m-n nP(k)

§ Computer Science CS677: Distributed OS Lecture 13, page 19

Distributed Algorithm

[Ricart and Agrawala]: needs 2(n-1) messages

Based on event ordering and time stamps
— Assumes total ordering of events in the system (Lamport’s clock)

Process k enters critical section as follows
— Generate new time stamp 7S, = 7S,+/
— Send request(k,TS,) all other n-1 processes
— Wait until reply(j) received from all other processes
— Enter critical section

« Upon receiving a request message, process j
— Sends reply if no contention
— If already in critical section, does not reply, queue request

— If wants to enter, compare 75, with 7S, and send reply if 7S,<TS,, else
queue

omputer Science CS677: Distributed OS Lecture 13, page 20

A Distributed Algorithm

Enters
critical
region

¥ — —

0 0 0
8 Nz OK oK OK
8 ___ Enters

S —

1 2) 2 w @ critical
12 OK region
12
c (b) (©
a) Two processes want to enter the same critical region at the same
moment.
b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter the
° critical region.
Computer Science CS677: Distributed OS Lecture 13, page 21

Properties

 Fully decentralized
N points of failure!

 All processes are involved in all decisions
— Any overloaded process can become a bottleneck

Computer Science CS677: Distributed OS Lecture 13, page 22

A Token Ring Algorithm

N N N N N N N N

PPPPPPPPPP

@ (b

a) Anunordered group of processes on a network.
b) A logical ring constructed in software.

« Use a token to arbitrate access to critical section

* Must wait for token before entering CS

» Pass the token to neighbor once done or if not interested
s Detecting token loss in non-trivial

CS677: Distributed OS

Computer Science Lecture 13, page 23

Comparison

Algorithm Messag?s per Delay befo_re entry (in Problems
entry/exit message times)

Centralized 3 2 Coordinator crash

Decentralized 3mk 2m starvation

Distributed 2(n-1) 2(n-1) Crash of any
process

Token ring 1to » Oton-1 Lost token, process
crash

» A comparison of four mutual exclusion algorithms.

Computer Science

CS677: Distributed OS

Lecture 13, page 24

