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Flash memory is a type of electrically-erasable programmable read-only memory
(EEPROM). Because flash memories are nonvolatile and relatively dense, they are now
used to store files and other persistent objects in handheld computers, mobile phones,
digital cameras, portable music players, and many other computer systems in which
magnetic disks are inappropriate. Flash, like earlier EEPROM devices, suffers from two
limitations. First, bits can only be cleared by erasing a large block of memory. Second,
each block can only sustain a limited number of erasures, after which it can no longer
reliably store data. Due to these limitations, sophisticated data structures and
algorithms are required to effectively use flash memories. These algorithms and data
structures support efficient not-in-place updates of data, reduce the number of erasures,
and level the wear of the blocks in the device. This survey presents these algorithms
and data structures, many of which have only been described in patents until now.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage
Management—Allocation/deallocation strategies; garbage collection; secondary storage;
D.4.3 [Operating Systems]: File Systems Management—Acess methods; file
organization; E.1 [Data Structures]—Arrays; lists, stacks, and queues; trees; E.2 [Data
Storage Representations]—Linked representations; E.5 [Files]—Organizagtion/
structure

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: Flash memory, EEPROM memory, wear leveling

1. INTRODUCTION

Flash memory is a type of electrically-
erasable programmable read-only mem-
ory (EEPROM). Flash memory is nonvolatile
(retains its content without power) so it
is used to store files and other persistent
objects in workstations and servers (for
the BIOS), handheld computers and mobile
phones, digital cameras, and portable mu-
sic players.

The read/write/erase behaviors of flash
memory is radically different than that

Authors’ address: School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel; email:
stoledo@tau.ac.il.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or
permissions@acm.org.
c©2005 ACM 0360-0300/05/0600-0138 $5.00

of other programmable memories such as
volatile RAM and magnetic disks. Perhaps
more importantly, memory cells in a flash
device (as well as in other types of EEP-
ROM memory) can be written to only a lim-
ited number of times, between 10,000 and
1,000,000, after which they wear out and
become unreliable.

In fact, flash memories come in two fla-
vors, NOR and NAND, that are also quite dif-
ferent from each other. In both types, write
operations can only clear bits (change
their value from 1 to 0). The only way to
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set bits (change their value from 0 to 1) is
to erase an entire region memory. These
regions have fixed size in a given device,
typically ranging from several kilobytes
to hundreds of kilobytes and are called
erase units. NOR flash, the older type, is a
random-access device that is directly ad-
dressable by the processor. Each bit in a
NOR flash can be individually cleared once
per-erase-cycle of the erase unit contain-
ing it. NOR devices suffers from high erase
times. NAND flash, the newer type, enjoys
much faster erase times, but it is not di-
rectly addressable (it is accessed by issu-
ing commands to a controller), access is
by page (a fraction of an erase unit, typi-
cally 512 bytes) not by bit or byte, and each
page can be modified only a small num-
ber of times in each erase cycle. That is,
after a few writes to a page, subsequent
writes cannot reliably clear additional bits
in the page; the entire erase unit must be
erased before further modifications of the
page are possible [Woodhouse 2001].

Because of these peculiarities, storage-
management techniques that were de-
signed for other types of memory devices,
such as magnetic disks, are not always
appropriate for flash. To address these
issues, flash-specific storage techniques
have been developed with the widespread
introduction of flash memories in the early
1990s. Some of these techniques were in-
vented specifically for flash memories, but
many have been adapted from techniques
that were originally invented for other
storage devices. This article surveys the
data structures and algorithms that have
been developed for management of flash
storage.

The article covers techniques that have
been described in the open literature,
including patents. We only cover US
patents mostly because we assume that
US patents are a superset of those of other
countries. To cope with the large number
of flash-related patents, we used the fol-
lowing strategy to find relevant patents.
We examined all the patents whose ti-
tles contain the words flash, file (or fil-
ing), and system, as well as all the patents
whose titles contain the words wear and
leveling. In addition, we also examined

other patents assigned to two compa-
nies that specialize in flash-management
products, M-Systems and SanDisk (for-
merly SunDisk). Finally, we also examined
patents that were cited or mentioned in
other relevant materials both patents and
Web sites.

We believe that this methodology led us
to most of the relevant materials. But this
does not imply, of course, that the article
covers all the techniques that have been
invented. The techniques that are used in
some flash-management products have re-
mained trade secrets; some are alluded to
in corporate literature but are not fully
described. Obviously, this article does not
cover such techniques.

The rest of this survey consists of three
sections, each of which describes the map-
ping of one category of abstract data struc-
tures onto flash memories. The next sec-
tion discusses flash data structures that
store an array of fixed- or variable-length
blocks. Such data structures typically em-
ulate magnetic disks where each block
in the array represents one disk sec-
tor. Even these simple data structures
pose many flash-specific challenges such
as wear leveling and efficient reclama-
tion. These challenges and techniques to
address them are discussed in detail in
Section 2, and in less detail in later sec-
tions. The section that follows, Section 3,
describes flash-specific file systems. A file
system is a data structure that represents
a collection of mutable random-access files
in a hierarchical name space. Section 4
describes three additional classes of flash
data structures: application-specific data
structures (mainly search trees), data
structures for storing machine code, and a
mechanism to use flash as a main memory
replacement. Section 5 summarizes the
survey.

2. BLOCK-MAPPING TECHNIQUES

One approach to using flash memory is to
treat it as a block device that allows fixed-
size data blocks to be read and written
much like disk sectors. This allows stan-
dard file systems designed for magnetic
disks, such as FAT, to utilize flash devices.
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In this setup, the file system code calls
a device driver, requesting block read or
write operations. The device driver stores
and retrieves blocks from the flash device.
(Some removable flash devices, like Com-
pactFlash, even incorporate a complete
ATA disk interface so they can actually be
used through the standard disk driver.)

However, mapping the blocks onto flash
addresses in a simple linear fashion
presents two problems. First, some data
blocks may be written to much more
than others. This presents no problem for
magnetic disks so conventional file sys-
tems do not attempt to avoid such situa-
tions. But when the file system in mapped
onto a flash device, frequently used erase
units wear out quickly, slowing down ac-
cess times and eventually burning out.
This problem can be addressed by using
a more sophisticated block-to-flash map-
ping scheme and by moving blocks around.
Techniques that implement such strate-
gies are called wear-leveling techniques.

The second problem that the identity
mapping poses is the inability to write
data blocks smaller than a flash erase
unit. Suppose that the data blocks that
the file system uses are 4KB each and that
flash erase units are 128KB each. If 4KB
blocks are mapped to flash addresses us-
ing the identity mapping, writing a 4KB
block requires copying a 128KB flash erase
unit to RAM, overwriting the appropriate
4KB region, erasing the flash erase unit,
and rewriting it from RAM. Furthermore, if
power is lost before the entire flash erase
unit is rewritten to the device, 128KB of
data are lost; in a magnetic disk, only the
4KB data block would be lost. It turns out
that the wear-leveling technique automat-
ically address this issue as well.

2.1. The Block-Mapping Idea

The basic idea behind all the wear-leveling
techniques is to map the block number
presented by the host, called a virtual
block number, to a physical flash address,
called a sector. (Some authors and ven-
dors use a slightly different terminology.)
When a virtual block needs to be rewrit-

ten, the new data does not overwrite the
sector where the block is currently stored.
Instead, the new data is written to another
sector and the virtual-block-to-sector map
is updated.

Typically, sectors have a fixed size and
occupy a fraction of an erase unit. In NAND

devices, sectors usually occupy one flash
page. But in NOR devices, it is also possible
to use variable-length sectors.

This mapping serves several purposes:

—First, writing frequently modified blocks
to a different sector in every modifica-
tion evens out the wear of different erase
units.

—Second, the mapping allows writing a
single block to flash without erasing and
rewriting an entire erase unit [Assar
et al. 1995a, 1995b, 1996].

—Third, the mapping allows block writes
to be implemented atomically so that, if
power is lost during a write operation,
the block reverts to its prewrite state
when flash is used again.

Atomicity is achieved using the following
technique. Each sector is associated with
a small header which may be adjacent
to the sector or elsewhere in the erase
unit. When a block is to be written, the
software searches for a free and erased
sector. In this state, all the bits in both
the sector and its header are 1. Then a
free/used bit in the header of the sector
is cleared, to mark that the sector is no
longer free. Then the virtual block number
is written to its header, and the new data
is written to the chosen sector. Next, the
prevalid/valid bit in the header is cleared
to mark the sector is ready for reading. Fi-
nally, the valid/obsolete bit in the header
of the old sector is cleared to mark that it
is no longer contains the most recent copy
of the virtual block.

In some cases, it is possible to optimize
this procedure, for example, by combin-
ing the free/used bit with the virtual block
number: if the virtual block number is all
1s, then the sector is still free, otherwise
it is in use.

If power is lost during a write operation,
the flash may be in two possible states

ACM Computing Surveys, Vol. 37, No. 2, June 2005.



Algorithms and Data Structures for Flash Memories 141

with respect to the modified block. If power
was lost before the new sector was marked
valid, its contents are ignored when the
flash is next used, and its valid/obsolete
bit can be set to mark it ready for era-
sure. If power was lost after the new sec-
tor was marked valid but before the old
one was marked obsolete, both copies are
legitimate (indicating two possible serial-
izations of the failure and write events),
and the system can choose either one and
mark the other obsolete. If choosing the
most recent version is important, a two-
bit version number can indicate which one
is more recent. Since there can be at most
two valid versions with consecutive ver-
sion numbers modulo 4, 1 is newer than
0, 2 than 1, 3 than 2, and 0 is newer than
3 [Aleph One 2002].

2.2. Data Structures for Mapping

How does the system find the sector that
contains a given block? Fundamentally,
there are two kinds of data structures that
represent such mappings. Direct maps are
essentially arrays that store in the ith lo-
cation the index of the sector that cur-
rently contains block i. Inverse maps store
in the ith location the identity of the block
stored in the ith sector. In other words,
direct maps allow efficient mapping of
blocks to sectors, and inverse maps allow
efficient mapping of sectors to blocks. In
some cases, direct maps are not simple
arrays but more complex data structure.
But a direct map, whether implemented
as an array or not, always allows effi-
cient mapping of blocks to sectors. Inverse
maps are almost always arrays, although
they may not be contiguous in physical
memory.

Inverse maps are stored on the flash de-
vice itself. When a block is written to a
sector, the identity of the block is also writ-
ten. The block’s identity is always written
in the same erase unit as the block itself so
that they are erased together. The block’s
identity may be stored in a header imme-
diately preceding the data, or it may be
written to some other area in the unit, of-
ten a sector of block numbers. The main
use of the inverse map is to reconstruct

a direct map during device initialization
(when the flash device is inserted into a
system or when the system boots).

Direct maps are stored at least partially
in RAM which is volatile. The reason that
direct maps are stored in RAM is that, by
definition, they support fast lookups. This
implies that when a block is rewritten and
moved from one sector to another, a fixed
lookup location must be updated. Flash
does not support this kind of in-place
modification.

To summarize, the indirect map on the
flash device itself ensures that sectors can
always be associated with the blocks that
they contain. The direct map, which is
stored in RAM, allows the system to quickly
find the sector that contains a given block.
These block-mapping data structures are
illustrated in Figure 1.

A direct map is not absolutely neces-
sary. The system can search sequentially
through the indirect map to find a valid
sector containing a requested block. This
is slow but efficient in terms of RAM usage.
By only allowing each block to be stored
on a small number of sectors, searching
can be performed much faster (perhaps
through the use of hardware comparators
as patented in Assar et al. [1995a, 1995b]).
This technique, which is similar to set-
associative caches, reduces the amount of
RAM or hardware comparators required for
the searches but reduces the flexibility of
the mapping. The reduced flexibility can
lead to more frequent erases and to accel-
erated wear.

The Flash Translation Layer (FTL) is a
technique to store some of the direct map
within the flash device itself while trying
to reduce the cost of updating the map on
the flash device. This technique was origi-
nally patented by Ban [1995] and was later
adopted as a PCMCIA standard [Intel
Corporation 1998b].1

1Intel writes that “M-Systems does grant a royalty-
free, non-exclusive license for the design and devel-
opment of FTL-compatible drivers, file systems, and
utilities using the data formats with PCMCIA PC
Cards as described in the FTL Specifications” [Intel
Corporation 1998b].
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Fig. 1. Block mapping in a flash device. The gray array on the left is the virtual block to the
physical sector direct map, residing in RAM. Each physical sector contains a header and data.
The header contains the index of the virtual block stored in the sector, an erase counter, valid
and obsolete bits, and perhaps an error-correction code and a version number. The virtual block
numbers in the headers of populated sectors constitute the inverse map from which a direct map
can be constructed. A version number allows the system to determine which of two valid sectors
containing the same virtual block is more recent.

The FTL uses a combination of mecha-
nisms, illustrated in Figure 2, to perform
the block-to-sector mapping.

(1) Block numbers are first mapped to log-
ical block numbers which consist of a
logical erase unit number (specified by
the most significant bits of the logi-
cal block number) and a sector index
within the erase unit. This mechanism
allows the valid sectors of an erase
unit to be copied to a newly-erased
erase unit without changing the block-
to-logical-block map since each sector
is copied to the same location in the
new erase unit.

(2) This block-to-logical-block map can be
stored partially in RAM and partially
within the flash itself. The mapping of
the first blocks, which in FAT-formatted
devices change frequently, can be
stored in RAM, while the rest is stored
in the flash device. The transition point
can be configured when the flash is for-
matted and is stored in a header in the
beginning of the flash device.

(3) The flash portion of the block-to-
logical-block map is not stored
contiguously in the flash but is scat-
tered throughout the device along
with an inverse map. A direct map
in RAM, which is reconstructed during
initialization, points to the sectors of

the map. To look up the logical number
of a block, the system first finds the
sector containing the mapping in the
top-level RAM map, and then retrieves
the mapping itself. In short, the map
is stored in a two-level hierarchical
structure.

(4) When a block is rewritten and moved
to a new sector, its mapping must
be changed. To allow this to happen
at least some of the time without
rewriting the relevant mapping block,
a backup map is used. If the relevant
entry in the backup map which is also
stored on flash is available (all 1s),
the original entry in the main map
is cleared, and the new location is
written to the backup map. Otherwise,
the mapping sector must be rewritten.
During lookup, if the mapping entry is
all 0s, the system looks up the mapping
in the backup map. This mechanism fa-
vors sequential modification of blocks
since, in such cases, multiple map-
pings are moved from the main map to
the backup map before a new mapping
sector must be written. The backup
map can be sparse; not every mapping
sector must have a backup sector.

(5) Finally, logical erase units are mapped
to physical erase units using a small
direct map in RAM. Because it is small
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Fig. 2. An example of the FTL mapping structures. The system in the figure maps two logical erase
units onto three physical units. Each erase unit contains four sectors. Sectors that contain page
maps contain four mappings each. Pointers represented as gray rectangles are stored in RAM. The
virtual-to-logical page maps, shown on the top right, are not contiguous so a map in RAM maps their
sectors. Normally, the first sectors in the primary map reside in RAM as well. The replacement map
contains only one sector; not every primary map sector must have a replacement. The illustration
of the entire device on the bottom also shows the page-map sectors. In the mapping of virtual block
5, the replacement map entry is used, because it is not free (all 1’s).

(one entry per erase unit, not per
sector), the RAM overhead is small. It is
constructed during initialization from
an inverse map; each physical erase
unit stores its logical number. This
direct map is updated whenever an
erase unit is reclaimed.

Ban later patented a translation layer
for NAND devices, called NFTL [Ban 1999]. It
is simpler than the FTL and comes in two
types: one for devices with spare storage
for each sector (sometimes called out-of-
band data), and one for devices without
such storage. The type of devices without
spare data is less efficient but simpler, so
we’ll start with it. The virtual block num-
ber is broken up into a logical erase-unit
number and a sector number within the
erase unit. A data structure in RAM maps
each logical erase unit to a chain of phys-
ical units. To locate a block, say block 5
in logical unit 7, the system searches the
appropriate chain. The units in the chain
are examined sequentially. As soon as one
of them contains a valid sector in position
5, it is returned. The 5th sectors in ear-
lier units in the chain are obsolete, and

the 5th sectors in later units are still free.
To update block 5, the new data is written
to sector 5 in the first unit in the chain
where it is still free. If sector 5 is used
in all the units in the chain, the system
adds another unit to the chain. To reclaim
space, the system folds all the valid sectors
in the chain to the last unit in the chain.
That unit becomes the first unit in the new
chain, and all the other units in the old
chain are erased. The length of chains is
one or longer.

If spare data is available in every sec-
tor, the chains are always of length one or
two. The first unit in the chain is the pri-
mary unit, and blocks are stored in it in
their nominal sectors (sector 5 in our ex-
ample). When a valid sector in the primary
unit is updated, the new data are writ-
ten to an arbitrary sector in the second
unit in the chain, the replacement unit.
The replacement unit can contain many
copies of the same virtual block, but only
one of them is valid. To reclaim space, or
when the replacement unit becomes full,
the valid sectors in the chain are copied
to a new unit and the two units in the old
chain are erased.
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Fig. 3. Block mapping with variable-length sectors. Fixed sized headers are added to one end of
the erase unit, and variable-length sectors are added to the other size. The figure shows a unit
with four valid sectors, two obsolete ones, and some free space (including a free header, the third
one).

It is also possible to map variable-length
logical blocks onto flash memory, as shown
in Figure 3. Wells et al. [1998] patented
such a technique, and a similar technique
was used by the Microsoft Flash File Sys-
tem [Torelli 1995]. The motivation for the
Wells et al. [1998] patent was compressed
storage of standard disk sectors. For ex-
ample, if the last 200 bytes of a 512-byte
sector are all zeros, the zeros can be rep-
resented implicitly rather than explicitly,
thereby saving storage. The main idea in
such techniques is to fill an erase unit
with variable-length data blocks from one
end of the unit, say the low end, while
filling fixed-size headers from the other
end. Each header contains a pointer to the
variable-length data block that it repre-
sents. The fixed-size headers allow con-
stant time access to data (i.e, to the first
word of the data). The fixed-size headers
offer another potential advantage to sys-
tems that reference data blocks by logi-
cal erase-unit number and a block index
within the unit. The Microsoft Flash File
System [Torelli 1995] is one such system.
In this system, a unit can be reclaimed
and defragmented without any need to up-
date references to the blocks that were re-
located. We describe this mechanism in
more detail in the following.

Smith and Garvin [1999] patented a
similar system but at a coarser granular-
ity. Their system divides each erase unit
into a header, an allocation map, and sev-
eral fixed-size sectors. The system allo-
cates storage in blocks comprised of one
or more contiguous sectors. Such blocks

are usually called extents. Each allocated
extent is described by an entry in the al-
location map. The entry specifies the lo-
cation and length of the extent and the
virtual block number of the first sector in
the extent (the other sectors in the extent
store consecutive virtual blocks). When a
virtual block within an extent is updated,
the extent is broken into two or three new
extents, one of which contain the now obso-
lete block. The original entry for the extent
in the allocation map is marked as invalid,
and one or two new entries are added at
the end of the map.

2.3. Erase-Unit Reclamation

Over time, the flash device accumulates
obsolete sectors and the number of free
sectors decrease. To make space for new
blocks and for updated blocks, obsolete
sectors must be reclaimed. Since the
only way to reclaim a sector is to erase
an entire unit, reclamation (sometimes
called garbage collection) operates on en-
tire erase units.

Reclamation can take place either in the
background (when the CPU is idle) or on-
demand when the amount of free space
drops below a predetermined threshold.
The system reclaims space in several
stages.

—One or more erase units are selected for
reclamation.

—The valid sectors of these units are
copied to newly allocated free space else-
where in the device. Copying the valid
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data prior to erasing the reclaimed units
ensures persistence even if a fault occurs
during reclamation.

—The data structures that map logical
blocks to sectors are updated, if neces-
sary, to reflect the relocation.

—Finally, the reclaimed erase units are
erased and their sectors are added
to the free-sector reserve. This stage
might also include writing an erase-unit
header on each newly-erased unit.

Immediately following the reclamation of
a unit, the number of free sectors in the
device is at least one unit’s worth. There-
fore, the maximum amount of useful data
that a device can contain is smaller by one
erase unit than its physical size. In many
cases, the system keeps at least one or
two free and erased units at all times to
allow all the valid data in a unit that is
being reclaimed to be relocated to a sin-
gle erase unit. This scheme is absolutely
necessary when data is stored on the unit
in variable-size blocks since, in this case,
fragmentation may prevent reclamation
altogether.

The reclamation mechanism is gov-
erned by two policies: which units to
reclaim, and where to relocate valid sec-
tors to. These policies are related to
another policy which governs sector allo-
cation during block updates. These three
interrelated policies affect the system in
three ways. They affect the effectiveness
of the reclamation process which is mea-
sured by the number of obsolete sectors
in reclaimed units; they affect wear lev-
eling; and they affect the mapping data
structures (some relocations require sim-
ple map updates and some require com-
plex updates).

The goals of wear leveling and efficient
reclamation are often contradictory. Sup-
pose that an erase unit contains only so-
called static data, data that is never or
rarely updated. Efficiency considerations
suggest that this unit should not be re-
claimed since reclaiming it would not free
up any storage—its data will simply be
copied to another erase unit which will
immediately become full. But although re-
claiming the unit is inefficient, this recla-

mation can reduce the wear on other units
and thereby level the wear. Our supposi-
tion that the data is static implies that it
will not change soon (or ever). Therefore,
by copying the contents of the unit to an-
other unit which has undergone many era-
sures, we can reduce future wear on the
other unit.

Erase-unit reclamation involves a
fourth policy, but it is irrelevant to our
discussion. The fourth policy triggers
reclamation events. Clearly, reclamation
must take place when the system needs
to update a block but no free sector
is available. This is called on-demand
reclamation. But some systems can also
reclaim erase units in the background
when the flash device, or the system as
a whole, are idle. The ability to reclaim
in the background is largely determined
by the overall structure of the system.
Some systems can identify and utilize
idle periods, while others cannot. The
characteristics of the flash device are
also important. When erases are slow,
avoiding on-demand erases improves the
response time of block updates; when
erases are fast, the impact of an on-
demand erase is less severe. Also, when
erases can be interrupted and resumed
later, a background erase operation has
little or no impact on the response time of
a block update, but when erases are unin-
terruptible, a background erase operation
can delay a block update. However, all of
these issues are largely orthogonal to the
algorithms and data structures that are
used in mapping and reclamation so we
do not discuss this issue any further.

2.3.1. Wear-Centric Reclamation Policies and
Wear-Measuring Techniques. In this section,
we describe reclamation techniques that
are primarily designed to reduce wear.
These techniques are used in systems that
separate efficient reclamation and wear
leveling. Typically, the system uses an
efficiency-centric reclamation policy most
of the time but switches to a wear-centric
technique that ignores efficiency once in
a while. Sometimes uneven wear triggers
the switch, and sometimes it happens pe-
riodically whether or not wear is even.
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Many techniques attempt to level the
wear by measuring it; therefore, this sec-
tion will also describe wear-measurement
mechanisms.

Lofgren et al. [2000, 2003] patented
a simple wear-leveling technique that is
triggered by erase-unit reclamation. In
this technique, the header of each erase
unit includes an erase counter. Also, the
system sets aside one erase unit as a spare.
When one of the most worn-out units is re-
claimed, its counter is compared to that
of the least worn-out unit. If the differ-
ence exceeds a threshold, say 15,000, a
wear-leveling relocation is used instead of
a simple reclamation. The contents of the
least-worn out unit (or one of the least-
worn out units) are relocated to the spare
unit, and the contents of the most worn out
unit, the one whose reclamation triggered
the event, are copied to the just-erased
least-worn out unit. The most worn-out
unit that was reclaimed becomes the new
spare. This technique attempts to iden-
tify worn-out sectors and static blocks and
to relocate static blocks to worn-out sec-
tors. In the next wear-leveling event, it
will be used to store the blocks from the
least-worn out units. Presumably, the data
in the least-worn out unit are relatively
static; storing them on a worn-out unit re-
duces the chances that the worn-out unit
will soon undergo further rapid wear. Also,
by removing the static data from the least
worn-out unit, we usually bring its future
erase rate close to the average of the other
units.

Clearly, any technique that relies on
erase counters in the erase-unit headers
is susceptible to loss of an erase counter
if power is lost after a unit is erased but
before the new counter is written to the
header. The risk is higher when erase op-
erations are slow.

One way to address this risk is to store
the erase counter of unit i on another unit
j �= i. One such technique was patented
by Marshall and Manning [1998], as part
of a flash file system. Their system stores
an erase counter in the header of each
unit. Prior to the reclamation of unit i,
the counter is copied to a specially-marked
area in an arbitrary unit j �= i. Should

power be lost during the reclamation, the
erase count of i will be recovered from
unit j after power is restored. Assar et al.
[1996] patented a simpler but less efficient
solution. They proposed a bounded unary
8-bit erase counter which is stored on an-
other erase unit. The counter of unit i,
which is stored on another unit j �= i,
starts at all ones, and a bit is cleared ev-
ery time i is erased. Because the counter
can be updated, it does not need to be
erased every time unit i is erased. On the
other hand, the number of updates to the
erase counter is bounded. When it reaches
the maximum (8 in their patent), further
erases of unit i will cause loss of accu-
racy in the counter. In their system, such
counters were coupled with periodic global
restarts of the wear-leveling mechanism
in which all the counters are rolled back
to the erased state.

Jou and Jeppesen III [1996] patented a
technique that maintains an upper bound
on the wear (number of erasures). The
bound is always correct but not neces-
sarily tight. Their system uses an erase-
before-write strategy: the valid contents
of an erase unit chosen for reclamation
are copied to another unit, but the unit
is not erased immediately. Instead, it is
marked in the flash device as an erasure
candidate and added to a priority queue of
candidates in RAM. The queue is sorted by
wear; the unit with the least wear in the
queue (actually the least-wear bound) is
erased when the system needs a free unit.
If power is lost during an erasure, the new
bound for the erased unit is set to the min-
imum wear among the other erase candi-
dates plus 1. Since the pre-erasure bound
on the unit was less than or equal to that
of all the other ones in the queue, the new
bound may be too high, but it is correct.
(The patent does not increase the bound by
1 over that of the minimum in the queue;
this yields a wear estimate that may be
just as useful in practice but not a bound.)
This technique levels the wear to some ex-
tent by delaying reuse of worn-out units.
The evenness of the wear in this technique
depends on the number of surplus units: if
the queue of candidates is short, reuse of
worn-out units cannot be delayed much.
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Another solution to the same prob-
lem, patented by Han [2000], relies on
wear-estimation using erase latencies. On
some flash devices, the erase latency in-
creases with wear. Han’s technique com-
pares erase times in order to rank erase
unit by wear. This avoids altogether the
need to store erase counters. The wear
rankings can be used in a wear-leveling
relocation or allocation policy. Without ex-
plicit erase counters, the system can only
estimate the wear of a unit after it is
erased in a session. Therefore, this tech-
nique is probably not applicable in its pure
form (without counters) when sessions are
short and only a few units are erased.

Another approach to wear leveling is to
rely on randomness rather than on esti-
mates of actual wear. Woodhouse [2001]
proposed a simple randomized wear-
leveling technique. Every 100th reclama-
tion the system selects for reclamation a
unit containing only valid data, at ran-
dom. This has the effect of moving static
data from units with little wear to units
with more wear. If this technique is used
in a system that otherwise always favors
reclamation efficiency over wear leveling,
extreme wear imbalance can still occur. If
units are selected for reclamation, based
solely upon the amount of invalid data
they contain, a little worn-out unit with
a small amount of invalid data may never
be reclaimed.

At about the same time, Ban [2004]
patented a more robust technique. His
technique, like the one of Lofgren et al.
[2000, 2003], relies on a spare unit. Every
certain number of reclamations, an erase
unit is selected at random, its contents re-
located to the spare unit, and it is marked
as the new spare. The trigger for this wear-
leveling event can be deterministic, say
the 1000th erase since the last event, or
random. Using a random trigger ensures
that wear leveling is triggered even if ev-
ery session is short and encompasses only
a few erase operations. The aim of this
technique is to have every unit undergo
a fairly large number of random swaps,
say 100, during the lifetime of the flash
device. The large number of swaps is sup-
posed to diminish the likelihood that an

erase unit stores static data for much of
the device’s lifetime. In addition, the total
overhead of wear leveling in this technique
is predictable and evenly spread in time.

It appears that the idea behind this
technique was used in earlier software.
M-Systems developed and marketed soft-
ware called TrueFFS, a block-mapping de-
vice driver that implements the FTL. The
M-Systems literature [Dan and Williams
1997] states that TrueFFS uses a wear-
leveling technique that combines random-
ness with erase counts. Their literature
claimed that the use of randomness elim-
inates the need to protect the exact erase
counts stored in each erase unit. The
details of the wear-leveling algorithm of
TrueFFS are not described in the open lit-
erature or in patents.

2.3.2. Combining Wear-Leveling with Efficient
Reclamation. We now describe policies
that attempt to address both wear level-
ing and efficient reclamation.

Kawaguchi et al. [1995], describe one
such policy. They implemented a block de-
vice driver for a flash device. The driver
was intended for use with a log-structured
Unix file system which we describe in the
following. This file system operates much
like a block-mapping mechanism: it relo-
cates block on update, and reclaims erase
units to free space. Kawaguchi et al. [1995]
describe two reclamation policies. The first
policy selects the next unit for reclama-
tion based on a weighted benefit/cost ra-
tio. The benefit of a unit reclamation is
the amount of invalid space in the unit,
and the cost is incurred by the need to
read the valid data and write it back else-
where. This is weighted by the age of the
block, the time since the last invalidation.
A large weight is assumed to indicate that
the remaining valid data in the unit is rel-
atively static. This implies that the valid
occupancy of the unit is unlikely to de-
crease soon so there is no point in wait-
ing until the benefit increases. In other
words, the method tries to avoid reclaim-
ing units whose benefit/cost ratio is likely
to increase soon. This policy is not explic-
itly designed to level wear, but it does
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result in some wear leveling since it
ensures that blocks with some invalid
data are eventually reclaimed, even if the
amount of invalid data in them is small.

Kawaguchi et al. [1995] found that this
policy still leads to inefficient reclamation
in some cases and proposed a second pol-
icy which tends to improve efficiency at the
expense of worse wear leveling. They pro-
posed to write data to two units. One unit
is used for sectors relocated during the
reclamation of so-called cold units, ones
that were not modified recently. The other
unit is used for sectors relocated from hot
units and for updating blocks not under-
going reclamation. This policy tends to
cluster static data in some units and dy-
namic data in others. This, in turn, tends
to increase the efficiency of reclamation,
because units with dynamic data tend to
be almost empty upon reclamation, and
static units do not need to be reclaimed at
all because they often contain no invalid
data. Clearly, units with static data can re-
main unreclaimed for long periods which
leads to uneven wear unless a separate ex-
plicit wear-leveling mechanism is used.

A more elaborate policy is described by
Wu and Zwaenepoel [1994]. Their sys-
tem partitions the erase units into fixed-
size partitions. Lower-numbered parti-
tions are supposed to store hot virtual
blocks, while higher-numbered partitions
are supposed to store cold virtual blocks.
Each partition has one active erase unit
that is used to store updated blocks. When
a virtual block is updated, the new data
is written to a sector in the active unit in
the same partition that the block currently
resides in. When the active unit in a par-
tition fills up, the system finds the unit
with the least valid sectors in the same
partition and reclaims it. During reclama-
tion, valid data in the unit that is being
reclaimed is copied to the beginning of an
empty unit. Thus, blocks that are not up-
dated frequently tend to slide toward the
beginning of erase units. Blocks that were
updated after the unit they are on became
active, and are hence hot, tend to reside to-
ward the end of the unit. This allows Wu
and Zwaenepoel’s [1994] system to classify
blocks as hot or cold.

The system tries to achieve a roughly
constant reclamation frequency in all
the partitions. Therefore, hot partitions
should contain fewer blocks than cold par-
titions because hot data tends to be in-
validated more quickly. At every reclama-
tion, the system compares the reclamation
frequency of the current partition to the
average frequency. If the partition’s recla-
mation frequency is higher than average,
some of its blocks are moved to neighbor-
ing partitions. Blocks from the beginning
of the unit being reclaimed are moved to a
colder partition, and blocks from the end
are moved to a hotter partition.

Wu and Zwaenepoel [1994] employ a
simple form of wear leveling. When the
erase count of the most worn-out unit is
higher by 100 than that of the least worn-
out unit, the data on them is swapped.
This probably works well when the least
worn-out unit contains static or nearly
static data. If this is the case, then swap-
ping the extreme units allows the most
worn-out unit some time to rest.

We shall discuss Wu and Zwaenepoel’s
[1994] system again later in the survey.
The system was intended as a main mem-
ory replacement not as a disk replace-
ment, so it has some additional interesting
features that we describe in Section 4.

Wells [1994] patented a reclamation pol-
icy that relies on a weighted combination
of efficiency and wear leveling. The system
selects the next unit to be reclaimed based
on a score. The score of a unit j is defined
to be

score( j ) = 0.8 × obsolete( j )
+ 0.2 × (max

i
{erasures(i)}

− erasures( j )) ,

where obsolete( j ) is the amount of in-
valid data in unit j , and erasures( j ) is
the number of erasures that unit j has
undergone. The unit with the maximal
score is reclaimed next. Since obsolete( j )
and erasures( j ) are measured in dif-
ferent units, the precise weights of the
two terms, 0.8 and 0.2 in the system
described in the patent, should depend
on the space-measurement metric. The
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principle, however, is to weigh efficiency
heavily and wear differences lightly. Af-
ter enough units have been reclaimed us-
ing this policy, the system checks whether
more aggressive wear leveling is neces-
sary. If the difference between the most
and the least worn out units is 500 or
higher, the system selects additional units
for reclamation, using a wear-heavy policy
that maximizes a different score,

score′( j ) = 0.2 × obsolete( j )
+ 0.8 × (max

i
{ erasures(i)}

− erasures( j )) .

The combined policy is designed to first en-
sure a good supply of free sectors, and once
that goal is achieved to ensure that the
wear imbalance is not too extreme. In the
wear-leveling phase, efficiency is not im-
portant since that phase only starts after
there are enough free sectors. Also, there
is no point in activating the wear-leveling
phase where wear is even since this will
just increase the overall wear.

Chiang et al. [1999] proposed a block
clustering that they call CAT. Chiang and
Chang [1999] later proposed an improved
technique, called DAC. At the heart of these
methods lies a concept called temperature.
The temperature of a block is an estimate
of the likelihood that it will be updated
soon. The system maintains a tempera-
ture estimate for every block using two
simple rules: (1) when a block is updated,
its temperature rises, and (2), blocks cool
down over time. The CAT policy classifies
blocks into three categories: read-only (ab-
solutely static), cold, and hot. The category
that a block belongs to does not necessarily
matches its temperature because, in CAT,
blocks are only reclassified during recla-
mation. Each erase unit stores blocks from
one category. When an erase unit is re-
claimed, its valid sectors are reclassified.
CAT selects units for reclamation by maxi-
mizing the score function

cat-score( j ) = obsolete( j ) × age( j )
valid( j ) × erasures( j )

,

where valid( j ) is the amount of valid data
in unit j , and age( j ) is a discrete mono-
tone function of the time since the last era-
sure of unit j . This score function leads the
system to prefer units with a lot of obsolete
data and little valid data, units that have
not been reclaimed recently, and units that
have not been erased many times. This
combines efficiency with some degree of
wear leveling. The CAT policy also includes
an additional wear-leveling mechanism:
when an erase unit nears the end of its
life, it is exchanged with the least worn-
out unit.

The DAC policy is more sophisticated.
First, blocks may be classified into more
than three categories. More importantly,
blocks are reclassified on every update so
a cold block that heats up will be relocated
to a hotter erase unit, even if the units
that store it never get reclaimed while it
is valid.

TrueFFS selects units for reclamation
based on both the amount of invalid data,
the number of erasures, and identification
of static areas [Dan and Williams 1997].
The details are not described in the open
literature. TrueFFS also tries to cluster
related blocks so that multiple blocks in
the same unit are likely to become in-
valid together. This is done by trying to
map contiguous logical blocks onto a sin-
gle unit under the assumption that higher-
level software (i.e., a file system) attempts
to cluster related data at the logical-block
level.

Kim and Lee [2002] proposed an adap-
tive scheme for combining wear leveling
and efficiency in selecting units for recla-
mation. Their scheme is designed for a file
system not for a block-mapping mecha-
nism but since it is applicable for block-
mapping mechanisms, we describe it here.
Their scheme, which is called CICL, selects
an erase unit (actually a group of erase
units called a segment) for reclamation by
minimizing the following score,

cicl-score( j ) = (1 − λ)

(
valid( j )

valid( j ) + obsolete( j )

)

+ λ

(
erasures( j )

1 + maxi{ erasures(i)}

)
.

ACM Computing Surveys, Vol. 37, No. 2, June 2005.



150 E. Gal and S. Toledo

In this expression, λ is not a constant,
but a monotonic function that depends on
the discrepancy between the most and the
least worn-out units,

0 < λ( maxi{erasures(i)}
− mini{erasures(i)}) < 1 .

When λ is small, units are selected for
reclamation mostly upon efficiency consid-
erations. When λ is high, unit selection
is driven mostly by wear, with preference
given to young units. Letting λ grow when
wear become uneven and shrink when it
evens out leads to more emphasis on wear
when wear is imbalanced, and more em-
phasis on efficiency when wear is roughly
even. Kim and Lee [2002] augment this
policy with two other techniques for clus-
tering data and for unit allocation but
these are file-system specific, so we de-
scribe them later in the survey.

2.3.3. Real-Time Reclamation. Reclaim-
ing an erase unit to make space for new
or updated data can take a considerable
amount of time. A slow and unpredictable
reclamation can cause a real-time system
to miss a deadline. Chang et al. [2004]
proposed a guaranteed reclamation policy
for real-time systems with periodic tasks.
They assume that tasks are periodic, and
that each task provides the system with
its period, with per-period upper bounds
on CPU time and the number of sector
updates.

Chang et al.’s system [2004] relies on
two principles. First, it uses a greedy recla-
mation policy that reclaims the unit with
the least amount of valid data, and it only
reclaims units when the number of free
sectors falls below a threshold. (This pol-
icy is used only under deadline pressure;
for nonreal-time reclamation, a different
policy is used.) This policy ensures that ev-
ery reclamation generates a certain num-
ber of free sectors. Consider, for exam-
ple, a 64MB flash device that is used to
store 32MB worth of virtual blocks, and
that reclamation is triggered when the
amount of free space falls below 16MB.
When reclamation is triggered, the device

must contain more than 16MB of obsolete
data. Therefore, on average, a quarter of
the sectors on a unit are obsolete. There
must be at least one unit with that much
obsolete data, so by reclaiming it, the sys-
tem is guaranteed to generate a quarter of
a unit’s worth of free sectors.

To ensure that the system meets the
deadlines of all the tasks that it admits,
every task is associated with a reclama-
tion task. These tasks reclaim at most one
unit every time one of them is invoked. The
period of a reclamation task is chosen so
that it is invoked once every time the task
it is associated with writes α blocks, where
α is the number of sectors that are guaran-
teed to be freed in every reclamation. This
ensures that a task uses up free sectors
at the rate that its associated reclamation
task frees sectors. (If a reclamation task
does not reclaim a unit because there are
many free pages, the system is guaranteed
to have enough sectors for the associated
task.) The system admits a task only if it
can meet the deadlines of both it and its
reclamation task.

Chang et al. [2004] also proposed a
slightly more efficient reclamation policy
that avoids unnecessary reclamation and
an auxiliary wear-leveling policy that the
system applies when it is not under dead-
line pressure.

3. FLASH-SPECIFIC FILE SYSTEMS

Block-mapping technique present the
flash device to higher-level software, in
particular file systems, as a rewritable
block device. The block device driver (or a
hardware equivalent) perform the block-
to-sector mapping, erase-unit reclama-
tion, wear leveling, and perhaps even re-
covery, of the block device to a designated
state following a crash. Another approach
is to expose the hardware characteristics
of the flash device to the file-system layer
and let it manage erase units and wear.
The argument is that an end-to-end solu-
tion can be more efficient than stacking
a file system designed for the character-
istics of magnetic hard disks on top of a
device driver designed to emulate disks
using flash.
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The block-mapping approach does have
several advantages over flash-specific file
systems. First, the block-mapping ap-
proach allows developers to utilize exist-
ing file system implementations, thereby
reducing development and testing costs.
Second, removable flash devices, such as
CompactFlash and SmartMedia, must use
storage formats that are understood by all
the platforms in which users need to use
them. These platforms currently include
Windows, Mac, and Linux/Unix operating
systems as well as hand-held devices
such as digital cameras, music players,
PDAs, and phones. The only rewritable
file system format supported by all major
operating systems is FAT so removable
devices typically use it. If the removable
device exposes the flash memory device
directly, then the host platforms must
also understand the headers that describe
the content of erase units and sectors.
The standardization of the FTL allows
these headers to be processed on multiple
platforms; this is also the approach taken
by the SmartMedia standard. Another
approach, invented by SunDisk (now San-
Disk) and typified by the CompactFlash
format, is to hide the flash memory device
behind a disk interface implemented in
hardware as part of the removable device
so the host is not required to understand
the flash header format. Typically, using
a CompactFlash on a personal computer
does require even a special device driver
because the existing disk device-driver
can access the device.

Even on a removable device that must
use a given file system structure, say a
FAT file system, combining the file system
with the block-mapping mechanism yields
benefits. Consider the deletion of a file,
for example. If the system uses a stan-
dard file system implementation on top of
a block-mapping device driver, the deleted
file’s data sectors will be marked as free
in a bitmap or file-allocation table, but
they will normally not be overwritten or
otherwise be marked as obsolete. Indeed,
when the file system is stored on a mag-
netic disk, there is no reason to move the
read-write head to these now free sectors.
But if the file system is stored on a flash

device, the deleted file’s blocks, which are
not marked as obsolete, are copied from
one unit to another whenever the unit that
stores them is reclaimed. By combining
the block device driver with the file system
software, the system can mark the deleted
file’s sectors as obsolete which prevents
them from ever being copied. This appears
to be the approach of FLite, a FAT file sys-
tem/device driver combination software
from M-Systems [Dan and Williams 1997].
Similar combination software is also sold
by HCC Embedded. Their file systems are
described in the following, but it is not
clear whether they exploit such opportu-
nities or not.

But when the flash memory device is not
removable, a flash-specific file system is
a reasonable solution and over the years,
several such file systems have been devel-
oped. In the mid 1990’s Microsoft tried to
standardize flash-specific file systems for
removable memory devices, in particular,
a file system called FFS2 but this effort
did not succeed. Douglis et al. [1994] re-
port very poor write performance for this
system which is probably the main reason
it failed. We comment further on this file
system later.

Most of the flash-specific file systems
use the same overall principle, that of a
log-structured file system. This principle
was invented for file systems that utilize
magnetic disks where it is not currently
used much. It turns out, however, to be
appropriate for flash file systems. There-
fore, we next describe how log-structured
file systems work, and then describe indi-
vidual flash file systems.

3.1. Background: Log-Structured File
Systems

Conventional file systems modify infor-
mation in place. When a block of data,
whether containing part of a file or file sys-
tem metadata, must be modified, the new
contents overwrite old data in exactly the
same physical locations on the disk. Over-
writing makes finding data easy: the same
data structure that allowed the system to
find the old data will now find the new
data. For example, if the modified block
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contained part of a file, the pointer in the
inode or in the indirect block that pointed
to the old data is still valid. In other words,
in conventional file systems, data items
(including both metadata and user data)
are mutable so pointers remain valid af-
ter modification.

In-place modification creates two kinds
of problems, however. The first kind in-
volves movement of the read-write head
and disk rotation. Modifying existing data
forces the system to write in specific physi-
cal disk locations so these writes may suf-
fer long seek and rotational delays. The
effect of these mechanical delays are espe-
cially severe when writing cannot be de-
layed, for example, when a file is closed.
The second problem that in-place modifi-
cation creates is the risk of metadata in-
consistency after a crash. Even if writes
are atomic, high-level operations consist-
ing of several writes, such as creating or
deleting a file, are not atomic so the file
system data structure may be in an incon-
sistent state following a crash. There are
several techniques to address this issue.
In lazy-write file systems, a fixing-up pro-
cess corrects the inconsistencies following
a crash prior to any use of the file sys-
tem. The fixing-up can delay the recovery
of the computer system from the crash. In
careful-write systems, metadata changes
are performed immediately according to a
strict ordering so that, after a crash, the
data structure is always in a consistent
state except perhaps for loss of disk blocks
which are recovered later by a garbage col-
lector. This approach reduces the recovery
time but amplifies the effect of mechanical
disk delays. Soft updates is a generaliza-
tion of careful writing, where the file sys-
tem is allowed to cache modified metadata
blocks; they are later modified according
to a partial ordering that guarantees that
the only inconsistencies following a crash
are loss of disk blocks. Experiments with
this approach have shown that it delivers
performance similar to that of journaling
file systems [Rosenblum and Ousterhout
1992; Seltzer et al. 1993] which we de-
scribe next, but currently only Sun uses
this approach. In journaling file systems,
each metadata modification is written to a

journal (or a log) before the block is modi-
fied in place. Following a crash, the fixing-
up process examines the tail of the log and
either completes or rolls back each meta-
data operation that may have been inter-
rupted. Except for Sun Solaris systems
which use soft updates almost all the com-
mercial and free operating systems today
use journaling file systems such as NTFS
on Windows, JFS on AIX and Linux, XFS
on IRIX and Linux, ext3 and reiserfs on
Linux, and the new journaling HFS+ on
MacOS.

Log-structured file systems take the
journaling approach to the limit: the jour-
nal is the file system. The disk is organized
as a log, a continuous medium that is in
principle infinite. In reality, the log con-
sist of fixed-sized segments of contiguous
areas of the disk, chained together into a
linked list. Data and metadata are always
written to the end of the log; they never
overwrite old data. This raises two prob-
lems: how do you find the newly-written
data, and how do you reclaim disk space
occupied by obsolete data? To allow newly-
written data to be found, the pointers to
the data must change so the blocks con-
taining these blocks must also be written
to the log, and so on. To limit the possi-
ble snowball effect of these rewrites, files
are identified by a logical inode index. The
logical inodes are mapped to physical lo-
cation in the log by a table that is kept
in memory and is periodically flushed to
the log. Following a crash, the table can
be reconstructed by finding the most re-
cent copy of the table in the log, and then
scanning the log from that position to the
end in order to find files whose position has
changed after that copy was written. To
reclaim disk space, a cleaner process finds
segments that contain a large amount of
obsolete data, copies the valid data to the
end of the log (as if they were changed),
and then erases the segment and adds it
to the end of the log.

The rationale behind log-structured file
system is that they enjoy good write per-
formance since writing is only done to the
end of the log so it does not incur seek
and rotational delays (except when switch-
ing to a new segment which occurs only
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rarely). On the other hand, read perfor-
mance may be slow because the blocks of
a file might be scattered around the disk
if each block was modified at a different
time, and the cleaner process might fur-
ther slow down the system if it happens
to clean segments that still contain a sig-
nificant amount of valid data. As a con-
sequence, log-structured file systems are
not in widespread use on disks; not many
have been developed and they are rarely
deployed.

On flash devices, however, log-
structured file systems make perfect
sense. On flash, old data cannot be
overwritten. The modified copy must be
written elsewhere. Furthermore, log-
structuring the file system on flash does
not influence read performance since flash
allows uniform-access-time random ac-
cess. Therefore, most of the flash-specific
file systems use this design principle.

Kawaguchi et al. [1995] were probably
the first to identify log-structured file sys-
tems as appropriate for flash memories.
Although they used the log-structured ap-
proach to design a block-mapping device
driver, their paper pointed out that this
approach is suitable for flash memory
management in general.

Kim and Lee [2002] proposed clean-
ing, allocation, and clustering policies for
log-structured file systems that reside on
flash devices. We have already described
their reclamation policy which is not file
system-specific. Their other policies are
specific to file systems. Their system tries
to identify files that have not been up-
dated recently and whose data is frag-
mented over many erase units. Once in a
while, a clustering process tries to collect
the blocks of such files into a single erase
unit. The rationale behind this policy is
that if an infrequently modified file is frag-
mented, it does not contribute much valid
data to the units that store it so they may
become good candidates for reclamation.
But whenever such a unit is reclaimed,
the file’s data is simply copied to a new
unit, thereby reducing the effectiveness of
reclamation. By collecting the file’s data
onto a single unit, the unit is likely to con-
tain a significant amount of valid data for

a long period until the file is deleted or
updated again. Therefore, the unit is un-
likely to be reclaimed soon; and the file’s
data is less likely to be copied over and
over again. Kim and Lee [2002] propose
policies for finding infrequently modified
files, for estimating their fragmentation,
and for selecting the collection period and
scope (size).

Kim and Lee [2002] also propose to ex-
ploit clustering to improve wear leveling.
They propose to allocate the most worn-
out free unit for storage of cold data during
such collections and to allocate the least
worn-out free unit for normal updates of
data. The rationale here is that not-much-
used data that is collected is likely to re-
main valid for a long period, thereby allow-
ing a worn-out unit to rest. On the other
hand, recently updated data is likely to be
updated again soon so a unit that is used
for normal log operations is likely to be-
come a candidate for reclamation soon so
it is better to use a little worn-out unit.

3.2. The Research-In-Motion File System

Research In Motion, a company mak-
ing handheld text messaging devices and
smart phones,2 patented a log-structured
file system for flash memories [Parker
2003]. The file system is designed to
store contiguous variable-length records
of data, each having a unique identifier.

The flash is partitioned into an area
for programs and an area for the file sys-
tem (this is fairly common and is designed
to allow programs to be executed in-place
directly from NOR flash memory). The file
system area is organized as a perfectly cir-
cular log containing a sequence of records.
Each record starts with a header contain-
ing the record’s size, identity, invalidation
flags and a pointer to the next record in
the same file, if any.

Because the log is circular, cleaning may
not be effective: the oldest erase unit may
not contain much obsolete data, but it is
cleaned anyway. To address this issue, the
patent proposes to partition the flash fur-
ther into a log for so-called hot (frequently

2http://www.rim.net.
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modified) data and a log for cold data. No
suggestion is made as to how to classify
records.

Keeping the records contiguous allows
the file system to return pointers directly
into the NOR flash in read operation. Pre-
sumably, this is enabled by an API that only
allows access to a single record at a time,
not to multiple records or other arbitrary
parts of files.

The patent suggests keeping a direct
map in RAM, mapping each logical record
number to its current location on the flash
device. The patent also mentions the pos-
sibility of keeping this data structure, or
parts thereof, in flash but without provid-
ing any details.

3.3. The Journaling Flash Filing System

The Journaling Flash File System (JFFS)
was originally developed by Axis Com-
munications [2004] AB for embedded
Linux. It was later enhanced, in a ver-
sion called JFFS2, by David Woodhouse of
Red Hat [Woodhouse 2001]. Both versions
are freely available under the GNU Public
License (GPL). Both versions focus mainly
on NOR devices and may not work reliably
on NAND devices. Our description here fo-
cuses on the more recent JFFS2.

JFFS2 is a posix compliant file system.
Files are represented by an inode number.
Inode numbers are never reused, and each
version of an inode structure on flash car-
ries a version number. Version numbers
are also not reused. The version numbers
allow the host to reconstruct a direct inode
map from the inverse map stored on flash.

In JFFS2, the log consists of a linked
list of variable-length nodes. Most nodes
contain parts of files. Such nodes con-
tain a copy of the inode (the file’s meta-
data), along with a range of data from the
file, possibly empty. There are also special
directory-entry nodes which contain a file
name and an associated inode number.

At mount time, the system scans all the
nodes in the log and builds two data struc-
tures. One is a direct map from each inode
number to the most recent version of it on
flash. This map is kept in a hash table. The
other is a collection of structures that rep-

resent each valid node on the flash. Each
structure participates in two linked lists,
one chaining all the nodes according to
physical address, to assist in garbage col-
lection, and the other containing all the
nodes of a file, in order. The list of nodes
belonging to a file form a direct map of file
positions to flash addresses. Because both
the inode to flash address and file posi-
tion to flash-address maps are only kept
in RAM, the data structure on the flash can
be very simple. In particular, when a file
is extended or modified, only the new data
and the inode are written to the flash, but
no other mapping information. The obvi-
ous consequence of this design choice is
high RAM usage.

JFFS2 uses a simple wear-leveling tech-
nique. Most of the time, the cleaner
selects for cleaning an erase unit that con-
tains at least some obsolete data (the arti-
cle describing JFFS2 does not specify the
specific policy, but it is probably based on
the amount of obsolete data in each unit).
But on every 100th cleaning operation, the
cleaner selects a unit with only valid data
in an attempt to move static data around
the device.

The cleaner can merge small blocks of
data belonging to a file into a new large
chunk. This is supposed to improve per-
formance, but it can actually degrade per-
formance. If later, only part of that large
chunk is modified, a new copy of the en-
tire large chunk must be written to flash
because writes are not allowed to modify
parts of valid chunks.

3.4. YAFFS: Yet Another Flash Filing System

YAFFS was written by Aleph One [2002]
as a NAND file system for embedded device.
It has been released under the GPL and
has been used in products running both
Linux and Windows CE. It was written
because the authors evaluated JFFS and
JFFS2 and concluded that they are not
suitable for NAND devices.

In YAFFS, files are stored in fixed-sized
chunks which can be 512 bytes, 1KB, or
2KB in size. The file system relies on be-
ing able to associate a header with each
chunk. The header is 16 bytes for 512 bytes
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chunks, 30 bytes for 1KB, and 42 bytes
for 2KB. Each file (including directories)
include one header chunk, containing the
file’s name and permissions, and zero or
more data chunks. As in JFFS2, the only
mapping information on flash is the con-
tent of each chunk, stored as part of the
header. This implies that at mount time
all the headers must be read from flash to
construct the file ID and file contents maps,
and that, as in JFFS, the maps of all the
files are stored in RAM at all times.

To save RAM relative to JFFS, YAFFS
uses a much more efficient map structure
to map file locations to physical flash ad-
dresses. The mapping uses a tree struc-
ture with 32-byte nodes. Internal nodes
contain 8 pointers to other nodes, and
leaf nodes contain 16 2-byte pointers to
physical addresses. For large flash mem-
ories, 16-bit words cannot point to an ar-
bitrary chunk. Therefore, YAFFS uses a
scheme that we call approximate point-
ers. Each pointer value represents a con-
tiguous range of chunks. For example, if
the flash contains a 218 chunk, each 16-bit
value represents 4 chunks. To find the
chunk that contains the required data
block, the system searches the headers of
these 4 chunks to find the right one. In
essence, approximate pointers work be-
cause the data they point to are self de-
scribing. To avoid file-header modification
on every append operation, each chunk’s
header contains the amount of data it car-
ries; upon append, a new tail chunk is
written containing the new size of the tail
which, together with the number of full
blocks, gives the size of the file.

The first version of YAFFS uses 512-
byte chunks and invalidates chunks by
clearing a byte in the header. To ensure
that random bit errors, which are com-
mon in NAND devices, do not cause a deleted
chunk to reappear as valid (or vice versa),
invalidity is signaled by at 4 or more zero
bits in the byte (that is, by a majority vote
of the bits in the byte). This requires writ-
ing on each page twice before the erase
unit is reclaimed.

YAFFS2 uses a slightly more complex
arrangement to invalidate chunks of 1
or 2KB. The aim of this modification is

to achieve a strictly sequential writing
order within erase units so that erased
pages are written one after the other
and never rewritten. This is achieved us-
ing two mechanisms. First, each chunk’s
header contains not only the file ID and
the position within the file but also a
sequence number. The sequence number
determines which, among all the chunks
representing a single block of a file, is
the valid chunk. The rest can be re-
claimed. Second, files and directories are
deleted by moving them to a trash di-
rectory which implicitly marks all their
chunks for garbage collection. When the
last chunk of a deleted file is erased, the
file itself can be deleted from the trash
directory. (Application code cannot rescue
files from this trash directory.) The RAM

file-contents maps are recreated at mount
time by reading the headers of the chunks
by sequence number to ensure that only
the valid chunk of each file block is re-
ferred to.

Wear leveling is achieved mostly by in-
frequent random selection of an erase unit
to reclaim. But as in JFFS, most of the
time an attempt is made to erase an erase
unit that contains no valid data. The au-
thors argue that wear leveling is some-
what less important for NAND devices than
for NOR devices. NAND devices are often
shipped with bad pages, marked as such
in their headers, to improve yield, They
also suffer from bit flipping during normal
operation which requires using ECC/EDC

codes in the headers. Therefore, the au-
thors of YAFFS argue, file systems and
block-mapping techniques must be able to
cope with errors and bad pages anyways so
an erase unit that is defective due to exces-
sive wear is not particularly exceptional.
In other words, uneven wear will lead to
loss of storage capacity but it should not
have any other impact on the file system.

3.5. The Trimble File System

The Trimble file system was a NOR imple-
mented by Marshall and Manning [1998]
for Trimble Navigation (a maker of GPS
equipment). Manning is also one of the
authors of the more recent YAFFS.
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The overall structure of the file system
is fairly similar to that of YAFFS. Files
are broken into 252-byte chunks, and each
chunk is stored with a 4-byte header in
a 256-byte flash sector. The 4-byte header
includes the file number and chunk num-
ber within the file. Each file also includes a
header sector, containing the file number,
a valid/invalid word, a file name, and up to
14 file records, only one of which, the last
one, is valid. Each record contains the size
of the file, a checksum, and the last modi-
fication time. Whenever a file is modified,
a new record is used and when they are all
used up, a new header sector is allocated
and written.

As in YAFFS, all the mapping informa-
tion is stored in RAM during normal oper-
ation since the flash contains no mapping
structures other than the inverse maps.

Erase units are chosen for reclamation
based solely on the number of valid sec-
tors that they still contain and only if they
contain no free sectors. Ties are broken by
erase counts to provide some wear level-
ing. To avoid losing the erase counts dur-
ing a crash that occurs after a unit is
erased but before its header is written, the
erase count is written prior to erasure into
a special sector containing block erasure
information.

Sectors are allocated sequentially
within erase units and the next erase
unit to be used is selected from among
the available ones based on erase counts,
again providing some wear-leveling
capability.

3.6. The Microsoft Flash File System

In the mid 1990’s, Microsoft tried to pro-
mote a standardized file system for re-
movable flash memories which was called
FFS2 (we did not find documentation of
an earlier version, but we assume one ex-
isted). Douglis et al. [1994] report very
poor write performance for this system
which is probably the main reason it
failed. By 1998, Intel [1998a] listed this
solution as obsolete.

Current Microsoft documentation (as
of Spring 2004) does not mention FFS2

(nor FFS). Microsoft obtained a number of
patents on flash file system, and we as-
sume that the systems described by the
patents are similar to FFS2.

The earliest patent [Barrett et al. 1995]
describes a file system for NOR flash de-
vices that contain one large erase unit.
Therefore, the device is treated as a write-
once device, except that bits that were not
cleared when an area was first written can
be cleared later. The system uses linked
lists to represent the files in a directory
and the data blocks of a file. When a file is
extended, a new record is appended to the
end of its block list. This is done by clear-
ing bits in the next field of the last record
in the current list; that field was originally
left all set, indicating that it was not yet
valid (the all 1s bit pattern is considered
an invalid pointer).

Updating a range of bytes in a file is
more difficult. A file is updated by patch-
ing the linked list, as shown in Figure 4.
The first record that points to now in-
valid data is marked invalid by setting a
replacement field to the address of a re-
placement record (the replacement field
is actually called secondary ptr in the
patent). This again uses a field that is ini-
tially left at the erased state, all 1s. The
next field of the replacement record can
point back to the original linked list or it
can point to additional new records. But
unless the update reaches to the end of the
file, the new part of the linked list eventu-
ally points back to old records; hence, the
list is patched. A record does not contain
file data, only a pointer to a run of data.
The runs of data are raw and not marked
by any special header. This allows a run to
be broken into three when data in its mid-
dle are updated. Three new records will
point to the still valid prefix of the run,
to a new replacement run, and to the still
valid suffix.

The main defect in this scheme is that
repeated updates to a file lead to longer
and longer linked lists that must be tra-
versed to access the data. For example,
if the first 10 bytes of a file are updated
t times, then a chain of t invalid records
must be traversed before we reach the
record that points to the most recent data.
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Fig. 4. The data structures of the Microsoft File System. The data structure near the
top shows a linked-list element pointing to a block of 20 raw bytes in a file. The bottom
figure shows how the data structure is modified to accomodate an update of 5 of these
20 bytes. The data and next-in-list pointers of the original node are invalidated. The
replacement pointer, which was originally free (all 1’s; marked in gray in the figure), is
set to point to a chain of 3 new nodes, two of which point to still-valid data within the
existing block, and one of which points to a new block of raw data. The last node in the
new chain points back to the tail of the original list.

The cause of this defect is the attempt
to keep objects (files and directories) in a
static addresses. For example, the header
of the device, which is written once and
for all, contains a pointer to the root di-
rectory as it does in conventional file sys-
tems. This arrangement makes it easy to

find things but requires traversing long
chains of invalid data to find current data.
The log-structured approach, where ob-
jects are moved when they are updated,
makes it more difficult to find things, but
once an object is found, not invalid data
needs to be accessed.
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Later versions of FFS allowed reclama-
tion of erase units [Torelli 1995]. This is
done by associating each data block (a data
extent or a linked-list record) with a small
descriptor. Memory is allocated contigu-
ously from the low end of the unit, and
fixed-size descriptors are allocated from
the top end, toward the low end. Each de-
scriptor describes the offset of a data block
within the unit, the size of the block, and
whether it is valid or obsolete. Pointers
to data blocks within the file system are
not physical pointers but concatenation of
a logical erase-unit number and a block
number within the unit. The block number
is the index of the descriptor of the block.
This allows the actual blocks to be moved
and compacted when the unit is reclaimed;
only the valid descriptors need to retain
their position in the new block. This does
not cause much fragmentation because de-
scriptors are small and uniform in size
(6 bytes). This system is described in three
patents Krueger and Rajagopalan [1999a,
1999b, 2001].

It is possible to reclaim linked-list
records in this system, but it’s not trivial.
From Torelli’s article [1995], it seems that
at least some implementations did do that,
thereby not only reclaiming space but also
shortening the lists. Suppose that a valid
record a points to record b, and that in b,
the replacement pointer is used and points
to c. This means that c replaced b. When
a is moved to another unit during recla-
mation, it can be modified to point to c,
and b can be marked obsolete. Obviously,
it is also possible to skip multiple replaced
records.

This design is highly NOR specific, both
because of the late assignment to the
replacement pointers, and the way that
units are filled from both ends with data
from one end and with descriptors from
the other.

3.7. Norris Flash File System

Norris Communications Corporation
patented a flash file system based on
linked lists [Daberko 1998], much like
the Microsoft Flash File System. The
patent is due to Daberko who apparently

designed and implemented the file system
for use in a handheld audio recorder.

3.8. Other Commercial Embedded File
Systems

Several other companies offer embedded
flash file systems but provide only few de-
tails on their design and implementation.

TargetFFS. Blunk Microsystems offers
TargetFFT, an embedded flash file system,
in both NAND and NOR varieties.3 It works
under their own operating system but is
designed to be portable to other operating
systems and to products without an oper-
ating system. The file system uses a POSIX-
like API.

Blunk claims that the file system guar-
antees integrity across unexpected shut-
downs that it levels the wear of the erase
units, that the NAND version uses ECC/EDC,
and that it is optimized for fast mounts,
typically a second for a 64MB file system.
The code footprint of the file system is
around 60KB plus about 64KB RAM.

The company’s Web site contains one
performance graph showing that the write
performance degrades as the volume fills
up. No explanation is given, but the likely
reason is the drop in the effectiveness of
erase-unit reclamation.

smxFFS. This file system from Micro
Digital only supports nonremovable NAND

devices.4 The file system consists of a
block-mapping device driver and a simple
FAT-like file system with a flat directory
structure. The block-mapping driver as-
sumes that every flash page is associated
with a small spare area (16 bytes for 512-
byte pages) and that pages can be updated
in place three times before erasure. The
system performs wear-leveling by relocat-
ing a fixed number of static blocks when-
ever the difference between the most and
the least worn out page exceeds a thresh-
old. The default software configuration for
a 16MB flash device requires about 168KB
of RAM.

3http://www.blunkmicro.com.
4http://www.smxinfo.com/rtos/fileio/smxffs.
htm.
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EFFS. HCC Embedded5 offers several
flash file systems. EFFS-STD is a full file
system. The company makes claims simi-
lar to those of Blunk, including claims of
integrity, wear-leveling, and NOR and NAND

capability.
EFFS-FAT and EFFS-THIN are FAT

implementation for removable flash mem-
ories. The two versions offer similar
functionality, except that EFFS-THIN is
optimized for 8-bit processors.

FLite. FLite combines a standard FAT

file system with an FTL-compatible block-
mapping device driver [Dan and Williams
1997]. It is unclear whether this is a cur-
rent product.

4. BEYOND FILE SYSTEMS

Allowing high-level software to view a
flash device as a simple rewritable block
device or as an abstract file store are
not the only possibilities. This section
describe additional services that flash-
management software can provide. The
first class of services are higher-level ab-
stractions than files, the second level of
services are programs that execute di-
rectly from flash, and the third is a mech-
anism to use flash devices as a persistent
main memory.

4.1. Flash-Aware Application-Specific Data
Structures

Some applications maintain sophisticated
data structures in nonvolatile storage.
Search trees, which allow database man-
agement systems and other applications
to respond quickly to queries, are the most
common of these data structures. Nor-
mally, such a data structure is stored in
a file. In more demanding applications,
the data structure might be stored directly
on a block device such as a disk parti-
tion without a file system. Some authors
argue that by implementing flash-aware
application-specific data structures, per-
formance and endurance can be improved
beyond implementation over a file system
or even over a block device.

5http://www.hcc-embedded.com.

Wu et al. [2003a, 2003b] proposed flash-
aware implementations of B-trees and
R-trees. Their implementations represent
a tree node as an ordered set of small
items. Items in a set represent individ-
ual insertions, deletions, and updates to a
node. The items are ordered by time so the
system can construct the current state of
a tree node by traversing its set of items.
To conserve space, item sets can be com-
pacted when they grow too much. In order
to avoid frequent write operations of small
amounts of data, new items are collected
in RAM and flushed to disk when the RAM

buffer fills. To find the items that consti-
tute a node, the system maintains in RAM a
linked list of the items of each node in the
tree. Hence it appears that the RAM con-
sumption of these trees can be quite high.

The main problem with flash-aware
application-specific data structures is
that they require that the flash device
be partitioned. One partition holds the
application-specific data structure, an-
other holds other data, usually files.
Partitioning the device at the physical
level (physical addresses) adversely af-
fects wear leveling because worn-out units
in one partition cannot be swapped with
relatively fresh units in the other. The
Wu et al. [2003a, 2003b] implementations
partition the virtual block address space
so both the tree blocks and file-system
blocks are managed by the same block-
mapping mechanism. In other words, their
data structures are flash-aware, but they
operate at the virtual block level not at
the physical sector level. Another prob-
lem with partitioning is the potential for
wasting space if the partitions cannot be
dynamically resized.

4.2. Execute-in-Place

Code stored in a NOR device, which is
directly addressable by the processor,
can be executed from the device itself
without being copied into RAM. This is
known as execute-in-place, or XIP. Unfor-
tunately, execute-in-place raises some dif-
ficult problems.

Unless the system uses a virtual-
memory mechanism, which requires a
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hardware memory-management unit,
code must be contiguous in flash, and it
must not move. This implies that erase
units containing code cannot participate
in a wear-leveling block-mapping scheme.
This also precludes storage of code in files
within a read-write file system since such
file systems do not store files contiguously.
Therefore, to implement XIP in a system
without virtual memory requires parti-
tioning the flash memory at the physical
address level into a code partition and a
data partition. As explained earlier, this
accelerates wear.

Even if the system does use virtual-
memory, implementing XIP is tricky. First,
this requires that the block-mapping
device driver be able to return the
physical addresses that correspond to a
given virtual block number. Second, the
block-mapping device driver must notify
the virtual memory subsystem whenever
memory-mapped sectors are relocated.

In addition, using XIP requires that code
be stored uncompressed. In some proces-
sor architectures, machine code can be
effectively compressed. If this is possi-
ble, then XIP saves RAM but wastes flash
storage.

These reasons have led some to suggest
that, at least in systems with large RAM,
XIP should not be used [Woodhouse 2001].
Systems with small RAM, where XIP is more
important, often do not have a memory
management unit so their only option is to
partition the physical flash address space.

Hardware limitations also contribute to
the difficulty of implementing XIP. Many
flash devices cannot read from one erase
unit while another is being written to or
erased. If this is the case, code that might
need to run during a write or erase oper-
ation cannot be executed in place. To ad-
dress this issue, some flash devices allow a
write or erase to be suspended, and other
devices allow reads while writing (RWW).

4.3. Flash-Based Main Memories

Wu and Zwaenepoel [1994] describe eNVy,
a flash-based nonvolatile main memory.
The system was designed to reside on the
memory bus of a computer and to ser-

vice single-word read and write requests.
Because this memory is both fast for
single-word access and nonvolatile, it can
replace both the magnetic disk and the
DRAM in a computer. The memory system
itself contained a large NOR flash mem-
ory that was connected by a very wide
bus to a battery-backed static RAM device.
Because the static RAM is much more ex-
pensive than flash, the system combined
a large flash memory with a small static
RAM. The system also contained a processor
with a memory management unit (MMU)
that was able to access both the flash and
the internal RAM.

The system partitions the physical ad-
dress space of the external memory bus
into 256-byte pages that are normally
mapped by the internal MMU to flash
pages. Read requests are serviced directly
from this memory-mapped flash. Write re-
quests are serviced by copying a page from
the flash to the internal RAM, modifying
the internal MMU’s state so that the exter-
nal physical page is now mapped to the
RAM, and then performing the word-size
write onto the RAM. As long as the phys-
ical page is mapped into the RAM, further
read and write requests are performed di-
rectly on the RAM. When the RAM fills, the
oldest page in the RAM is written back to
the flash, again modifying the MMU’s state
to reflect the change.

The system works well thanks to the
wide bus between the flash and the in-
ternal RAM and thanks to the ability to
buffer pages in the RAM for a while. The
wide bus allows pages stored on flash to
be transfered to RAM in one cycle which
is critical for processing write requests
quickly. By buffering pages in the RAM for
a while before they are written back to
flash, many updates to a single page can be
performed with a single RAM-to-flash page
transfer. The reduction in the number of
flash writes reduces unit erasures, thereby
improving performance and extending the
system’s lifetime.

Using a wide bus has a significant draw-
back, however. To build a wide bus, Wu and
Zwaenepoel [1994] used many flash chips
in parallel. This made the effective size of
erase units much larger. Large erase units

ACM Computing Surveys, Vol. 37, No. 2, June 2005.



Algorithms and Data Structures for Flash Memories 161

are harder to manage and, as a result, are
prone to accelerated wear.

5. SUMMARY

Flash memories have been an enabling
technology for the introduction of com-
puters into numerous hand held devices.
A decade ago, flash memories were used
mostly in boot loaders (BIOS chips) and as
disk replacements for ruggedized comput-
ers. Today, flash memories are also used
in mobile phones and PDA’s, portable music
players and audio recorders, digital cam-
eras, USB memory devices, remote controls,
and more. Flash memories provide these
devices with fast and reliable storage ca-
pabilities thanks to the sophisticated data
structures and algorithms that this article
surveys.

In general, the challenges posed by
newer flash devices are greater than those
posed by older devices—the devices are be-
coming harder to use. This happens be-
cause flash hardware technology is driven
mostly by the desire for increased capac-
ity and performance often at the expense
of ease of use. This trend requires devel-
opment of new software techniques and
new system architectures for new types of
devices.

Unfortunately, many of these tech-
niques are only described in patents, not
in technical articles. Although the purpose
of patents is to reveal inventions, they suf-
fer from three disadvantages relative to
technical articles in journals and confer-
ence proceedings. First, a patent almost
never contains a realistic assessment of
the technique that it presents. A patent
usually contains no quantitative compar-
ison to alternative techniques and no
theoretical analysis. Although patents of-
ten do contain a qualitative comparison to
alternatives, the comparison is almost al-
ways one-sided, describing the advantages
of the new invention but not its potential
disadvantages. Second, patents often de-
scribe a prototype not how the invention
is used in actual products. This again re-
duces the reader’s ability to assess the ef-
fectiveness of specific techniques. Third,
patents are sometimes harder to read

than articles in the technical and scientific
literature.

Our aim has been to survey flash-
management techniques in order to pro-
vide both practitioners and researchers
with a broad overview of existing tech-
niques. In particular, by surveying both
technical articles, patents, and corporate
literature we ensure a thorough coverage
of all the relevant techniques. We hope
that our article will encourage researchers
to analyze these techniques both theoret-
ically and experimentally. We also hope
that this article will facilitate the de-
velopment of new and improved flash-
management techniques.
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