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Abstract

There is growing incentive to reduce the power consumed by large-scale data centers that
host online services such as banking, retail commerce, and gaming. Virtualization is a promis-
ing approach to consolidating multiple online services onto a smaller number of computing
resources. A virtualized server environment allows computing resources to be shared among
multiple performance-isolated platforms called virtual machines. By dynamically provision-
ing virtual machines, consolidating the workload, and turning servers on and off as needed,
data center operators can maintain the desired quality-of-service (QoS) while achieving higher
server utilization and energy efficiency. We implement and validate a dynamic resource pro-
visioning framework for virtualized server environments wherein the provisioning problem is
posed as one of sequential optimization under uncertainty and solved using a lookahead control
scheme. The proposed approach accounts for the switching costs incurred while provisioning
virtual machines and explicitly encodes the corresponding risk in the optimization problem.
Experiments using the Trade6 enterprise application show that a server cluster managed by
the controller conserves, on average, 22% of the power required by a system without dynamic
control while still maintaining QoS goals. Finally, we use trace-based simulations to analyze
controller performance on server clusters larger than our testbed, and show how concepts from
approximation theory can be used to further reduce the computational burden of controlling
large systems.
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1 Introduction
Web-based services such as online banking and shopping are enabled by enterprise applications.

We broadly define anenterprise applicationas any software hosted on a server which simultane-

ously provides services to a large number of users over a computer network [1]. These applications

are typically hosted on distributed computing systems comprising heterogeneous and networked

servers housed in a physical facility called a data center. A typical data center serves a variety of

companies and users, and the computing resources needed to support such a wide range of online

services leaves server rooms in a state of “sprawl” with under-utilized resources. Moreover, each

new service to be supported often results in the acquisition of new hardware, leading to server uti-

lization levels at less than 20% by many estimates. With energy costs rising about 9% last year [2]

and society’s need to reduce energy consumption, it is imprudent to continue server sprawl at its

current pace.

Virtualization provides a promising approach to consolidating multiple online services onto

fewer computing resources within a data center. This technology allows a single server to be shared

among multiple performance-isolated platforms called virtual machines (VMs), where each virtual

machine can, in turn, host multiple enterprise applications. Virtualization also enableson-demand

or utility computing—a just-in-time resource provisioning model in which computing resources

such as CPU, memory, and disk space are made available to applications only as needed and not

allocated statically based on the peak workload demand [3]. By dynamically provisioning virtual

machines, consolidating the workload, and turning servers on and off as needed, data center oper-

ators can maintain the desired QoS while achieving higher server utilization and energy efficiency.

These dynamic resource provisioning strategies complement the more traditional off-line capacity

planning process [4].

This paper develops a dynamic resource provisioning framework for a virtualized computing

environment and experimentally validates it on a small server cluster. The resource-provisioning

problem of interest is posed as one of sequential optimization under uncertainty and solved using

limited lookahead control (LLC). This approach allows for multi-objective optimization under

explicit operating constraints and is applicable to computing systems with non-linear dynamics

where control inputs must be chosen from a finite set.

Our experimental setup is a cluster of heterogenous Dell PowerEdge servers supporting two

online services in which incoming requests for each service are dispatched to a dedicated cluster

of VMs. The revenue generated by each service is specified via a pricing scheme or service-level

agreement (SLA) that relates the achieved response time to a dollar value that the client is willing

to pay. The control objective is to maximize the profit generated by this system by minimizing both

the power consumption and SLA violations. To achieve this objective, the online controller decides

the number of physical and virtual machines to allocate to each service where the VMs and their
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hosts are turned on or off according to workload demand, and the CPU share to allocate to each

VM. This control problem may need to be re-solved periodically when the incoming workload is

time varying.

This paper makes the following specific contributions.

• The LLC formulation models the cost of control, i.e., the switching costs associated with

turning machines on or off. For example, profits may be lost while waiting for a VM and its

host to be turned on, which is usually three to four minutes. Other switching costs include

the power consumed while a machine is being powered up or down, and not performing any

useful work.

• Excessive switching of VMs may occur in an uncertain operating environment where the

incoming workload is highly variable. This may actually reduce profits, especially in the

presence of the switching costs described above. Thus, each provisioning decision made

by the controller is risky and we explicitly encode the notion of risk in the LLC problem

formulation using preference functions.

• Since workload intensity can change quite quickly in enterprise systems [5], the controller

must adapt to such variations and provision resources over short time scales, usually on the

order of10s of seconds to a few minutes. Therefore, to achieve fast operation, we develop a

hierarchical LLC structure wherein the control problem is decomposed into a set of smaller

sub-problems and solved in cooperative fashion by multiple controllers.

Experimental results using IBM’s Trade6 application, driven by a time-varying workload, show

that the cluster, when managed using the proposed LLC approach saves, on average, 22% in power-

consumption costs over a twenty-four hour period when compared to a system operating without

dynamic control. These power savings are achieved with very few SLA violations, 1.6% of the

total number of service requests. The execution-time overhead of the controller is quite low, mak-

ing it practical for online performance management. We also characterize the effects of different

risk-preference functions on control performance, finding that a risk-aware controller reduces the

number of SLA violations by an average of 35% compared to the baseline risk-neutral controller.

A risk-aware controller also reduces both the VM and host switching activity—a beneficial result

when excessive power-cycling of the host machines is a concern. The performance results also

include a discussion on optimality issues.

The paper is organized as follows. Section 2 discusses related work on resource provisioning

and Section 3 describes our experimental setup. Section 4 formulates the control problem and Sec-

tion 5 describes the controller implementation. Section 6 presents experimental results evaluating

the control performance. Section 7 addresses controller scalability using trace-based simulations.

Section 8 concludes the paper.
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2 Related Work
We now briefly review recent research on resource provisioning in virtualized computing envi-

ronments. Our approach differs from the prior work in [6–11] in that it is a proactive control

technique that encodes the risk involved in making provisioning decisions in a dynamic operating

environment and accounts for the corresponding switching costs.

The authors of [12] propose an online method to select a VM configuration while minimizing

the number of physical hosts needed to support this configuration. Their algorithm is reactive, and

is triggered by events such as CPU utilization and memory availability to revise the placement of

VMs. The authors consider VM migration costs in terms of the additional CPU cycles and memory

needed to stop a VM, store its execution context, and restart it on another machine. In contrast,

the cost of control in our work accounts for the time delays and opportunity costs incurred when

switching hosts and VMs on/off. The placement algorithm in [12] also does not save power by

switching off unneeded hosts.

The capacity planning technique proposed in [13] uses server consolidation to reduce the en-

ergy consumed by a computing cluster hosting web applications. The approach is similar to ours

in that it estimates the CPU processing capacity needed to serve the incoming workload, but con-

siders only a single application hosted on homogenous servers. The authors of [14] propose to

dynamically reschedule/collocate VMs processing heterogeneous workloads. The problem is one

of scheduling a combination of interactive and batch tasks across a cluster of physical hosts and

VMs to meet deadlines. The VMs are migrated, as needed, between host machines as new tasks

arrive. While the placement approach in [14] consolidates workloads, it does not save power by

switching off unneeded machines, and does not consider the cost of the control incurred when

migrating the VMs.

In [15], the authors propose a two-level optimization scheme to allocate CPU shares to VMs

processing two enterprise applications on a single host. Controllers, local to each VM, use fuzzy-

logic models to estimate CPU shares for the current workload intensity, and make CPU-share

requests to a global controller. Acting as an arbitrator, the global controller affects a trade-off

between the requests to maximize the profits generated by the host. The authors of [16] combine

both power and performance management within a single framework, and apply it to a server

environment without virtualization. Using dynamic voltage scaling on the operating hosts, they

demonstrate a 10% savings in power consumption with a small sacrifice in performance.

Finally, reducing power consumption in server clusters has been a well-studied problem re-

cently; for example, see [17–19]. The overall idea is to combine CPU-clock throttling and dynamic

voltage scaling with switching entire servers on/off as needed, based on the incoming workload.

In the presence of switching costs, however, two crucial issues must be addressed. First, turning

servers off in a dynamic environment is somewhat risky in QoS terms—what if a server were just
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powered off in anticipation of a lighter workload, and the workload increases? Also, excessive

power cycling of a server could reduce its reliability. The risk-aware controller presented here is a

step towards addressing these issues.

3 Experimental Setup
This section describes our experimental setup, including the system architecture, the enterprise

applications used for the two online services, and workload generation.

3.1 The Testbed
The computing cluster in Fig. 1(a) consists of the six servers detailed in Fig. 1(b), networked via

a gigabit switch. Virtualization of this cluster is enabled by VMWare’s ESX Server 3.0 Enterprise

Edition running a Linux RedHat 2.4 kernel. The operating system on each VM is the SUSE

Enterprise Linux Server Edition 10. The ESX server controls the disk space, memory, and CPU

share (in MHz) allotted to the VMs, and also provides an application programming interface (API)

to support the remote management of virtual machines using the simple object access protocol

(SOAP). Our controller uses this API to dynamically instantiate or de-instantiate VMs on the hosts

and to assign CPU shares to the virtual machines.

To turn off a virtual machine, we use a standard Linux shutdown command, and to physically

turn off the host machine, we follow the shutdown command with an Intelligent Platform Manage-

ment Interface (IPMI) command to power down the chassis. Hosts are remotely powered on using

the wake-on-LAN protocol.

3.2 The Enterprise Applications and Workload Generation
The testbed hosts two web-based services, labeledGold andSilver, comprising front-end appli-

cation servers and back-end database servers. The applications perform dynamic content retrieval

(customer browsing) as well as transaction commitments (customer purchases) requiring database

reads and writes.

We use IBM’s Trade6 benchmark—a multi-threaded stock-trading application that allows users

to browse, buy, and sell stocks—to enable the Silver service. Trade6 is a transaction-based appli-

cation integrated within the IBM WebSphere Application Server V6.0 and uses DB2 Enterprise

Server Edition V9.2 as the database component. This execution environment is then distributed

across multiple servers comprising the application and database tiers, as shown in Fig. 1(a). Vir-

tual machines processing Silver requests are loaded with identical copies of the Trade6 execution

environment, and a fraction of the incoming workload is distributed to each VM.
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Host CPU CPU Memory
Name Speed Cores
Apollo 2.3 GHz 8 8 GB

Bacchus 2.3 GHz 2 8 GB
Chronos 1.6 GHz 8 4 GB
Demeter 1.6 GHz 8 4 GB

Eros 1.6 GHz 8 4 GB
Poseidon 2.3 GHz 8 8 GB

Fig. 1: The host machines comprising the testbed.

environment without virtualization. Using dynamic voltage scaling on the operating hosts, they

demonstrate a 10% savings in power consumption with a small sacrifice in performance.

Finally, reducing power consumption in server clusters has been a well-studied problem re-

cently; for example, see [18–20]. The overall idea is to combine CPU-clock throttling and dynamic

voltage scaling with switching entire servers on/off as needed, based on the incoming workload.

In the presence of switching costs, however, two crucial issues must be addressed. First, turning

servers off in a dynamic environment is somewhat risky in QoS terms—what if a server were just

powered off in anticipation of a lighter workload, and the workload increases? Also, excessive

power cycling of a server could reduce its reliability. The risk-aware controller presented here is a

step towards addressing these issues.

3 Experimental Setup

This section describes our experimental setup, including the system architecture, the enterprise

applications used for the two online services, and workload generation.

3.1 The Testbed

The computing cluster consists of the six servers detailed in Fig. 1, networked via a gigabit switch.

Virtualization of this cluster is enabled by VMWare’s ESX Server 3.0 Enterprise Edition running a

Linux RedHat 2.4 kernel. The operating system on each VM is the SUSE Enterprise Linux Server

Edition 10. The ESX server controls the disk space, memory, and CPU share (in MHz) allotted

to the VMs, and also provides an application programming interface (API) to support the remote

management of virtual machines using the simple object access protocol (SOAP). Our controller

uses this API to dynamically instantiate or de-instantiate VMs on the hosts and to assign CPU

shares to the virtual machines.

To turn off a virtual machine, we use a standard Linux shutdown command, and to physically

turn off the host machine, we follow the shutdown command with an Intelligent Platform Manage-
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(b)

Fig. 1: (a) The system architecture supporting the Gold and Silver services. The controller
setsN(k), the number of active hosts,ni(k), the number of VMs to serve theith application,
and fij(k) and γij(k), the CPU share and the fraction of workload to distribute to thejth VM,
respectively. ASleepcluster holds machines in a powered-off state. (b) The host machines
comprising the testbed.

The Gold service is also enabled by Trade6, but the application is modified to perform some

additional processing on the CPU for each Gold request. The amount of additional processing

occurs with some variation, distributed about a mean value that is passed as a parameter by the

request.

The Gold and Silver applications generate revenue as per the non-linear pricing graph shown
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Fig. 2: (a) A pricing strategy that differentiates the Gold and Silver services. (b) Transaction
requests to the Gold and Silver applications, plotted at 150-second intervals.

in Fig. 2(a) that relates the average response time achieved per transaction to a dollar value that

clients are willing to pay. Response times below a threshold value result in a reward paid to the

service provider, while response times violating the SLA result in the provider paying a penalty to

the client.

We use Httperf [20], an open-loop workload generator, to send requests to browse, buy, or sell

shares to the Gold and Silver applications. As shown by an example trace in Fig. 2(b), request-

arrivals exhibit time-of-day variations typical of many enterprise workloads, and the number of

arrivals changes quite significantly within a very short time period. The workload used in our ex-

periments was synthesized, in part, using log files from the Soccer World Cup 1998 Web site [21].

Finally, the results presented in this paper assume a session-less workload, that is, there is no

state information to be maintained for multiple requests belonging to one user session, and requests

are assumed to be independent of each other.

3.3 The Two-Tier System Architecture
Fig. 1(a) shows the virtualized server environment hosting the Gold and Silver services that are,

in turn, distributed over the application and database tiers. The application (or database) and its

operating system (OS) are encapsulated within a VM, and one or more VMs are supported on

each physical host. A dispatcher balances the incoming workload, with arrival ratesλ1 andλ2 for

the Gold and Silver services, respectively, across those VMs running the designated application.

Hosts not needed during periods of slow workload arrivals are powered down and placed in the

Sleepcluster to reduce power consumption. Also, note that some machines, such as Eros, are

shared between the two tiers.

The controller, executed on the host Bacchus, aims to meet the SLA requirements of the Gold

and Silver services while minimizing the corresponding use of computing resources—the number
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of hosts and VMs, and the CPU share per VM—at the application tier. A VM’s CPU share is

specified in terms of an operating frequency. For example, Chronos, with eight CPU cores, each

operating at 1.6 GHz, has8 × 1.6 = 12.8 GHz of processing capacity that can be dynamically

distributed among its VMs. The ESX server limits the maximum number of cores that a VM can

use on a host to four, setting an upper bound of 6 GHz for a VM’s CPU share, and reserves a total

of 800 MHz of CPU share for system management processes. So, on a machine with eight CPU

cores, we can, for example, host a 6 GHz Gold VM that uses four cores, a 3 GHz Gold VM that

uses two cores, and a 3 GHz Silver VM that also uses two cores.

At the database tier, the DB2 databases for the Gold (Silver) service are executed on two 6

GHz VMs, hosted on Apollo and Poseidon, and one 3 GHz VM hosted on Eros. A limited form

of resource provisioning is performed at this tier in that physical machines are switched off during

periods of light workload. However, the CPU share of an executing VM is not tuned dynamically.

Given the configuration in Fig. 1(a), we can determine the worst-case workload intensity in

terms of Gold and Silver request arrivals that can be handled by our system without SLA violations,

and therefore, establish an admission policy to cap the maximum request arrival rate. This policy

ensures that the system is able to meet target QoS goals given an initial cluster configuration under

peak workload. It also prevents against monetary losses and ensures a fair comparison between the

controlled and uncontrolled systems. The bottleneck is the database tier, and experiments using

Trade6 indicate that a Silver database can process a workload of 190 requests/sec. before becoming

the bottleneck resource. This can be inferred from Fig. 5(b), showing the timing behavior of Trade6

when using a 6 GHz VM for the application as well as the database. We see that approximately 190

Silver requests can be processed per second before queueing instability occurs. A simple analysis

indicates that the maximum Silver arrival rate tolerated by two 6 GHz VMs and a 3 GHz VM is

190 + 190 + 90 = 470 requests per second. A similar calculation for the Gold service indicates

that the maximum arrival rate tolerated by two 6 GHz VMs and a 3 GHz VM is33+33+24 = 90

requests per second.

4 Problem Formulation
Given the system model in Fig. 1(a) and the SLA functions in Fig. 2(a), the control objective is to

maximize the profit generated by the Gold and Silver services under a time-varying workload by

dynamically tuning the following parameters: (1) the number of virtual machines to provision to

each application; (2) the number of hosts on which to collocate the virtual machines; (3) the CPU

share to be given to each VM; and (4) the number of host machines to power on.

We solve the above problem using limited lookahead control (LLC), a predictive control ap-

proach previously introduced in [22]. This method is quite useful when control actions have dead
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Fig. 3: (a) The schematic of a limited lookahead controller. (b) The state-space trajectory ex-
plored by a limited lookahead controller within a horizon of length h. The shaded area shows
the best predicted state trajectory{x̂(l)|l ∈ [k + 1, k + h]} for a feasible control sequence.

times, such as switching on a server and waiting for the bootstrap routine, and for control ac-

tions that must be chosen from a discrete set, such as the number of hosts and VMs to switch on.

Fig. 3(a) shows the basic concept where the environment inputλ is estimated over the prediction

horizonh and used by the system model to forecast future system statesx̂.

At each time stepk, the controller finds a feasible sequence{u∗(l)|l ∈ [k+1, k+h]} of control

actions to guide the predicted system state{x̂(l)|l ∈ [k + 1, k + h]} within the prediction horizon.

The controller identifies the actions that maximize the profit generated by the cluster, as shown

by the shaded trajectory in Fig. 3(b). Then, only the first control action in the chosen sequence,

u(k + 1), is applied to the system and the rest are discarded. The entire process is repeated at time

k + 1 when the controller can adjust the trajectory, given new state information and an updated

workload forecast.

The LLC method accommodates control problems posed as set-point regulation or utility op-

timization under dynamic operating constraints. Inset-point regulation, key operating parameters

must be maintained at a specified level (e.g., an average response time in web servers), and in

utility optimization, the system aims to maximize its utility (e.g., the profit-maximization problem

considered in this paper). The LLC method is conceptually similar to model predictive control

(MPC) [23], with some key differences. MPC usually deals with systems operating in a continu-

ous input and output domain whereas LLC can work in a discrete domain. Also, MPC problems

are usually computationally expensive and suited for slow-changing processes (e.g., chemical re-

actions), whereas LLC problems must be solved quickly, given the dynamics of an enterprise

workload.
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4.1 System Dynamics
A virtual computing cluster is a group of VMs distributed across one or more physical machines,

cooperating to host one online service, and the dynamics of a virtual computing cluster for the

Gold and Silver applications is described by the discrete-time state-space equation1

xi(k + 1) = φ
(
xi(k), ui(k), λi(k)

)
(1)

wherexi(k) is the state of the cluster,λi(k) denotes the environment input, andui(k) is the control

input. The behavioral modelφ captures the relationship between the system state, the control

inputs that adjust the state parameters, and the environment input.

The operating state of theith virtual cluster is denoted asxi(k) =
(
ri(k), qi(k)

)
whereri(k)

is the average response time achieved by the cluster andqi(k) is the number of queued requests.

The control input to theith virtual cluster is denoted asui(k) =
(
N(k), ni(k), {fij(k)}, {γij(k)}

)
whereN(k) is the system-wide control variable indicating the number of active host machines,

ni(k) is the number of VMs for theith service,fij(k) is the CPU share, andγij(k) is workload

fraction directed to thejth virtual machine. The environmental inputλi(k) is the workload arrival-

rate.

An estimate for the environment inputλi is required for each step along the prediction horizon.

We use a Kalman filter [24] to estimate the number of future arrivals because the time-varying

nature of the workload makes it impossible to assume ana priori distribution.

Since the actual values for the environment input cannot be measured until the next sampling

instant, the corresponding system state for timek + 1 can only be estimated as

x̂i(k + 1) = φ
(
xi(k), ui(k), λ̂i(k)

)
(2)

We developφ as a difference model for each virtual clusteri using the symbols in Fig. 4 in the

following equations.

q̂i(k) = max{qi(k) +
(
λi(k)− µi(k)

)
· Ts, 0} (3)

λ̂i(k) = λ̂K
i (k) +

q̂i(k)

Ts

(4)

µi(k) =

ni(k)∑
j=1

(
µij(k)

)
, µij(k) = p(fij(k)) (5)

r̂i(k) = g
(
µi(k), λ̂i(k)

)
(6)

1We use the subscripti to denote theith service class;i ∈ {1, 2} denotes the Gold and Silver services, respectively.
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Symbol Description
Observable variables

qi(k) Queue length of theith virtual cluster
λi(k) Arrival rate to theith virtual cluster
µi(k) Processing rate of theith virtual cluster
ri(k) Average response time of theith virtual cluster
Ts Controller sampling time

Control variables
ni(k) Size of theith virtual cluster
N(k) Number of operational host machines
fij(k) CPU share of thejth VM in the ith virtual cluster
γij(k) Fraction of theith workload to thejth VM

Fig. 4: Explanation of the symbols used in Equations (3)-(6).
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Fig. 5: The measured average response times for the Gold and Silver applications as a func-
tion of a VM’s CPU share. Each VM is allocated 1 GB of memory.

Equations (3)-(6) capture the system dynamics overTs, the controller sampling time. The esti-

mated queue lengtĥqi(k) ≥ 0 is obtained using the current queue length, the incoming workload

λi(k) dispatched to the cluster, and the processing rateµi(k). The estimated workload̂λi(k) to be

processed by a VM is now given by the Kalman estimateλ̂K
i (k) plus the estimated queue length

(converted to a rate value).

The processing rateµi(k) of the cluster in (5) is determined by the number of VMs and the

CPU share given to each VM. Each VM is given a share of the host machine’s CPU, memory, and

network I/O, and (5) uses the functionp(·) to map the CPU share of thejth VM in the cluster to

a corresponding processing rate. This function is obtained via simulation-based learning, specif-

ically by measuring the average response times achieved by a VM, when provided with different

CPU shares. The estimated response time,r̂i(k), output by the functiong(·) in (6), maps request

processing and arrival rates to an average response time as shown in Fig. 5.
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Host State Power (Watts) Power (Watts)
Dell 1950 Dell 2950

Standby 18 20
Shutdown 213 228

Boot 288 299
1 VM 226 299
2 VMs 237 250
3 VMs 246 260
4 VMs 255 269

Fig. 8: The host machines comprising the testbed.

queueing instability occurs. Therefore, we conclude that the VM for the Silver service achieves a

maximum processing rate of190 requests per second when provided a CPU share of 6 GHz. If the

CPU share is further constrained, say to 3 GHz, the VM’s maximum processing rate decreases and

the knee occurs much earlier, at about 90 requests per second.

The power consumption of the host machine is also profiled off-line by placing it in the different

operating states shown in Fig. 7(a). Using a clamp-style ammeter, we measured the current drawn

by the servers as we instantiated VMs, and loaded each one with an increasing workload intensity

before booting the next one. We then multiplied the measured current by the rated wall-supply

voltage to compute the power consumption in Watts.

We also computed the power consumed by our servers when booting up, powering down, and in

a standby state, during which only the network card is powered on; the power consumption during

these two states is included in Fig. 7(b). The Dell PowerEdge 1950 and 2950 servers consume

218 and 228 Watts, respectively, when booting up, and 213 and 228 Watts, respectively, when

powering down. The same machines consume 18 and 20 Watts in a standby state. To determine

the cost of operating the host machine during each controller sampling intervalTs, the server’s

power consumption is multiplied by a dollar cost per kilo-Watt hour overTs.

Inspecting the data in Fig. 7, we make the following observations regarding the power con-

sumption of the Dell servers.

• An idle machine consumes 70% or more of the power consumed by a machine running at

full CPU utilization. Therefore, to achieve maximum power savings on a lightly loaded

machine, it is best to redirect the incoming workload and power down the machine. Other

power-saving techniques, such as dynamic voltage scaling (DVS), that allow processors to

vary their supply voltages and operating frequencies from within a limited set of values [26],

have been shown to achieve only about a 10-20% reduction in energy consumption [17,18].

• The intensity of the workload directed at the VMs does not affect the power consumption and

CPU utilization of the host machine. The host machine draws the same amount of current

13

(b)

Fig. 6: (a) The power consumed by two models of Dell servers when loaded with VMs hosting
an application server; the line is fit from experimentally collected data. (b) The power model
used by the controller.

The functionp(·) in (5) is obtained by measuring the average response time achieved by a VM,

provided with different CPU shares, for2, 000 requests having roughly a 50/50 mix of browsing

and purchasing. Fig. 5 shows the average response times achieved by VMs processing Gold and

Silver requests2. The response time increases slowly up to a particular arrival rate, and then sud-

denly increases exponentially. The arrival rate at the “knee” of the graph then determines the VM’s

maximum processing rate, given that CPU share and memory. For example, Fig. 5(b) shows that a

6 GHz VM with 1 GB of memory can process approximately 190 Silver requests per second before

queueing instability occurs. Therefore, we conclude that the VM for the Silver service achieves a

maximum processing rate of190 requests per second when provided a CPU share of 6 GHz. If the

CPU share is further constrained, say to 3 GHz, the VM’s maximum processing rate decreases and

the knee occurs much earlier, at about 90 requests per second.

The power consumption of the host machine is also profiled off-line by placing it in the different

operating states shown in Fig. 6(a). Using a clamp-style ammeter, we measured the current drawn

by the servers as we instantiated VMs, and loaded each one with an increasing workload intensity

before booting the next one. We then multiplied the measured current by the rated wall-supply

voltage to compute the power consumption in Watts.

We also computed the power consumed by our servers when booting up, powering down, and in

a standby state, during which only the network card is powered on; the power consumption during

these two states is included in Fig. 6(b). The Dell PowerEdge 1950 and 2950 servers consume

218 and 228 Watts, respectively, when booting up, and 213 and 228 Watts, respectively, when

2Recall that VMs in the database tier are always provided with the maximum CPU share.
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powering down. The same machines consume 18 and 20 Watts in a standby state. To determine

the cost of operating the host machine during each controller sampling intervalTs, the server’s

power consumption is multiplied by a dollar cost per kilo-Watt hour overTs.

Inspecting the data in Fig. 6, we make the following observations regarding the power con-

sumption of the Dell servers.

• An idle machine consumes 70% or more of the power consumed by a machine running at

full CPU utilization. Therefore, to achieve maximum power savings on a lightly loaded

machine, it is best to redirect the incoming workload and power down the machine. Other

power-saving techniques, such as dynamic voltage scaling (DVS), that allow processors to

vary their supply voltages and operating frequencies from within a limited set of values [25],

have been shown to achieve only about a 10-20% reduction in energy consumption [16,17].

• The intensity of the workload directed at the VMs does not affect the power consumption and

CPU utilization of the host machine. The host machine draws the same amount of current

regardless of the arrival rate experienced by the VMs; only the number of VMs running on

the host machine affects its power consumption.

• The power consumed by a server is simply a function of the number of VMs instantiated on

it at any time instance. Fig. 6(b) shows the simplified power model used by the controller,

derived from Fig. 6, which shows power consumption as a function of the number of VMs

running on the Dell 1950 and 2950 servers.

The vectorui(k) to be decided by the controller at sampling timek for each virtual cluster

includesni(k) ∈ Z+, the number of VMs to provision,fij(k) ∈ {3, 4, 5, 6} GHz, the CPU share,

andγij(k) ∈ <, the workload fraction to give to thejth VM of the cluster, andN(k) ∈ Z+, the

number of active hosts.

4.2 The Profit Maximization Problem
If xi(k) denotes the operating state of theith cluster andui(k) =

(
N(k), ni(k), {fij(k)}, {γij(k)}

)
is the decision vector, the profit generated at timek is given by

R
(
x(k), u(k)

)
=( 2∑

i=1

Hi

(
ri(k)

))
−O

(
u(k)

)
− S(∆N(k), ∆n(k)) (7)

where the revenueHi(ri(k)) is obtained from the corresponding SLA functionHi that classifies

the average response time achieved per transaction into one of two categories, “satisfies SLA”
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or “violates SLA”, and maps it to a reward or refund, respectively. The power-consumption

cost incurred in operatingN(k) machines is given byO(k) =
∑N(k)

j=1

(
O

(
Nj(k)

))
that sums the

power-consumption costs incurred by the host machines in their current operational states,O(Nj)).

S(∆N(k), ∆n(k)) denotes the switching cost incurred by the system due to the provisioning deci-

sion. This cost accounts for transient power-consumption costs incurred when powering up/down

VMs and their hosts, estimated via the power model shown in Fig. 6, as well as for the opportunity

cost that accumulates during the time a server is being turned on but is unavailable to perform any

useful service.

Due to the energy and opportunity costs incurred when switching hosts and VMs on/off, exces-

sive switching caused by workload variability may actually reduce profits. Therefore, we convert

the profit generation function in (7) to a risk-aware utility function that quantifies a controller’s

preference between different provisioning decisions. Using such utility functions to aid decision

making under uncertainty has been well studied in the context of investment and portfolio man-

agement [26].

We augment the estimated environment inputλ̂(k) with an uncertainty band̂λ(k) ± ε(k),

in which ε(k) denotes the past observed error between the actual and forecasted arrival rates,

averaged over a window. For each control input, the next state equation in (2) must now consider

three possible arrival-rate estimates,λ̂(k) − ε(k), λ̂(k), and,λ̂(k) + ε(k) to form a set of possible

future statesX(k) that the system may enter. GivenX(k), we obtain the corresponding set of

profits generated by these states asR
(
X(k), u(k)

)
and define the quadratic utility function

U
(
R(·)

)
= A · ū

(
R(·)

)
− β ·

(
ν
(
R(·)

)
+ ū

(
R(·)

)2)
(8)

whereū
(
R(·)

)
is the algebraic mean of the estimated profits,ū

(
R(·)

)
is the corresponding vari-

ance,A > 2 ·
∣∣ū(

R(·)
)∣∣ andβ ∈ < is arisk preferencefactor that can be tuned by the data center

operator to achieve the desired controller behavior, from being risk averse (β > 0), to risk neutral

(β = 0), to risk seeking (β < 0). Given a choice between two operating states with equal mean

profits but with different variances, a risk-averse controller will choose to transition to the state

having the smaller variance. The magnitude ofβ indicates the degree of risk preference.

Given the utility function in (8), we formulate the resource provisioning problem as one of
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utility maximization.

Compute: max
u

k+h∑
l=k+1

U
(
R(X(l), u(l)), u(l)

)
(9)

Subject to: N(l) ≤ 5, ni(l) ≥ Kmin , i = 1, 2

ni(l)∑
j=1

γij(l) = 1, i = 1, 2 and

2∑
i=1

ni(l)∑
j=1

eijz(l) · fij(l) ≤ F z
max, z = 1...5

whereh denotes the prediction-horizon length. As an operating constraint,N(l) ≤ 5 ensures

that the number of operating servers never exceed the total number of servers in the testbed, and

ni(l) ≥ Kmin forces the controller to conservatively operate at leastKmin VMs at all times in the

cluster to accommodate a sudden spike in request arrivals. In our experiments,Kmin is set to 1.

We also introduce a decision variableeijz(l) ∈ {0, 1} to indicate whether thejth VM of the ith

application is allocated to hostz ∈ [1, 5], and the final constraint ensures that the cumulative CPU

share given to the VMs does not exceedF z
max, the maximum capacity available on hostz.

5 Controller Design
The optimization problem in (9) will show an exponential increase in worst-case complexity with

an increasing number of control options and longer prediction horizons—the so-called “curse of

dimensionality”. To tackle this problem, we decompose (9) into smaller sub-problems that can be

solved using a distributed control hierarchy. We have developed a two-level control hierarchy, and

individual controllers within the hierarchy have the following responsibilities:

• The L0 Control Layer.At the lowest level, an L0 controller for each service class decides

the CPU sharefij(·) to assign to VMs in the cluster. The small set of discretized choices

for possible CPU shares and the small number of components under its control allows each

L0 controller to have low execution-time overhead, and therefore, operate frequently, on the

order of seconds with a lookahead horizon ofh = 1.

• The L1 Control Layer:An L1 controller with a global view of the system decides{ni(·)}, the

size of the virtual cluster for theith application, andN(·), the number of hosts over which

to collocate the virtual machines. The L1 controller also determinesγij(·), the workload-

distribution factor for each new configuration. The control cost at this level includes the

time needed to switch hosts/VMs on or off, and the transient power consumption costs. The
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lookahead horizon for the L1 controller is determined by the maximum time needed to bring

a machine online—two control steps to turn on a host, and one control step to turn on a

virtual machine. So the lookahead horizonh is greater than two control steps.

We further reduce the computational overhead of the L1 controller using local-search tech-

niques. For example, to decideni(k), the L1 controller searches a bounded neighborhood around

an initial “seed” valuẽni(k). To obtain this value, the L1 controller divides the estimated arrival

rate by the processing rate achieved by a virtual machine when given the maximum CPU share on

a host, thereby providing a lower bound on the number of VMs needed to process the incoming

workload. The controller then evaluates possible values between[ñi(k), ñi(k) + b], whereb is a

user-specified value, for the best decision.

Finally, controllers at different levels in the hierarchy can operate at different time scales. Since

the L1 controller has larger execution-time overhead, it operates on a longer time scale with sam-

pling times on the order of few minutes. The L0 controllers operate on smaller time scales, on the

order of seconds, while reacting quickly to short-term fluctuations in the environment inputs.

6 Experimental Results
Fig. 7 shows the system and controller parameters used in our experiments. The prediction hori-

zons are set to the minimum lengths possible at each level of the control hierarchy. The sampling

period for the L0 controller is set to 30 seconds, while the L1 controller sampling period of 2.5

minutes is determined by the maximum time needed to boot a VM as well as the execution-time

overhead of the controller itself, which is about 10 seconds. The L1 controller must look ahead at

least three time steps to account for the total time to boot a host machine and VM, while the L0

controller can suffice with one step.

The Kalman filter used to estimate the number of request arrivals is first trained using a small

portion of the workload (the first 40 time steps) and then used to forecast the remainder of the

load during controller execution, as shown in Fig. 8. Once properly trained, the filter provides

effective estimates—the absolute error between the predicted and actual values is about 5% for the

workloads used in the paper.

Fig. 10 summarizes the performance of a non-risk aware controller with a 3-step lookahead

horizon, in terms of energy savings over an uncontrolled system where all available host machines

remain powered on, and the number of SLA violations as a percent of the total workload, over a

24-hour period for five different workloads3. The energy costs for the controlled and uncontrolled

system are estimated at each sampling instance using the model shown in Fig. 6, converting units

3All workloads have similar characteristics to that shown in Fig. 2(b), generated by superimposing two 24-hour
traces of the WC’98 workload to serve as the Gold and Silver workloads.
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Parameter Value
Cost per KWatt hour $ 0.3

Time delay to power on a VM 1 min. 45 sec
Time delay to power on a host 2 min. 55 sec

Prediction horizon L1: 3 step, L0: 1 step
Control sampling period, non-risk awareL1: 150 sec., L0: 30 sec.

Control sampling period, risk-aware L1: 180 sec., L0: 30 sec.
Initial configuration for Gold service 3 VMs
Initial configuration for Silver service 3 VMs

Fig. 7: The simulation parameters.
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Fig. 9: The measured average response times for the Gold and Silver applications for Work-
load 1.

of power to units of energy over each sampling period. An uncontrolled system incurs some

SLA violations due to normal variability in application performance–about 1% to 5% of the total

requests made to the system.

The uncontrolled system allocates a fixed number of VMs as noted in Fig. 7 to each application
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Workload Total % SLA % SLA
Energy Violations Violations
Savings (Gold) (Silver)

Workload 1 19% 3.1% 2.5%
Workload 2 19% 1.3% 1.2%
Workload 3 14% 1.9% 0.5%
Workload 4 26% 1.2% 0.3%
Workload 5 30% 1.4% 0.6%

Fig. 10: Control performance of a non-risk aware controller, in terms of the average energy
savings and SLA violations, for five different workloads.

Workload #VMs #VMs Total CPU Total CPU
(Gold) (Silver) (Gold) (Silver)

Workload 1 1.9 2.0 8.1 GHz 8.2 GHz
Workload 2 2.0 2.0 8.4 GHz 8.6 GHz
Workload 3 1.5 2.3 5.7 GHz 9.7 GHz
Workload 4 1.8 1.3 6.0 GHz 6.3 GHz
Workload 5 1.5 1.8 5.6 GHz 6.7 GHz

Fig. 11: Average resource allocations (number of virtual machines and total CPU cycles per
second) per time instance for five different workloads.

such that SLA goals can be met under the worst-case workload arrival rate. Fig. 9 shows the

average measured response times for the Gold and Silver applications under a sample workload.

Figs. 13 and 12 show the average CPU share and number of VMs, respectively, allocated by the

controller at each time instance for the same workload. Average resource allocations for five

workloads are summarized in Fig. 11.

6.1 Effects of Risk-aware Parameter Tuning
The execution-time overhead of a risk-aware controller is slightly higher than the non-risk aware

controller due to the increased complexity of the control problem. Therefore, the sampling period

of the L1 controller increases to 180 seconds while that of the L0 controller stays at 30 seconds.

Note that only the L1 controller is risk aware in our design due to the switching costs incurred at

that level.
Fig. 14 summarizes the performance of risk-averse (β = 2) and risk-neutral (β = 0) con-

trollers, in terms of the energy savings achieved over an uncontrolled system, over a 24-hour pe-

riod4. Fig. 15 summarizes the SLA violations, both the total number and as a percentage of the

Gold and Silver requests. Although the energy savings decrease slightly from the risk-neutral to the

risk-averse controller, averaging 30% and 27%, respectively, the number of SLA violations drops

4Risk-averse values ofβ = 1 to β = 5 were tested during experimentation; a value ofβ = 2 produced the best
results under all workloads in terms of energy savings and SLA violations.
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Fig. 12: The number of virtual machines assigned to the Gold and Silver applications process-
ing Workload 1.
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Fig. 13: CPU cycles assigned to the Gold and Silver applications under Workload 1.

significantly in the case of the risk-averse controller, reducing violations by an average of 52%

when compared to the risk-neutral case. This is due to the conservative manner in which the risk-

averse controller switches machines. Fig. 16 shows that the risk-averse L1 controller reduces the

switching of hosts by an average of 65% over its risk-neutral counterpart. This reduced switching

activity has the following benefits to system performance. First, conservative switching will typi-

cally result in extra capacity, should the actual number of request arrivals exceed the Kalman filter

estimates. This effect is evident from the reduced number of SLA violations incurred by the risk-

averse controller. Second, reduced switching activity mitigates the detrimental effects of repeated

power cycling that reduce the reliability of the host machine in the form of disk failures [27,28].

After testing risk-averse controllers havingβ values of integers between 1 and 5, we conclude

that a value ofβ = 2 results in the best control performance in terms of energy savings and SLA

violations. Energy savings and SLA violations improve fromβ = 1 to β = 2. Increasingβ above
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Total Total
Workload Energy Savings Energy Savings

(Risk Neutral) (Risk Averse)
Workload 6 41% 38%
Workload 7 19% 16%

Fig. 14: Energy savings achieved by risk-neutral and risk-averse controllers for two different
workloads

Total SLA Total SLA % Reduction
Workload Violations Violations in Violations

(Risk Neutral) (Risk Averse)
Workload 6 17,753 (1.4%) 8,879 (0.7%) 50%
Workload 7 36,906 (2.8%) 17,135 (1.3%) 54%

Fig. 15: SLA violations incurred by risk-neutral and risk-averse controllers for two different
workloads

Num. Times Num. Times % Reduction
Workload Hosts Switched Hosts Switched in Switching

(Risk Neutral) (Risk Averse) Activity
Workload 6 40 16 60%
Workload 7 39 12 69%

Fig. 16: Host machine switching activity induced by risk-neutral and risk-averse controllers
for two different workloads

2 simply maintains or even slightly reduces the energy savings while resulting in a greater number

of SLA violations.

6.2 Optimality Considerations
In an uncertain operating environment, control decisions cannot be shown to be optimal since

the controller does not have perfect knowledge of future environment inputs. Furthermore, control

decisions are made from a discrete set of inputs chosen from a localized search area explored within

a limited prediction horizon. The final series of tests compare our sub-optimal controller against

an “oracle” controller with perfect knowledge of future environment disturbances, representing the

most feasible approximation of an optimal controller.

Fig. 17 compares the performance of an oracle controller against a risk-neutral controller (β =

0) and our best-performing risk-averse controller withβ = 2. The oracle consumes about 3% more

power than a risk-neutral controller, but incurs 64% fewer SLA violations. It equals the power

consumption of the risk-neutral controller, but incurs 23% fewer SLA violations. The oracle also

reduces the switching of hosts by an average of 19% from the risk-averse controller. The results

indicate that the performance of the lookahead controller depends on the accuracy of the workload

predictions, but a properly tuned risk-aware controller can reduce the number of SLA violations
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Total Energy Total SLA Num. Times
Controller Savings Violations Hosts Switched

Risk-neutral 19% 36,906 (2.8%) 40
Risk-averse 16% 17,135 (1.3%) 16

Oracle 16% 13,181(1.0%) 13

Fig. 17: Energy savings and SLA violations of the oracle, risk-neutral, and risk-averse con-
trollers

and excessive power cycling within the virtualized system.

7 Controller Scalability
When control inputs must be chosen from discrete values, the LLC problem in (9) will show an

exponential increase in worst-case complexity with increasing system size, in terms of hosts and

VMs, and longer prediction horizons. Our current testbed with 1,024 possible control options for

VM assignments to servers requires about 10 seconds of controller execution time. The number

of options increases exponentially with each server added to the system5. Fig. 18 summarizes the

number of control options as the system grows from 5 to 15 servers, and the execution time of a

risk-aware controller managing the system.

For larger clusters, we use a neural network (NN) to learn the tendencies of the controller,

in terms of its decision making, via offline simulations. At run time, given the current state and

environment inputs, the NN provides an approximate solution, which is used as a starting point

around which to perform a local search of± 1 VM per host to obtain the final control decision.

Such a method of improving performance obtained from a neural network can be found in previ-

ous work [29]. Initial results using a back-propagation, feed-forward NN, implemented using the

Matlab Neural Net Toolbox, reduce the execution time of a 4-step lookahead controller for 10 host

machines to about 30 seconds, as shown in Fig. 186. The network is trained using a set of 1,000

training points collected over two workloads similar to that shown in Fig. 2(b). While the energy

savings of the neural network controller decrease slightly, from 29% to 27%, as compared to the

5The size of the search space can be estimated viavN , wherev = 4 is the maximum number of VMs per host, and
N = 5 is the number of controllable host machines.

6Neural net results are pending for a system size of 15 hosts.

Controllable Control Avg. LLC Avg. NN
System Size Options Exe. Time Exe. Time

5 Hosts 1x103 < 10 sec. –
10 Hosts 1x106 2 min. 30 sec. 30 sec.
15 Hosts 1x109 30 min. –

Fig. 18: Execution times incurred by the controller for larger clusters.
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exploratory LLC controller, the number of SLA violations improves, from 5,116 to 4,502.

8 Conclusion
We have implemented and validated a LLC framework for dynamic resource provisioning in a vir-

tualized computing environment. The problem formulation includes switching costs and explicitly

encodes the notion of risk in the optimization problem. Experiments using time-varying work-

load traces and the Trade6 enterprise application show that a system managed using LLC saves,

on average, 22% in power consumption costs over a 24-hour period, when compared to a system

without dynamic control while still maintaining QoS goals. When the incoming workload is noisy,

we conclude that a risk-aware controller withβ = 2 provides superior performance compared to

a risk-neutral controller by reducing both SLA violations and host switching activity. Finally, we

use concepts from approximation theory to further reduce the computational burden of control-

ling large systems, and show that a NN-based scheme achieves energy savings comparable to the

baseline controller while incurring significantly less computational overhead.
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