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Today: Logical Clocks!

•  Last class: clock synchronization 

•  Logical clocks 

•  Vector clocks 

•  Global state 
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Logical Clocks!

•  For many problems, internal consistency of clocks is 
important 
–  Absolute time is less important 
–  Use logical clocks 

•  Key idea: 
–  Clock synchronization need not be absolute 
–  If two machines do not interact, no need to synchronize them 
–  More importantly, processes need to agree on the order in 

which events occur rather than the time at which they occurred 
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Event Ordering!

•  Problem: define a total ordering of all events that occur 
in a system 

•  Events in a single processor machine are totally ordered 
•  In a distributed system: 

–  No global clock, local clocks may be unsynchronized 
–  Can not order events on different machines using local times 

•  Key idea [Lamport ] 
–  Processes exchange messages 
–  Message must be sent before received 
–  Send/receive used to order events (and synchronize clocks) 
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Happened Before Relation!

•  If A and B are events in the same process and A executed before B, 
then  A -> B 

•  If A represents sending of a message and B is the receipt of this 
message, then A -> B 

•  Relation is transitive: 
–  A -> B and B -> C  => A -> C 

•  Relation is undefined across processes that do not exchange 
messages 
–  Partial ordering on events 
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Event Ordering Using HB!

•  Goal: define the notion of time of an event such that 
–  If A-> B then C(A) < C(B) 
–  If  A and B are concurrent, then C(A)  <, = or > C(B) 

•  Solution:  
–  Each processor maintains a logical clock  LCi 
–  Whenever an event occurs locally at I, LCi = LCi+1 
–  When i sends message to j, piggyback Lci 

–  When  j receives message from i 
•  If LCj < LCi then LCj = LCi +1 else do nothing 

–  Claim: this algorithm meets the above goals 
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Lamportʼs Logical Clocks!
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Example: Totally-Ordered 
Multicasting!

•  Updating a replicated database and leaving it in an inconsistent 
state. 
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Causality!

•  Lamport’s logical clocks 
–  If  A -> B then C(A) < C(B) 
–  Reverse is not true!! 

•  Nothing can be  said about events by comparing time-stamps! 
•  If C(A) < C(B), then ?? 

•  Need to maintain causality 
–  If a -> b then a is casually related to b 
–  Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n) 
–  Capture causal relationships between groups of processes 
–  Need a time-stamping mechanism such that: 

•  If T(A) < T(B) then A should have causally preceded B 
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Vector Clocks!
•  Each process i maintains a vector Vi 

–  Vi[i] : number of events that have occurred at i 
–  Vi[j] : number of events I knows have occurred at process j 

•  Update vector clocks as follows 
–  Local event: increment Vi[I] 
–  Send a message :piggyback entire vector V 
–  Receipt of a message: Vj[k] = max( Vj[k],Vi[k] ) 

•  Receiver is told about how many events the sender knows 
occurred at another process k 

•  Also Vj[i] = Vj[i]+1 
•  Exercise: prove that if V(A)<V(B), then A causally 

precedes B and the other way around. 
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Causal Delivery!

•  Causally ordered multicasting 
–  If Pj receives a message from Pi  

•  Delay delivery of the message until 
–  Ts(m) [i] ==  VCj[i] + 1   (m is the next expected message from i) 
–  Ts(m) [k] <= VCj[k]     (j has seen all messages seen by i before m) 

CS677: Distributed OS 
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Global State!

•  Global state of a distributed system 
–  Local state of each process 
–  Messages sent but not received (state of the queues) 

•  Many applications need to know the state of the system 
–  Failure recovery, distributed deadlock detection 

•  Problem: how can you figure out the state of a 
distributed system? 
–  Each process is independent 
–  No global clock or synchronization 

•  Distributed snapshot: a consistent global state 
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Global State (1)!

a)  A consistent cut 
b)  An inconsistent cut 
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Distributed Snapshot Algorithm!

•  Assume each process communicates with another 
process using unidirectional point-to-point channels (e.g, 
TCP connections) 

•  Any process can initiate the algorithm 
–  Checkpoint local state  
–  Send marker on every outgoing channel 

•  On receiving a marker 
–  Checkpoint state if first marker and send marker on outgoing 

channels, save messages on all other channels until: 
–  Subsequent marker on a channel: stop saving state for that 

channel 
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Distributed Snapshot!

•  A process finishes when 
–  It receives a marker on each incoming channel and processes 

them all 
–  State: local state plus state of all channels 
–  Send state to initiator 

•  Any process can initiate snapshot 
–  Multiple snapshots may be in progress  

•  Each is separate, and each is distinguished by tagging the 
marker with the initiator ID (and sequence number) 

A 
C 
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M 
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Snapshot Algorithm Example!

a)  Organization of a process and channels for a distributed 
snapshot 
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Snapshot Algorithm Example!

b)  Process Q receives a marker for the first time and records its local 
state 

c)  Q records all incoming message 
d)  Q receives a marker for its incoming channel and finishes recording 

the state of the incoming channel 
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Termination Detection!

•  Detecting the end of a distributed computation 
•  Notation: let sender be predecessor, receiver be successor 
•  Two types of markers: Done and Continue 
•  After finishing its part of the snapshot, process Q sends a Done or 

a Continue to its predecessor 
•  Send a Done only when 

–  All of Q’s successors send a Done 
–  Q has not received any message since it check-pointed its local state and 

received a marker on all incoming channels 
–  Else send a Continue 

•  Computation has terminated if the initiator receives Done 
messages from everyone 
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Election Algorithms!

•  Many distributed algorithms need one process to act as 
coordinator 
–  Doesn’t matter which process does the job, just need to pick one 

•  Election algorithms: technique to pick a unique 
coordinator (aka leader election) 

•  Examples: take over the role of a failed process, pick a 
master in Berkeley clock synchronization algorithm 

•  Types of election algorithms: Bully and Ring algorithms 
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Bully Algorithm!

•  Each process has a unique numerical ID 
•  Processes know the Ids and address of every other process 
•  Communication is assumed reliable 
•  Key Idea: select process with highest ID 
•  Process initiates election if it just recovered from failure or 

if coordinator failed 
•  3 message types: election, OK, I won 
•  Several processes can initiate an election simultaneously 

–  Need consistent result 
•  O(n2) messages required with n processes 
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Bully Algorithm Details!

•  Any process P can initiate an election 
•  P sends Election messages to all process with higher Ids 

and awaits OK messages 
•  If no OK messages, P becomes coordinator and sends I 

won messages to all process with lower Ids 
•  If it receives an OK, it drops out and waits for an I won 
•  If a process receives an Election msg, it returns an OK and 

starts an election 
•  If a process receives a I won, it treats sender an 

coordinator 
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Bully Algorithm Example!

•  The bully election algorithm 
•  Process 4 holds an election 
•  Process 5 and 6 respond, telling 4 to stop 
•  Now 5 and 6 each hold an election 
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Bully Algorithm Example!

d)  Process 6 tells 5 to stop 
e)  Process 6 wins and tells everyone 
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Ring-based Election!

•  Processes have unique Ids and arranged in a logical ring 
•  Each process knows its neighbors  

–  Select process with highest ID 
•  Begin election if just recovered or coordinator has failed 
•  Send Election to closest downstream node that is alive 

–  Sequentially poll each successor until a live node is found 
•  Each process tags its ID on the message 
•  Initiator picks node with highest ID and sends a coordinator message 
•  Multiple elections can be in progress 

–  Wastes network bandwidth but does no harm  
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A Ring Algorithm!

•  Election algorithm using a ring. 
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Comparison!

•  Assume n processes and one election in progress 

•  Bully algorithm 
–  Worst case: initiator is node with lowest ID 

•  Triggers n-2 elections at higher ranked nodes: O(n2) msgs 
–  Best case: immediate election: n-2 messages 

•  Ring 
–  2 (n-1) messages always 
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Elections in Wireless Environments (1)!

•  Election algorithm in a wireless network, with node a as the 
source. (a) Initial network. (b)–(e) The build-tree phase 
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Elections in Wireless Environments (2)!
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Elections in Large-Scale Systems (1)!

•  Requirements for superpeer selection: 
1. Normal nodes should have low-latency access to 

superpeers. 
2. Superpeers should be evenly distributed across 

the overlay network. 
3. There should be a predefined portion of 

superpeers relative to the total number of nodes in 
the overlay network. 

4. Each superpeer should not need to serve more 
than a fixed number of normal nodes. 
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Elections in Large-Scale Systems (2)!

•  Moving tokens in a two-dimensional  space using repulsion forces. 
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Distributed Synchronization!

•  Distributed system with multiple processes may need to 
share data or access shared data structures 
–  Use critical sections with mutual exclusion 

•  Single process with multiple threads 
–  Semaphores, locks, monitors 

•  How do you do this for multiple processes in a 
distributed system? 
–  Processes may be running on different machines 

•  Solution: lock mechanism for a distributed environment 
–  Can be centralized or distributed 
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Centralized Mutual Exclusion!

•  Assume processes are numbered 
•  One process is elected coordinator (highest ID process) 
•  Every process needs to check with coordinator before 

entering the critical section 
•  To obtain exclusive access: send request, await reply 
•  To release: send release message 
•  Coordinator: 

–  Receive request: if available and queue empty, send grant; if 
not, queue request 

–  Receive release: remove next request from queue and send 
grant 
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Mutual Exclusion:  
A Centralized Algorithm!

a)  Process 1 asks the coordinator for permission to enter a critical region.  Permission is 
granted 

b)  Process 2 then asks permission to enter the same critical region.  The coordinator does 
not reply. 

c)  When process 1 exits the critical region, it tells the coordinator, when then replies to 2 
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Properties!

•  Simulates centralized lock using blocking calls 
•  Fair: requests are granted the lock in the order they were received 
•  Simple: three messages per use of a critical section (request, grant, release) 
•  Shortcomings: 

–  Single point of failure 
–  How do you detect a dead coordinator? 

•  A process can not distinguish between “lock in use” from a dead coordinator 
–  No response from coordinator in either case 

–  Performance bottleneck in large distributed systems 


