
Computer Science Lecture 12, page 1 CS677: Distributed OS

Today: Logical Clocks!

•  Last class: clock synchronization

•  Logical clocks

•  Vector clocks

•  Global state

Computer Science Lecture 12, page 2 CS677: Distributed OS

Logical Clocks!

•  For many problems, internal consistency of clocks is
important
–  Absolute time is less important
–  Use logical clocks

•  Key idea:
–  Clock synchronization need not be absolute
–  If two machines do not interact, no need to synchronize them
–  More importantly, processes need to agree on the order in

which events occur rather than the time at which they occurred

Computer Science Lecture 12, page 3 CS677: Distributed OS

Event Ordering!

•  Problem: define a total ordering of all events that occur
in a system

•  Events in a single processor machine are totally ordered
•  In a distributed system:

–  No global clock, local clocks may be unsynchronized
–  Can not order events on different machines using local times

•  Key idea [Lamport]
–  Processes exchange messages
–  Message must be sent before received
–  Send/receive used to order events (and synchronize clocks)

Computer Science Lecture 12, page 4 CS677: Distributed OS

Happened Before Relation!

•  If A and B are events in the same process and A executed before B,
then A -> B

•  If A represents sending of a message and B is the receipt of this
message, then A -> B

•  Relation is transitive:
–  A -> B and B -> C => A -> C

•  Relation is undefined across processes that do not exchange
messages
–  Partial ordering on events

Computer Science Lecture 12, page 5 CS677: Distributed OS

Event Ordering Using HB!

•  Goal: define the notion of time of an event such that
–  If A-> B then C(A) < C(B)
–  If A and B are concurrent, then C(A) <, = or > C(B)

•  Solution:
–  Each processor maintains a logical clock LCi
–  Whenever an event occurs locally at I, LCi = LCi+1
–  When i sends message to j, piggyback Lci

–  When j receives message from i
•  If LCj < LCi then LCj = LCi +1 else do nothing

–  Claim: this algorithm meets the above goals

Computer Science Lecture 12, page 6 CS677: Distributed OS

Lamportʼs Logical Clocks!

Computer Science Lecture 12, page 7 CS677: Distributed OS

Example: Totally-Ordered
Multicasting!

•  Updating a replicated database and leaving it in an inconsistent
state.

Computer Science Lecture 12, page 8 CS677: Distributed OS

Causality!

•  Lamport’s logical clocks
–  If A -> B then C(A) < C(B)
–  Reverse is not true!!

•  Nothing can be said about events by comparing time-stamps!
•  If C(A) < C(B), then ??

•  Need to maintain causality
–  If a -> b then a is casually related to b
–  Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
–  Capture causal relationships between groups of processes
–  Need a time-stamping mechanism such that:

•  If T(A) < T(B) then A should have causally preceded B

Computer Science Lecture 12, page 9 CS677: Distributed OS

Vector Clocks!
•  Each process i maintains a vector Vi

–  Vi[i] : number of events that have occurred at i
–  Vi[j] : number of events I knows have occurred at process j

•  Update vector clocks as follows
–  Local event: increment Vi[I]
–  Send a message :piggyback entire vector V
–  Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

•  Receiver is told about how many events the sender knows
occurred at another process k

•  Also Vj[i] = Vj[i]+1
•  Exercise: prove that if V(A)<V(B), then A causally

precedes B and the other way around.

Computer Science Lecture 12, page 10

Causal Delivery!

•  Causally ordered multicasting
–  If Pj receives a message from Pi

•  Delay delivery of the message until
–  Ts(m) [i] == VCj[i] + 1 (m is the next expected message from i)
–  Ts(m) [k] <= VCj[k] (j has seen all messages seen by i before m)

CS677: Distributed OS

Computer Science Lecture 12, page 11 CS677: Distributed OS

Global State!

•  Global state of a distributed system
–  Local state of each process
–  Messages sent but not received (state of the queues)

•  Many applications need to know the state of the system
–  Failure recovery, distributed deadlock detection

•  Problem: how can you figure out the state of a
distributed system?
–  Each process is independent
–  No global clock or synchronization

•  Distributed snapshot: a consistent global state

Computer Science Lecture 12, page 12 CS677: Distributed OS

Global State (1)!

a)  A consistent cut
b)  An inconsistent cut

Computer Science Lecture 12, page 13 CS677: Distributed OS

Distributed Snapshot Algorithm!

•  Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

•  Any process can initiate the algorithm
–  Checkpoint local state
–  Send marker on every outgoing channel

•  On receiving a marker
–  Checkpoint state if first marker and send marker on outgoing

channels, save messages on all other channels until:
–  Subsequent marker on a channel: stop saving state for that

channel

Computer Science Lecture 12, page 14 CS677: Distributed OS

Distributed Snapshot!

•  A process finishes when
–  It receives a marker on each incoming channel and processes

them all
–  State: local state plus state of all channels
–  Send state to initiator

•  Any process can initiate snapshot
–  Multiple snapshots may be in progress

•  Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)

A
C

B M

M

Computer Science Lecture 12, page 15 CS677: Distributed OS

Snapshot Algorithm Example!

a)  Organization of a process and channels for a distributed
snapshot

Computer Science Lecture 12, page 16 CS677: Distributed OS

Snapshot Algorithm Example!

b)  Process Q receives a marker for the first time and records its local
state

c)  Q records all incoming message
d)  Q receives a marker for its incoming channel and finishes recording

the state of the incoming channel

Computer Science Lecture 12, page 17 CS677: Distributed OS

Termination Detection!

•  Detecting the end of a distributed computation
•  Notation: let sender be predecessor, receiver be successor
•  Two types of markers: Done and Continue
•  After finishing its part of the snapshot, process Q sends a Done or

a Continue to its predecessor
•  Send a Done only when

–  All of Q’s successors send a Done
–  Q has not received any message since it check-pointed its local state and

received a marker on all incoming channels
–  Else send a Continue

•  Computation has terminated if the initiator receives Done
messages from everyone

Computer Science Lecture 12, page 18 CS677: Distributed OS

Election Algorithms!

•  Many distributed algorithms need one process to act as
coordinator
–  Doesn’t matter which process does the job, just need to pick one

•  Election algorithms: technique to pick a unique
coordinator (aka leader election)

•  Examples: take over the role of a failed process, pick a
master in Berkeley clock synchronization algorithm

•  Types of election algorithms: Bully and Ring algorithms

Computer Science Lecture 12, page 19 CS677: Distributed OS

Bully Algorithm!

•  Each process has a unique numerical ID
•  Processes know the Ids and address of every other process
•  Communication is assumed reliable
•  Key Idea: select process with highest ID
•  Process initiates election if it just recovered from failure or

if coordinator failed
•  3 message types: election, OK, I won
•  Several processes can initiate an election simultaneously

–  Need consistent result
•  O(n2) messages required with n processes

Computer Science Lecture 12, page 20 CS677: Distributed OS

Bully Algorithm Details!

•  Any process P can initiate an election
•  P sends Election messages to all process with higher Ids

and awaits OK messages
•  If no OK messages, P becomes coordinator and sends I

won messages to all process with lower Ids
•  If it receives an OK, it drops out and waits for an I won
•  If a process receives an Election msg, it returns an OK and

starts an election
•  If a process receives a I won, it treats sender an

coordinator

Computer Science Lecture 12, page 21 CS677: Distributed OS

Bully Algorithm Example!

•  The bully election algorithm
•  Process 4 holds an election
•  Process 5 and 6 respond, telling 4 to stop
•  Now 5 and 6 each hold an election

Computer Science Lecture 12, page 22 CS677: Distributed OS

Bully Algorithm Example!

d)  Process 6 tells 5 to stop
e)  Process 6 wins and tells everyone

Computer Science Lecture 12, page 23 CS677: Distributed OS

Ring-based Election!

•  Processes have unique Ids and arranged in a logical ring
•  Each process knows its neighbors

–  Select process with highest ID
•  Begin election if just recovered or coordinator has failed
•  Send Election to closest downstream node that is alive

–  Sequentially poll each successor until a live node is found
•  Each process tags its ID on the message
•  Initiator picks node with highest ID and sends a coordinator message
•  Multiple elections can be in progress

–  Wastes network bandwidth but does no harm

Computer Science Lecture 12, page 24 CS677: Distributed OS

A Ring Algorithm!

•  Election algorithm using a ring.

Computer Science Lecture 12, page 25 CS677: Distributed OS

Comparison!

•  Assume n processes and one election in progress

•  Bully algorithm
–  Worst case: initiator is node with lowest ID

•  Triggers n-2 elections at higher ranked nodes: O(n2) msgs
–  Best case: immediate election: n-2 messages

•  Ring
–  2 (n-1) messages always

Computer Science Lecture 12, page 26 CS677: Distributed OS

Elections in Wireless Environments (1)!

•  Election algorithm in a wireless network, with node a as the
source. (a) Initial network. (b)–(e) The build-tree phase

Computer Science Lecture 12, page 27 CS677: Distributed OS

Elections in Wireless Environments (2)!

Computer Science Lecture 12, page 28 CS677: Distributed OS

Elections in Large-Scale Systems (1)!

•  Requirements for superpeer selection:
1. Normal nodes should have low-latency access to

superpeers.
2. Superpeers should be evenly distributed across

the overlay network.
3. There should be a predefined portion of

superpeers relative to the total number of nodes in
the overlay network.

4. Each superpeer should not need to serve more
than a fixed number of normal nodes.

Computer Science Lecture 12, page 29 CS677: Distributed OS

Elections in Large-Scale Systems (2)!

•  Moving tokens in a two-dimensional space using repulsion forces.

Computer Science Lecture 12, page 30 CS677: Distributed OS

Distributed Synchronization!

•  Distributed system with multiple processes may need to
share data or access shared data structures
–  Use critical sections with mutual exclusion

•  Single process with multiple threads
–  Semaphores, locks, monitors

•  How do you do this for multiple processes in a
distributed system?
–  Processes may be running on different machines

•  Solution: lock mechanism for a distributed environment
–  Can be centralized or distributed

Computer Science Lecture 12, page 31 CS677: Distributed OS

Centralized Mutual Exclusion!

•  Assume processes are numbered
•  One process is elected coordinator (highest ID process)
•  Every process needs to check with coordinator before

entering the critical section
•  To obtain exclusive access: send request, await reply
•  To release: send release message
•  Coordinator:

–  Receive request: if available and queue empty, send grant; if
not, queue request

–  Receive release: remove next request from queue and send
grant

Computer Science Lecture 12, page 32 CS677: Distributed OS

Mutual Exclusion:  
A Centralized Algorithm!

a)  Process 1 asks the coordinator for permission to enter a critical region. Permission is
granted

b)  Process 2 then asks permission to enter the same critical region. The coordinator does
not reply.

c)  When process 1 exits the critical region, it tells the coordinator, when then replies to 2

Computer Science Lecture 12, page 33 CS677: Distributed OS

Properties!

•  Simulates centralized lock using blocking calls
•  Fair: requests are granted the lock in the order they were received
•  Simple: three messages per use of a critical section (request, grant, release)
•  Shortcomings:

–  Single point of failure
–  How do you detect a dead coordinator?

•  A process can not distinguish between “lock in use” from a dead coordinator
–  No response from coordinator in either case

–  Performance bottleneck in large distributed systems

