
Computer Science Lecture 4, page 1 CS677: Distributed OS

Multiprocessor Scheduling!

• Will consider only shared memory multiprocessor or multi-core CPU

• Salient features:
–  One or more caches: cache affinity is important
–  Semaphores/locks typically implemented as spin-locks: preemption during

critical sections

• Multi-core systems: some caches shared (L2,L3); others are not

Computer Science Lecture 4, page 2 CS677: Distributed OS

Multiprocessor Scheduling!

• Central queue – queue can be a bottleneck

• Distributed queue – load balancing between queue

Computer Science Lecture 4, page 3 CS677: Distributed OS

Scheduling!

•  Common mechanisms combine central queue with per
processor queue (SGI IRIX)

•  Exploit cache affinity – try to schedule on the same
processor that a process/thread executed last

•  Context switch overhead
–  Quantum sizes larger on multiprocessors than uniprocessors

Computer Science Lecture 4, page 4 CS677: Distributed OS

Distributed Scheduling: Motivation!

•  Distributed system with N workstations
–  Model each w/s as identical, independent M/M/1 systems
–  Utilization u, P(system idle)=1-u

•  What is the probability that at least one system is idle
and one job is waiting?

Computer Science Lecture 4, page 5 CS677: Distributed OS

Implications!

•  Probability high for moderate system utilization
–  Potential for performance improvement via load distribution

•  High utilization => little benefit
•  Low utilization => rarely job waiting
•  Distributed scheduling (aka load balancing) potentially useful
•  What is the performance metric?

–  Mean response time
•  What is the measure of load?

–  Must be easy to measure
–  Must reflect performance improvement

Computer Science Lecture 4, page 6 CS677: Distributed OS

Design Issues!

•  Measure of load
–  Queue lengths at CPU, CPU utilization

•  Types of policies
–  Static: decisions hardwired into system
–  Dynamic: uses load information
–  Adaptive: policy varies according to load

•  Preemptive versus non-preemptive
•  Centralized versus decentralized
•  Stability: !>µ => instability, !1+!2<µ1+µ2=>load balance

–  Job floats around and load oscillates

Computer Science Lecture 4, page 7 CS677: Distributed OS

Components!

•  Transfer policy: when to transfer a process?
–  Threshold-based policies are common and easy

•  Selection policy: which process to transfer?
–  Prefer new processes
–  Transfer cost should be small compared to execution cost

•  Select processes with long execution times
•  Location policy: where to transfer the process?

–  Polling, random, nearest neighbor
•  Information policy: when and from where?

–  Demand driven [only if sender/receiver], time-driven
[periodic], state-change-driven [send update if load changes]

Computer Science Lecture 4, page 8 CS677: Distributed OS

Sender-initiated Policy!

•  Transfer policy

•  Selection policy: newly arrived process
•  Location policy: three variations

–  Random: may generate lots of transfers => limit max transfers
–  Threshold: probe n nodes sequentially

•  Transfer to first node below threshold, if none, keep job
–  Shortest: poll Np nodes in parallel

•  Choose least loaded node below T

Computer Science Lecture 4, page 9 CS677: Distributed OS

Receiver-initiated Policy!

•  Transfer policy: If departing process causes load < T,
find a process from elsewhere

•  Selection policy: newly arrived or partially executed
process

•  Location policy:
–  Threshold: probe up to Np other nodes sequentially

•  Transfer from first one above threshold, if none, do nothing
–  Shortest: poll n nodes in parallel, choose node with heaviest

load above T

Computer Science Lecture 4, page 10 CS677: Distributed OS

Symmetric Policies!
•  Nodes act as both senders and receivers: combine

previous two policies without change
–  Use average load as threshold

•  Improved symmetric policy: exploit polling information
–  Two thresholds: LT, UT, LT <= UT
–  Maintain sender, receiver and OK nodes using polling info
–  Sender: poll first node on receiver list …
–  Receiver: poll first node on sender list …

Computer Science Lecture 4, page 11 CS677: Distributed OS

Case Study: V-System (Stanford)!

•  State-change driven information policy
–  Significant change in CPU/memory utilization is broadcast to

all other nodes

•  M least loaded nodes are receivers, others are senders
•  Sender-initiated with new job selection policy
•  Location policy: probe random receiver, if still receiver,

transfer job, else try another

Computer Science Lecture 4, page 12 CS677: Distributed OS

Sprite (Berkeley)!

•  Workstation environment => owner is king!
•  Centralized information policy: coordinator keeps info

–  State-change driven information policy
–  Receiver: workstation with no keyboard/mouse activity for 30

seconds and # active processes < number of processors

•  Selection policy: manually done by user => workstation
becomes sender

•  Location policy: sender queries coordinator
•  WS with foreign process becomes sender if user

becomes active: selection policy=> home workstation

Computer Science Lecture 4, page 13 CS677: Distributed OS

Sprite (contd)!

•  Sprite process migration
–  Facilitated by the Sprite file system
–  State transfer

•  Swap everything out
•  Send page tables and file descriptors to receiver
•  Demand page process in
•  Only dependencies are communication-related

–  Redirect communication from home WS to receiver

Computer Science Lecture 4, page 14 CS677: Distributed OS

Virtualization !!

•  Virtualization: extend or replace an existing interface to
mimic the behavior of another system.
–  Introduced in 1970s: run legacy software on newer mainframe

hardware

•  Handle platform diversity by running apps in VMs
–  Portability and flexibility

Computer Science Lecture 4, page 15 CS677: Distributed OS

Types of Interfaces!

•  Different types of interfaces
–  Assembly instructions
–  System calls
–  APIs

•  Depending on what is replaced /mimiced, we obtain
different forms of virtualization

Computer Science Lecture 4, page 16 CS677: Distributed OS

Types of Virtualization!

•  Emulation
–  VM emulates/simulates complete hardware
–  Unmodified guest OS for a different PC can be run

•  Bochs, VirtualPC for Mac, QEMU
•  Full/native Virtualization

–  VM simulates “enough” hardware to allow an unmodified
guest OS to be run in isolation

•  Same hardware CPU
–  IBM VM family, VMWare Workstation, Parallels,…

Computer Science Lecture 4, page 17 CS677: Distributed OS

Types of virtualization!
•  Para-virtualization

–  VM does not simulate hardware
–  Use special API that a modified guest OS must use
–  Hypercalls trapped by the Hypervisor and serviced
–  Xen, VMWare ESX Server

•  OS-level virtualization
–  OS allows multiple secure virtual servers to be run
–  Guest OS is the same as the host OS, but appears isolated

•  apps see an isolated OS
–  Solaris Containers, BSD Jails, Linux Vserver

•  Application level virtualization
–  Application is gives its own copy of components that are not shared

•  (E.g., own registry files, global objects) - VE prevents conflicts
–  JVM

Computer Science Lecture 4, page 18 CS677: Distributed OS

Types of Hypervisors!

•  Type 1: hypervisor runs on “bare metal”
•  Type 2: hypervisor runs on a host OS

–  Guest OS runs inside hypervisor
•  Both VM types act like real hardware

Computer Science Lecture 4, page 19 CS677: Distributed OS

How Virtualization works?!

•  CPU supports kernel and user mode (ring0, ring3)
–  Set of instructions that can only be executed in kernel mode

•  I/O, change MMU settings etc -- sensitive instructions
–  Privileged instructions: cause a trap when executed in kernel mode

•  Result: type 1 virtualization feasible if sensitive instruction subset
of privileged instructions

•  Intel 386: ignores sensitive instructions in user mode
–  Can not support type 1 virtualization

•  Recent Intel/AMD CPUs have hardware support
–  Intel VT, AMD SVM

•  Create containers where a VM and guest can run
•  Hypervisor uses hardware bitmap to specify which inst should trap
•  Sensitive inst in guest traps to hypervisor

Computer Science Lecture 4, page 20 CS677: Distributed OS

Type 1 hypervisor!

•  Unmodified OS is running in user mode (or ring 1)
–  But it thinks it is running in kernel mode (virtual kernel mode)
–  privileged instructions trap; sensitive inst-> use VT to trap
–  Hypervisor is the “real kernel”

•  Upon trap, executes privileged operations
•  Or emulates what the hardware would do

Computer Science Lecture 4, page 21 CS677: Distributed OS

Type 2 Hypervisor!

•  VMWare example
–  Upon loading program: scans code for basic blocks
–  If sensitive instructions, replace by Vmware procedure

•  Binary translation
–  Cache modified basic block in VMWare cache

•  Execute; load next basic block etc.
•  Type 2 hypervisors work without VT support

–  Sensitive instructions replaced by procedures that emulate
them.

Computer Science Lecture 4, page 22 CS677: Distributed OS

Paravirtualization!

•  Both type 1 and 2 hypervisors work on unmodified OS
•  Paravirtualization: modify OS kernel to replace all

sensitive instructions with hypercalls
–  OS behaves like a user program making system calls
–  Hypervisor executes the privileged operation invoked by

hypercall.

Computer Science Lecture 4, page 23 CS677: Distributed OS

Virtual machine Interface!

•  Standardize the VM interface so kernel can run on bare
hardware or any hypervisor

Computer Science Lecture 4, page 24 CS677: Distributed OS

Memory virtualization!

•  OS manages page tables
–  Create new pagetable is sensitive -> traps to hypervisor

•  hypervisor manages multiple OS
–  Need a second shadow page table
–  OS: VM virtual pages to VM’s physical pages
–  Hypervisor maps to actual page in shadow page table
–  Two level mapping
–  Need to catch changes to page table (not privileged)

•  Change PT to read-only - page fault
•  Paravirtualized - use hypercalls to inform

Computer Science Lecture 4, page 25 CS677: Distributed OS

Examples!

•  Application-level virtualization: “process virtual
machine”

•  VMM /hypervisor

Computer Science Lecture 4, page 26 CS677: Distributed OS

Parallel Applications on SMPs!

•  Effect of spin-locks: what happens if preemption occurs
in the middle of a critical section?
–  Preempt entire application (co-scheduling)
–  Raise priority so preemption does not occur (smart scheduling)
–  Both of the above

•  Provide applications with more control over its
scheduling
–  Users should not have to check if it is safe to make certain

system calls
–  If one thread blocks, others must be able to run

