
Lightweight Remote Procedure Call

Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

Abstract

Lightweight Remote Procedure Call (LRPC) is a com-
munication facility designed and optimized for commu-
nication between protection domains on the [same ma-
chine.

In contemporary small-kernel operating systems, ex-
isting RPC systems incur an unnecessarily high cost
when used for the type of communication that pre-
dominates - between protection domains on the same
machine. This cost leads system designers to coalesce
weakly-related subsystems into the same protection do-
main, trading safety for performance. By reducing the
overhead of same-machine communication, LRPC en-
courages both safety and performance.

LRPC combines the control transfer and communi-
cation model of capability systems with the program-
ming semantics and large-grained protection model of
RPC. LRPC achieves a factor of three performance
improvement over more traditional approaches based
on independent threads exchanging messages, reducing
the cost of same-machine communication to nearly the
lower bound imposed by conventional hardware.

LRPC has been integrated into the Taos operating
system of the DEC SRC Firefly multiprocessor work-
station.

1 Introduction

This paper describes Lightweight Remote Procedure
Call (LRPC), a communication facility designed and
optimized for communication between protection do-
mains on the same machine.

LRPC combines the control transfer and communi-
cation model of capability systems with the program-

This material is based on work SuDDorted bv the National
Science Foundation (Grants CCR-8619663, CCR-8700106 and
CCR-8703049). the Naval Ocean Systems Center, 1J S WEST
Advanced Te&ologies, the Wash&on Technology Center, and
Digital Equipment Corporation (the Systems Research Center
and the External Research Program). Anderson was supported
by an IBM Graduate Fellowship Award, and Bershad was sup-
ported by an AT&T Ph.D. Scholarship.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a. fee
and/or specific permission.
0 1989 ACM 089791-338-3/89/0012/0102 $1.50

ming semantics and large-grained protection model of
RPC. For the common case of same-machine communi-
cation passing small, simple arguments, LRPC achieves
a factor of three performance improvement over more
traditional approaches.

The granularity of the protection mechanisms used
by an operating system has a significant impact on
the system’s design and use. Some operating sys-
tems [Mealy et al. 66, Ritchie & Thompson 741 have
large, monolithic kernels insulated from user programs
by simple hardware boundaries. Within the operating
system itself, though, there are no protection bound-
aries. The lack of strong firewalls, combined with the
size and complexity typical of a monolithic system,
make these systems difficult to modify, debug and val-
idate. Further, the shallowness of the protection hier-
archy (typically only two levels) makes the underlying
hardware directly vulnerable to a large mass of compli-
cated operating system software.

Capability systems supporting fine-grained protec-
tion were suggested as a solution to the problems of
large-kernel operating systems [Dennis & Van Horn 661.
In a capability system, each fine-grained object exists
in its own protection domain, but all live within a single
name or address space. A process in one domain can
act on an object in another only by making a protected
procedure call, transferring control to the second de
main. Parameter passing is simplified by the existence
of a global name space containing all objects. Unfortu-
nately, many found it difficult to efficiently implement
and program systems that had such fine-grained pro-
tection.

In contrast to the fine-grained protection of capa-
bility systems, some distributed computing environ-
ments rely on relatively large-gruined protection mech-
anisms: protection boundaries are defined by machine
boundaries [Redell et al. 801. Remote Procedure Call
(RPC) [Birrell & Nelson 841 facilitates the placement
of subsystems onto separate machines. Subsystems
present themselves to one another in terms of inter-
faces implemented by servers. The absence of a global
address space is ameliorated by automatic stub genera-
tors and sophisticated run-time libraries that can trans-
fer arbitrarily complex arguments in messages. RPC is
a system structuring and programming style that has
become widely successful, enabling efficient and conve-
nient communication across machine boundaries.

Small-kernel operating systems have borrowed the

102

large-grained protection and programming models
used in distributed computing environments and have
demonstrated these to be appropriate for managing
subsystems, even those not primarily intended for re-
mote operation [Rashid 861. In these small-kernel sys-
tems, separate components of the operating system
can be placed in disjoint domains (or address spaces),
with messages used for all inter-domain communica-
tion. The advantages of this approach include modular
structure, easing system design, implementation, and
maintenance; failure isolation, enhancing debuggabil-
ity and validation; and transparent access to network
services, aiding and encouraging distribution.

In addition to the large-grained protection model of
distributed computing systems, small-kernel operating
systems have adopted their control transfer and com-
munication models - independent threads exchanging
messages containing (potentially) large, structured val-
ues. In this paper, though, we show that most com-
munication traffic in operating systems is (1) between
domains on the same machine (cross-domain), rather
than between domains located on separate machines
(cross-machine), and (2) simple rather than complex.
Cross-domain communication dominates because oper-
ating systems - even those supporting distribution -
localize processing and resources to achieve acceptable
performance at reasonable cost for the most common
requests. Most communication is simple because com-
plex data structures are concealed behind abstract sys-
tem interfaces - communication tends to involve only
handles to these structures and small value parameters
(booleans, integers, etc.).

Although the conventional message-based approach
can serve the communication needs of both local and
remote subsystems, it violates a basic tenet of system
design by failing to isolate the common case [Lampson
841. A cross-domain procedure call can be consider-
ably less complex than its cross-machine counterpart,
yet conventional RPC systems have not fully exploited
this fact. Instead, local communication is treated as
an instance of remote communication, and simple op-
erations are considered in the same class as complex
ones.

Because the conventional approach has high over-
head, today’s small-kernel operating systems have suf-
fered from a loss in performance or a deficiency in struc-
ture or both. Usually structure suffers most; logically
separate entities are packaged together into a single do-
main, increasing its size and complexity. Such aggre-
gation undermines the primary reasons for building a
small-kernel operating system. The Lightweight Re-
mote Procedure Call facility that we describe in this
paper arises from these observations.

LRPC achieves a level of performance for cross
domain communication that is significantly better than
conventional RPC systems while still retaining their
qualities of safety and transparency. Four techniques
contribute to the performance of LRPC:

l Simple control transfer: The client’s thread exe-

cutes the requested procedure in the server’s do-
main.

Simple data transfer: The parameter passing
mechanism is similar to that used by procedure
call. A shared argument stack, accessible to both
client and server, can often eliminate redundant
data copying.

Simple stubs: LRPC uses a simple model of con-
trol and data transfer, facilitating the generation
of highly optimized stubs.

Design for conczlwency: LRPC avoids shared
data structure bottlenecks and benefits from the
speedup potential of a multiprocessor.

We have demonstrated the viability of LRPC by im-
plementing and integrating it into Taos, the operating
system for the DEC SRC Firefly multiprocessor work-
station [Thacker et al. 881. The simplest cross-domain
call using LRPC takes 157 microseconds on a single
C-VAX processor. By contrast, SRC RPC, the Fire-
fly’s native communication system [Schroeder & Bur-
rows 891, takes 464 microseconds to do the same call;
though SRC RPC h as been carefully streamlined and
outperforms peer systems, it is a factor of three slower
than LRPC. The Firefly virtual memory and trap han-
dling machinery limit the performance of a safe cross-
domain procedure call to roughly 109 microseconds;
LRPC adds only 48 microseconds of overhead to this
lower bound.

The remainder of this paper discusses LRPC in more
detail. Section 2 describes the use and performance of
RPC in existing systems, offering motivation for a more
lightweight approach. Section 3 describes the design
and implementation of LRPC. Section 4 discusses its
performance, and section 5 addresses some of the con-
cerns that arise when integrating LRPC into a serious
operating system.

2 The Use and Performance of
RPC Systems

In this section, using measurements from three con-
temporary operating systems, we show that only a
smal1 fraction of RPCs are truly remote, and that large
or complex parameters are rarely passed during non-
remote operations. We also show the disappointing
performance of cross-domain RPC in several systems.
These results demonstrate that simple, cross-domain
calls represent the common case and can be well-served
by optimization.

2.1 Frequency of Cross-Machine
Activity

We examined three operating systems to determine the
relative frequency of cross-machine activity.

103

l The V System

In V [Cheriton 881, a highly decomposed system,
only the basic message primitives (Send, Receive,
etc.) are accessed directly through kernel traps.
All other system functions are accessed b’y sending
messages to the appropriate server. Concern for
efficiency, though, has forced the implementation
of many of these servers down into the k.ernel.

In an instrumented version of the V system,
Williamson found that 97% of calls crossed pro-
tection, but not machine, boundaries [Williamson
893. Williamson’s measurements include message
traffic to kernel-resident servers.

Taos

Taos, the Firefly operating system, is divided into
two major pieces. A medium-sized privileged ker-
nel accessed through traps is responsible for thread
scheduling, virtual memory, and device (access. A
second, multi-megabyte domain accessed through
RPC implements the remaining pieces of the oper-
ating system (domain management, local and re-
mote file systems, window management, network
protocols, etc.). Taos does not cache rernote files,
but each Firefly node is equipped with a small disk
for storing local files to reduce the frequency of
network operations.

We measured activity on a Firefly multiprocessor
workstation connected to a network of other Fire-
flies and a remote file server. During one five-hour
work period, we counted 344,888 local RPC calls,
but only 18,366 network RPCs. Cross-machine
RPCs thus accounted for only 5.3% of all com-
munication activity.

UNIX+NFS

In UNIX, a large-kernel operating system, all lo-
cal system functions are accessed through kernel
traps. RPC is used only to access remote file
servers. Although a UNIX system call is not imple-
mented as a cross-domain RPC, in a moire decom-
posed operating system most calls would1 result in
at least one such RPC.

On a diskless Sun 3 workstation running Sun
UNIX+NFS [Sandberg et al. 851, during a period
of four days we observed over 100 million operat-
ing system calls, but fewer than one million RPCs
to file servers. Inexpensive system calls, encour-
aging frequent kernel interaction, and file caching,
eliminating many calls to remote file se:rvers, are
together responsible for the relatively small num-
ber of cross-machine operations.

Table 1 summarizes our measurements of these three
systems. Our conclusion is that most calls go to tar-
gets on the same node. While measurements of systems
taken under different workloads will demonstrate differ-
ent percentages, we believe that cross-domain activity,

Percentage of
Operating Operations That
System Cross Machine Boundaries
V 3%
Taos 5.3%
Sun Unix+NFS 0.6%

Table 1: Frequency of Remote Activity

rather than cross-machine activity, will dominate. Be-
cause a cross-machine RPC is slower than even a slow
cross-domain RPC, system builders have an incentive
to avoid network communication. This incentive man-
ifests itself in the many different caching schemes used
in distributed computing systems.

2.2 Parameter Size and Complexity

The second part of our RPC evaluation is an exami-
nation of the size and complexity of cross-domain pro-
cedure calls. Our analysis considers both the dynamic
and static usage of SRC RPC as used by the Taos op-
erating system and its clients. The size and maturity
of the system make it a good candidate for study .-
our version includes 28 RPC services defining 366 pro-
cedures involving over 1000 parameters.

We counted 1,487,105 cross-domain procedure calls
during one four-day period. Although 112 different pro-
cedures were called, 95% of the calls were to ten pro-
cedures, and 75% were to just three. None of the stubs
for these three were required to marshal complex ar-
guments - byte copying was sufficient to transfer the
data between domains. ’

In the same four days, we also measured the num-
ber of bytes transferred between domains during cross-
domain calls. Figure 1, a histogram and cumulative
distribution of this measure, shows that the most fre-
quently occurring calls transfer fewer than 50 bytes,
and a majority transfer fewer than 200.

Statically, we found that four out of five parame-
ters were of fixed size known at compile time; sixty-five
percent were four bytes or fewer. Two-thirds of all pro-
cedures passed only parameters of fixed size, and sixty
percent transferred 32 or fewer bytes. No data types
were recursively defined so as to require recursive mar-
shaling (such as linked lists or binary trees). Recursive
types were passed through RPC interfaces, but these
were marshaled by system library procedures, rather
than by machine-generated code.

These observations indicate that simple byte copying
is usually sufficient for transferring data across system
interfaces, and that the majority of interface procedures
move only small amounts of data.

lSRC RPC maps domain-specific pointers into and out of
network-wide unique representations, enabling pointers to be
passed back and forth across an RPC interface. The mapping
is done by a simple table-lookup, and was necessary for two of
the top three procedures.

104

300

250

Number 200

of
Calls 150

(thousands)
100

Maximum Single 5oY0 Cumulative
Distribution

1 1~1~~1 . -- --_...~I I I I I I , 0%
50 200 500 750 1000 1450 1800

Total Argument/Result Bytes Transferred

Figure 1: RPC Size Distribution

Others have noticed that most interprocess com-
munication is simple, passing mainly small parame-
ters [Cook 78, Cheriton 88, Karger 891, and some have
suggested optimizations for this case. V, for exam-
ple, uses a message protocol that has been optimized
for fixed-sized messages of 32 bytes. Karger describes
compiler-driven techniques for passing parameters in
registers during cross-domain calls. These optimiza-
tions, although sometimes effective, only partially ad-
dress the performance problems of cross-domain com-
munication.

2.3 The Performance of Cross-Domain
RPC

In existing RPC systems, cross-domain calls are im-
plemented in terms of the facilities required by cross-
machine ones. Even through extensive optimization,
good cross-domain performance has been difficult to
achieve. Consider the Null procedure call that takes no
arguments, returns no values and does nothing:

PROCEDURE Null(); BEGIN RETURN END Null;

The theoretical minimum time to invoke Null0 as
a cross-domain operation involves one procedure call,
followed by a kernel trap and change of the proces-
sor’s virtual memory context on call, and then a trap
and context change again on return. The difference be-
tween this theoretical minimum call time and the actual
Null call time reflects the overhead of a particular RPC
system. Table 2 shows this overhead for six systems.
The data in Table 2 comes from measurements of our
own and from published sources [Fitzgerald 86, Tzou
& Anderson 88, van Renesse et al. 881.

The high overheads revealed by Table 2 can be at-
tributed to several aspects of conventional RPC:

l Stub overhead: Stubs provide a simple procedure
call abstraction, concealing from programs the in-

terface to the underlying RPC system. The dis-
tinction between cross-domain and cross-machine
calls is usually made transparent to the stubs by
lower levels of the RPC system. This results in an
interface and execution path that are general but
infrequently needed. For example, it takes about
70 microseconds to execute the stubs for the Null
procedure call in SRC RPC. Other systems have
comparable times.

l Message buffer overhead: Messages need to be al-
located and passed between the client and server
domains. Cross-domain message transfer can in-
volve an intermediate copy through the kernel, re-
quiring four copy operations for any RPC (two on
call, two on return).

l Access Validation: The kernel needs to validate the
message sender on call and then again on return.

l Message transfer: The sender must enqueue the
message, which must later be dequeued by the re-
ceiver. Flow-control of these queues is often nec-
essary.

l Scheduling: Conventional RPC implementations
bridge the gap between abstract and concrete
threads. The programmer’s view is one of a sin-
gle, abstract thread crossing protection domains,
while the underlying control transfer mechanism
involves concrete threads fixed in their own domain
signalling one another at a rendezvous. This indi-
rection can be slow, as the scheduler must manip-
ulate system data structures to block the client’s
concrete thread and then select one of the server’s
for execution.

l Conted switch: There must be a virtual mem-
ory context switch from the client’s domain to the
server’s on call, and then back again on return.

105

System Processlor Null Null 0 verhead
(Theoretical (Actual)
Minimum)

Accent- 2300 444 1856
Taos Firefly C-VAX 109 464 355
Mach C-VAX. 90 754 664
V 68020 170 730 560
Amoeba 68020 170 800 630
DASH 68020 170 1590 1420

Table 2: Cross-Domain Performance (times are in microseconds)

l Dispatch: A receiver thread in the server do
main must interpret the message and dispatch a
thread to execute the call. If the receiver is self-
dispatching, it must ensure that another thread
remains to collect messages that may arrive before
the receiver finishes to prevent caller serialization.

RPC systems have optimized some of these steps in
an effort to improve cross-domain performance. The
DASH system [‘Tzou & Anderson 881 eliminates an in-
termediate kernel copy by allocating messages out of
a region specially mapped into both kernel and user
domains. Mach [Jones & Rashid 861 and Taos rely
on handog scheduling to bypass the general, slower
scheduling path; instead, if the two concrete threads
cooperating in a domain transfer are identifiable at the
time of the transfer, a direct context switch can be
made. In line with handoff scheduling, some systems
pass a few, small arguments in registers, thereby elim-
inating buffer copying and management. ’

SRC RPC represents perhaps the most ambitious
attempt to optimize traditional RPC for swift cross-
domain operation. Unlike techniques used in other sys-
tems which provide safe communication between mu-
tually suspicious parties, SRC RPC trades safety for
increased performance. To reduce copying, message
buffers are globally shared across all domains. A single
lock is mapped into all domains so that message buffers
can be acquired and released without kernel involve-
ment. Further, access validation is not performed on
call and return, simplifying the critical transfer path.

SRC RPC runs much faster than other RPC systems
implemented on comparable hardware. Nevertheless,
SRC RPC still incurs a large overhead due to its use
of heavyweight stubs and run-time support, dynamic
buffer management, multi-level dispatch, and interac-
tion with global scheduling state.

20ptimizations based on passing arguments in registers ex-
hibit a performance discontinuity once the parameters overflow
the registers. The data in Figure 1 indicates that this can be a
frequent problem.

3 The Design and Implementa-
tion of LRPC

The lack of good performance for cross-domain calls
has encouraged system designers to coalesce cooperat-
ing subsystems into the same domain. Applications use
RPC to communicate with the operating system, en-
suring protection and failure isolation for users and the
collective system. The subsystems themselves, though,
grouped into a single protection domain for perfor-
mance reasons, are forced to rely exclusively on the thin
barriers provided by the programming environment for
protection from one another. LRPC solves, rather then
circumvents, this performance problem in a way that
does not sacrifice safety.

The execution model of LRPC is borrowed from pro-
tected procedure call. A call to a server procedure is
made by way of a kernel trap. The kernel validates
the caller, creates a call linkage, and dispatches the
client’s concrete thread directly to the server domain.
The client provides the server with an argument stack
as well as its own concrete thread of execution. When
the called procedure completes, control and results re-
turn through the kernel back to the point of the client’s
call.

The programming semantics and large-grained pro-
tection model of LRPC are borrowed from RPC.
Servers execute in a private protection domain, and
each exports one or more interfaces, making a specific
set of procedures available to other domains. A client
binds to a server interface before making the first call.
The server, by allowing the binding to occur, autho-
rizes the client to access the procedures defined by the
interface.

3.1 Binding

At a conceptual level, LRPC binding and RPC binding
are similar. Servers export interfaces and clients bind
to those interfaces before using them. At a lower-level,
however, LRPC binding is quite different due to the
high degree of interaction and cooperation that is re-
quired of the client, server and kernel.

A server module exports an interface through a clerk
in the LRPC run-time library included in every domain.
The clerk registers the interface with a name server and

106

awaits import requests from clients. A client binds to
a specific interface by making an import call via the
kernel. The importer waits while the kernel notifies
the server’s waiting clerk.

The clerk enables the binding by replying to the ker-
nel with a procedure descriptor list (PDL) that is main-
tained by the exporter of every interface. The PDL
contains one procedure desctiptor (PD) for each proce-
dure in the interface. The PD includes an entry ad-
dress in the server domain, the number of simultane-
ous calls initially permitted to the procedure by the
client, and the size of the procedure’s argtiment stack
(A-stack) on which arguments and return values will be
placed during a call. For each PD, the kernel pair-wise
allocates in the client and server domains a number
of A-stacks equal to the number of simultaneous calls
allowed. These A-stacks are mapped read-write and
shared by both domains.

Procedures in the same interface having A-stacks of
similar size can share A-stacks, reducing the storage
needs for interfaces with many procedures. The number
of simultaneous calls initially permitted to procedures
that are sharing A-stacks is limited by the total number
of A-stacks being shared. This is only a soft limit,
though, and Section 5.2 describes how it can be raised.

The kernel also allocates a linkage record for each
A-stack that is used to record a caller’s return address
and is accessible only to the kernel. The kernel lays out
A-stacks and linkage records in memory in a way such
that the correct linkage record can be quickly located
given any address in the corresponding A-stack.

After the binding has completed, the kernel returns
to the client a Binding Object. The Binding Object
is the client’s key for accessing the server’s interface
and must be presented to the kernel at each call. The
kernel can detect a forged Binding Object, so clients
cannot bypass the binding phase. In addition to the
Binding Object, the client receives an A-stack list for
each procedure in the interface giving the size and lo-
cation of the A-stacks that should be used for calls into
that procedure.

3.2 Calling

Each procedure in an interface is represented by a stub
in the client and server domains. A client makes an
LRPC by calling into its stub procedure which is re-
sponsibIe for initiating the domain transfer. The stub
manages the A-stacks allocated at bind time for that
procedure as a LIFO queue. At call time, the stub
takes an A-stack off the queue, pushes the procedure’s
arguments onto the A-stack, puts the address of the
A-stack, the Binding Object and a procedure identifier
into registers, and traps to the kernel. In the context
of the client’s thread, the kernel

l verifies the Binding and procedure identifier
l verifies the A-stack and locates the corresponding

linkage

ensures that no other thread is currently using that
A-stack/linkage pair
records the caller’s return address and current
stack pointer in the linkage
pushes the linkage onto the top of a stack of link-
ages kept in the thread’s control block3
finds an execution stack (E-stack) in the server’s
domain
updates the thread’s user stack pointer to run off
of the new E-stack
reloads the processor’s virtual memory registers
with those of the server domain
performs an upcall [Clark 851 into the server’s stub
at the address specified in the PD for the requested
procedure.

Arguments are pushed onto the A-stack according to
the calling conventions of Modula2+ [Rovner et al. 851.
Since the A-stack is mapped into the server’s domain,
the server procedure can directly access the parame-
ters as though it had been called directly. It’s impor-
tant to note that this optimization relies on a calling
convention that uses a separate argument pointer. In
a language environment that required arguments to be
passed on the E-stack, this optimization would not be
possible.

The server procedure returns through its own stub,
which initiates the return domain transfer by trapping
to the kernel. Unlike the call, which required presenta-
tion and verification of the Binding Object, procedure
identifier and A-stack, this information, contained at
the top of the linkage stack referenced by the thread’s
control block, is implicit in the return. There is no need
to verify the returning thread’s right to transfer back
to the calling domain since it was granted at call time.
Further, since the A-stack contains the procedure’s re-
turn values, and the client specified the A-stack on call,
no explicit message needs to be passed back.

If any parameters are passed by reference, the client
stub copies the referent onto the A-stack. The server
stub creates a reference to the data and places the ref-
erence on its private E-stack before invoking the server
procedure. The reference must be recreated to prevent
the caller from passing in a bad address. The data,
though, is not copied and remains on the A-stack.

Privately mapped E-stacks enable a thread to safely
cross between domains. Conventional RPC systems
provide this safety by implication, deriving separate
stacks from separate threads. LRPC excises this level
of indirection, dealing directly with less weighty stacks.

A low-latency domain transfer path requires that E-
stack management incur little call-time overhead. One
way to achieve this is to statically allocate E-stacks at
bind time and to permanently associate each with an
A-stack. Unfortunately, E-stacks can be large (tens of
kilobytes) and must be managed conservatively; oth-
erwise a server’s address space could be exhausted by
just a few clients.

3The stack is necessary so that a thread can be involved in
more than one cross-domain procedure call at a time.

107

Rather than statically allocating E-stacks, LRPC de-
lays the A-stack/E-stack association until it is needed;
that is, until a call is made with an A-stack not having
an associated E-stack. When this happens, the kernel
checks if there is an E-stack already alloca,ted in the
server domain, but currently unassociated with any A-
stack. If so, the kernel associates the E-stack with the
A-stack. Otherwise, the kernel allocates an E-stack out
of the server domain and associates it with the A-stack.
When the call returns, the E-stack and A-stack remain
associated with one another so that they mig;ht be used
together soon for another call (A-stacks are LIFO man-
aged by the client). Whenever the supply of E-stacks
for a given server domain runs low, the kernel reclaims
those associated with A-stacks that have not been re-
cently used.

3.3 Stub Generation

Stubs bridge the gap between procedure call, the com-
munication model used by the programmer, and do-
main transfer, the execution model of LRPC. A proce-
dure is represented by a call stub in the client’s domain
and an entry stub in the server’s. Every procedure de-
clared in an LRPC interface defines the terminus of a
three-layered communication protocol: end-to-end, de-
scribed by the calling conventions of the programming
language and architecture; stub-to-stub, implemented
by the stubs themselves; and domain-to-domain, im-
plemented by the kernel.

LRPC stubs blur the boundaries between the proto-
col layers to reduce the cost of crossing between them.
Server entry stubs are invoked directly by the kernel on
a transfer; no intermediate message examination and
dispatch is required. The kernel primes E-stacks with
the initial call frame expected by the server’s proce-
dure, enabling the server stub to branch to the first in-
struction of the procedure. As a result, a simple LRPC
needs only one formal procedure call (into the client
stub), and two returns (one out of the server procedure
and one out of the client stub).

The LRPC stub generator produces run-time stubs
in assembly language directly from Modula2+ defini-
tion files. The use of assembly language is possible
because of the simplicity and stylized nature of LRPC
stubs, which consist mainly of move and trap instruc-
tions. The LRPC stubs have shown a factor of four
performance improvement over ModulaZ+ stubs cre-
ated by the SRC RPC stub generator.

Since the stubs are automatically generated., the only
maintenance concerns arising from this use of assembly
language are related to the portability of the stub gen-
erator (the stubs themselves are not portable, but we
don’t consider this to be an issue). Porting the stub
generator to work on a different machine architecture
should be a straightforward task, although we have not
yet had any reason to do so.

The stub generator emits Modula2f code for more
complicated, but less frequently traveled execution

paths, such as those dealing with binding, exception
handling, and call failure. Calls having complex or
heavyweight parameters - linked lists or data that
must be made known to the garbage collector - are
handled with Modula2+ marshaling code. LRPC stubs
become more like conventional RPC stubs as the over-
head of dealing with the complicated data types in-
creases. This shift occurs at compile-time, eliminating
the need to make run-time decisions.

3.4 LRPC on a Multiprocessor

The existence of shared-memory multiprocessors has
influenced the design of LRPC. Multiple processors can
be used to achieve a higher call throughput and lower
call latency than is possible on a single processor.

LRPC increases throughput by minimizing the use of
shared data structures on the critical domain transfer
path. Each A-stack queue is guarded by its own lock,
and queuing operations take less than 2% of the total
call time. No other locking occurs, so there is little
interference when calls occur simultaneously.

Multiple processors are used to reduce LRPC latency
by caching domain contexts on idle processors. As we
show in Section 4, the context switch that occurs during
an LRPC is responsible for a large part of the transfer
time. This time is due partly to the code required to
update the hardware’s virtual memory registers, and
partly to the extra memory fetches that occur as a
result of invalidating the translation lookaside buffer
(TLB).

LRPC reduces context-switch overhead by caching
domains on idle processors. When a call is made, the
kernel checks for a processor idling in the context of the
server domain. If one is found, the kernel exchanges
the processors of the calling and idling threads, placing
the calling thread on a processor where the context of
the server domain is already loaded; the called server
procedure can then execute on that processor without
requiring a context switch. The idling thread continues
to idle, but on the client’s original processor in the con-
text of the client domain. On return from the server, a
check is also made. If a processor is idling in the client
domain (likely for calls that return quickly), then the
processor exchange can be done again.

If no idle domain can be found on call or return, then
a single-processor context switch is done. For each do-
main, the kernel keeps a counter indicating the number
of times that a processor idling in the context of that
domain was needed but not found. The kernel uses
these counters to prod idle processors to spin in do-
mains showing the most LRPC activity.

The high cost of frequent domain crossing can also be
reduced by using a TLB that includes a process tag. For
multiprocessors without such a tag, domain-caching
can often achieve the same result for commonly called
servers. Even with a tagged TLB, a single-processor do-
main switch still requires that hardware mapping reg-
isters be modified on the critical transfer path; domain

108

Operation
Message Restricted Message

LRPC Passing Passing
call mutable A ABCE ADE

parameters)

call (immutable AE
parameters)

ABCE ADE

return F BCF BF

Code Copy Operation
A copy from client stack to message (or A-stack)
B copy from sender domain to kernel domain
C copy from kernel domain to receiver domain
D copy from sender/kernel space to receiver/kernel domain
E copy from message (or A-stack) into server stack
F copy from message (or A-stack) into client’s results

Table 3: Copy Operations For LRPC Vs. Message-Based RPC

caching does not. Finally, domain caching preserves
per-processor locality across calls -a performance con-
sideration for systems having low tolerance for sudden
shifts in locality.

Using idle processors to decrease operating system
latency is not a new idea. Both Amoeba and Taos
cache recently blocked threads on idle processors to re-
duce wakeup latency. LRPC generalizes this technique
by caching domains, rather than threads. In this way,
any thread that needs to run in the context of an idle
domain can do so quickly, not just the thread that ran
there most recently.

3.5 Argument Copying

Consider the path taken by a procedure’s argument
during a traditional cross-domain RPC. An argument,
beginning with its placement on the stack of the client
stub, is copied 4 times - from the stub’s stack to the
RPC message, from the message in the client’s domain
to one in the kernel’s, from the message in the kernel’s
domain to one in the server’s, and from the message
to the server’s stack. The same argument in an LRPC
can be copied only once: from the stack of the client
stub to the shared A-stack from which it can be used
by the server procedure.

Pair-wise allocation of A-stacks enables LRPC to
copy parameters and return values only as many times
as are necessary to ensure correct and safe operation.
Protection from third-party domains is guaranteed by
the pair-wise allocation that provides a private channel
between the client and server. It is still possible for a
client or server to asynchronously change the values of
arguments in an A-stack once control has transferred
across domains. The copying done by message-based
RPC prevents such changes, but often at a higher cost
than necessary. LRPC, by considering each argument
individually, avoids extra copy operations by taking ad-
vantage of argument passing conventions, by exploiting

a value’s correctness semantics, and by combining the
copy into a check for the value’s integrity.

In most procedure call conventions, the destination
address for return values is specified by the caller. Dur-
ing the return from an LRPC, the client stub copies
returned values from the A-stack into their final desti-
nation. No added safety comes from first copying these
values out of the server’s domain into the client’s, either
directly or by way of the kernel.

Parameter copying can also be avoided by recogniz-
ing situations in which the actual value of the param-
eter is unimportant to the server. This occurs when
parameters are processed by the server without inter-
pretation. For example, the Write procedure exported
by a file server takes an array of bytes to be written to
disk. The array itself is not interpreted by the server,
which is made no more secure by an assurance that the
bytes won’t change during the call. Copying is unnec-
essary in this case. These types of arguments can be
identified to the LRPC stub generator.

Finally, concern for type safety motivates explicit ar-
gument copying in the stubs, rather than wholesale
message copying in the kernel. In a strongly-typed lan-
guage, such as Modula2+, actual parameters must con-
form to the types of the declared formals; for example,
the Modula2+ type CARDINAL is restricted to the set
of positive integers - a negative value will result in a
run-time error when the value is used. A client could
crash a server by passing it an unwanted negative value.
To protect itself, the server must check type-sensitive
values for conformancy before using them. Folding this
check into the copy operation can result in less work
than if the value is first copied by the message system
and then later checked by the stubs.

Table 3 shows how the use of A-stacks in LRPC
can affect the number of copying operations. For calls
where parameter immutability is important, and for
those where it isn’t, we compare the behavior of LRPC
against the traditional message-passing approach, and

109

Test Description LRPC/MP LRPC Taos
N 11
AdUd

the Null cross-domam cali 125 157 464
a procedure taking two 4-byte arguments

and returning one Cbyte argument 130 164 480
BigIn a procedure taking one 200-byte argument 173 192 539
BigInOut a procedure taking and then returning one

200-byte argument 219 227 636

Table 4: LRPC Performance of Four Tests (in microseconds)

against a more restricted form of message-passing used
in the DASH system. In the restricted form, all mes-
sage buffers on the system are allocated from a spe-
cially mapped region that enables the kernel to copy
messages directly from the sender’s domain into the re-
ceiver’s, avoiding an intermediate kernel cop;y.

In Table 3, we assume that the server places the re-
sults directly into the reply message. If this isn’t the
case (i.e., messages are managed as a scarce resource),
then one more copy from the server’s results into the
reply message is needed. Even when the immutabil-
ity of parameters is important, LRPC performs fewer
copies (3) than either message passing (7) or restricted
message passing (5).

For passing large values, copying concerns be-
come less important, since by-value semantics can be
achieved through virtual memory operations. But, for
the more common case of small- to medium-sized val-
ues, eliminating copy operations is crucial to good per-
formance when call latency is on the order of only 100
instructions.

LRPC’s A-stack/E-stack design offers both safety
and performance. While our implementation demon-
strates the performance of this design, the Firefly op-
erating system does not yet support pairAw!ise shared
memory. Our current implementation places A-stacks
in globally shared virtual memory. Since mapping is
done at bind time, an implementation using pair-wise
shared memory would have identical performance, but
greater safety.

4 The Performance of LR,PC

To evaluate the performance of LRPC, we used the four
tests shown in Table 4. These tests were run on the C-
VAX Firefly using LRPC and Taos RPC. The Null call
provides a baseline against which we can measure the
added overhead of LRPC. The procedures Add, BigIn,
and BigInOut represent calls having “typical” parame-
ter sizes.

Table 4 shows the results of these tests when per-
formed on a single node. The measurements were made
by performing 100,000 cross-domain calls in a tight
loop, computing the elapsed time, and then dividing
by 100,000. The table shows two times -:br LRPC. The
first, listed as “LRPC/MP,” uses the idle processor op-
timization described in Section 3.4. The second, shown
as “LRPC,” executes the domain switch on a single

processor; it is roughly 3 times faster than SRC RPC,
which also uses only one processor.

Table 5 shows a detailed cost breakdown for the se-
rial (l-processor) Null LRPC on a C-VAX. This table
was produced from a combination of timing measure-
ments and hand calculations of TLB misses. The code
to execute a Null LRPC consists of 120 instructions
that require 157 microseconds to execute. The column
labeled “Minimum” in Table 5 is a timing breakdown
for the theoretically minimum cross-domain call (one
procedure call, two traps and two context switches).
The column labeled “LRPC Overhead” shows the ad-
ditional time required to execute the call and return
operations described in Section 3.2 and is the cost of
our implementation. For the Null call, approximately
18 microseconds are spent in the client stub and 3 in
the server’s. The remaining 27 microseconds of over-
head are spent in the kernel, and go towards binding
validation and linkage management. Most of this takes
place during the call, as the return path is simpler.

Operation IM inimum LRPC

I 0 verhead
Modula2+ Procedure Call I 7

si ~s~~~ches 1 I

Table 5: Breakdown of Time (in microseconds) for Sin-
gle Processor Null LRPC

Approximately 25% of the time used by the Null
LRPC is due to TLB misses that occur during vir-
tual address translation. A context switch on a C-VAX
requires the invalidation of the TLB, and each subse-
quent TLB miss increases the cost of a memory refer-
ence by about .9 microseconds. Anticipating this, the
data structures and control sequences of LRPC were
designed to minimize TLB misses. Even so, we esti-
mate that 43 TLB misses occur during the Null call.

Section 3.4 stated that LRPC avoids locking shared
data during call and return in order to remove con-
tention on shared-memory multiprocessors. This is
demonstrated by Figure 2, which shows call through-
put as a function of the number of processors simulta-
neously making calls. Domain caching was disabled for

110

30000 -

25000 -

20000 -
Calls
per 15000 -

Second
10000 -

5000 -

LRPC Optimal

J
LRPC Measured

OI
0 1 2 3 4

Number of Processors

Figure 2: Call Throughput On a Multiprocessor

this experiment - each call required a context switch.
A single processor can make about 6300 LRPCs per sec-
ond, but four processors can make over 23000 calls per
second - a speedup of 3.7 and close to the maximum
that the Firefly is capable of delivering. These measure-
ments were made on a Firefly having four C-VAX pro-
cessors and one MicroVaxII I/O processor. Measure-
ments on a five processor MicroVaxII Firefly showed a
speedup of 4.3 with 5 processors.

In contrast, the throughput of SRC RPC levels off
with two processors at about 4000 calls per second.
This limit is due to a global lock that is held during a
large part of the RPC transfer path. For a machine like
the Firefly, a small scale shared-memory multiproces-
sor, a limiting factor of two is annoying, but not serious.
On shared-memory machines with just a few dozen pro-
cessors, though, contention on the critical control trans-
fer path would have a greater performance impact.

5 The Uncommon Cases

In addition to working well in the common case, LRPC
must work acceptably in the less common ones. This
section describes several of these less common cases and
explains how they are dealt with by LRPC. This section
does not enumerate all possible uncommon cases that
must be considered. Instead, by describing just a few,
we hope to emphasize that the common-case approach
taken by LRPC is flexible enough to accommodate the
uncommon cases gracefully.

5.1 Transparency and Cross-Machine
Calls

Deciding whether a call is cross-domain or cross-
machine is made at the earliest possible moment -
the first instruction of the stub. If the call is to a truly
remote server (indicated by a bit in the Binding Ob-
ject), then a branch is taken to a more conventional
RPC stub. The extra level of indirection is negligible

compared to the overheads that are part of even the
most efficient network RPC implementation.

5.2 A-stacks - Size and Number

Procedure Descriptor Lists are defined during the com-
pilation of an interface. The stub generator reads each
interface and determines the number and size of the A-
stacks for each procedure. The number defaults to five,
but can be overridden by the interface writer. When
the size of each of a procedure’s arguments and return
values are known at compile time, the A-stack size can
be determined exactly. In the presence of variable sized
arguments, though, the stub generator uses a default
size equal to the Ethernet packet size (this default also
can be overridden). Experience has shown, and Fig-
ure 1 confirms, that RPC programmers strive to keep
the sizes of call and return parameters under this limit.
Most existing RPC protocols are built on simple packet
exchange protocols, and multi-packet calls have perfor-
mance problems. In cases where the arguments are too
large to fit into the A-stack, the stubs transfer data in
a large out-of-band memory segment. Handling unex-
pectedly large parameters is complicated and relatively
expensive, but infrequent.

A-stacks in a single interface are allocated contigu-
ously at bind time to allow for quick validation during
a call (a simple range check guarantees their integrity).
If the number of pre-allocated A-stacks proves too few,
the client can either wait for one to become avail-
able (when an earlier call finishes), or allocate more.
Waiting is simple, but may not always be appropriate.
When further allocation is necessary, it is unlikely that
space contiguous to the original A-stacks will be found,
but other space can be used. A-stacks in this space,
not in the primary contiguous region, will take slightly
more time to vahdate during a call.

5.3 Domain Termination

A domain can terminate at any time, for reasons such
as an unhandled exception or a user action (CTRL-C).
When a domain terminates, all resources in its pos-
session (virtual address space, open file descriptors,
threads, etc.) are reclaimed by the operating system. If
the terminating domain is a server handling an LRPC
request, the call, completed or not, must return to the
client domain. If the terminating domain is a client
with a currently outstanding LRPC request to another
domain, the outstanding call, when finished, must not
be allowed to return to its originating domain.

When a domain is terminated, each Binding Object
associated with that domain (either as client or server)
is revoked. This prevents any more out-calls from the
domain, and prevents other domains from making any
more in-calls. All threads executing within the domain
are then stopped, and a kernel collector scans all of
the domain’s threads looking for any that had been
running on behalf of an LRPC call; these threads are

111

restarted in the client with a call-failed exception. Fi-
nally, the collector scans all Binding Objects held by
the terminating domain and invalidates any active link-
age records. When a thread returns from an LRPC call,
it follows the stack of linkage records referenced by the
thread control block, returning to the domain specified
in the first valid linkage record. If any invalid linkage
records are found on the way, a call-failed exception
is raised in the caller. If the stack contains no valid
linkage records, the thread is destroyed.

A terminating domain’s outstanding threads are not
forced to terminate synchronously with the domain.
Doing so would require every server procedure to pro-
tect the integrity of its critical data structures from
external forces, since a mutating thread coulld be ter-
minated at any time. More generally, LRPC has no
way to force a thread to return from an outstanding
call. Taos does have an alert mechanism which allows
one thread to signal another, but the notified thread
may choose to ignore the alert. It is therefore possi-
ble for one domain to “capture” another’s thread and
hold it indefinitely. To address this problem, LRPC
enables client domains to create a new thread whose
initial state is that of the original captured thread as if
it had just returned from the server procedure with a
call-aborted exception. The captured thread continues
executing in the server domain but is destroyed in the
kernel when released.

Traditional RPC does not have these problems be-
cause the abstract thread seen by the progratmmer is
provided by two concrete threads, one in each of the
client and server domains. Because premature domain
and call termination are infrequent, LRPC has adopted
a “special case” approach for dealing with them.

6 Summary

This paper has described the motivation, design, im-
plementation, and performance of LRPC, a commu-
nication facility that combines elements of capability
and RPC systems. Our implementation on the Fire-
fly achieves performance that is close to the minimum
round-trip cost of transferring control between domains
on conventional hardware.

LRPC adopts a common-case approach to commu-
nication, exploiting, whenever possible, simple control
transfer, simple data transfer, simple stubs, and mul-
tiprocessors. In so doing, LRPC performs well for the
majority of cross-domain procedure calls by avoiding
needless scheduling, excessive run-time indirection, un-
necessary access validation, redundant copying, and
lock contention. LRPC, nonetheless, is safe and trans-
parent, and represents a viable communication alterna-
tive for small-kernel operating systems.

7 Acknowledgements

We would like to thank Guy Almes, David Ander-
son, Andrew Birrell, Mike Burrows, Dave Cutler, Roy
Levin, Mark Lucovsky, Tim Mann, Brian Marsh, Rick
Rashid, Dave Redell, Jan Sanislo, Mike Schroeder,
Shin-Yuan Tzou, and Steve Wood for discussing with
us the issues raised in this paper. We would also like
to thank DEC SRC for building and supplying us with
the Firefly. It has been a challenge to improve on the
excellent performance of SRC RPC, but one made eas-
ier by the Firefly’s overall structure. One measure of
a system’s design is how easily a significant piece of it
can be changed. We doubt that we could have imple-
mented LRPC as part of any other system as painlessly
as we did on the Firefly.

References

[Birrell & Nelson 841 Birrell, A. D. and Nelson, B. J.
Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems,
2(1):39-59, February 1984.

[Cheriton 881 Cheriton, D. R. The V Distributed
System. 6ommunications of the ACM,
31(3):314-333, March 1988.

[Clark 851

[Cook 781

[Dennis &

Clark, D. D. The Structuring of Systems Us-
ing Upcalls. In Proceedings of the 10th AChI
Symposium on Operating Systems Princi-
ples, pages 171-180, December 1985.

Cook, D. The Evaluation of a Protection
System. PhD dissertation, Cambridge Uni-
versity, Computer Laboratory, April 1978.

Van Horn 661 Dennis, J. B. and Van Horn,
E. C. Programming Semantics for Multipro-
grammed Computations. Communications
of the ACM, 9(3):143-155, March 1966.

[Fitzgerald 861 Fitzgerald, R. P. A Performance Eval-
uation of the Integration of Virtual Mem,-
ory Management and Inter-Process Com-
munication in Accent. PhD dissertation,
Carnegie-Mellon University, October 1986.

[Jones & Rashid 861 Jones, M. B. and Rashid, R. F.
Mach and Matchmaker: Kernel and Lan-
guage Support for Object-Oriented Dis-
tributed Systems. In Proceedings of the
Conference on Object-Oriented Program-
ming Systems, Languages, and Applications,
pages 67-77, October 1986.

[Karger 891 Karger, P. A. Using Registers to Optimize
Cross-Domain Call Performance. In Pro-
ceedings of the Third Conference on Archi-
tectural Support for Programming Languages
and Operating Systems, April 1989.

112

[Lampson 841 Lampson, B. W. Hints for Computer
System Design. IEEE Software, l(l):ll-28,
January 1984.

[Williamson 891 Williamson, C., January 1989. Per-
sonal communication.

[Mealy et aI. 66] Mealy, G., Witt, B., and Clark, W.
The Functional Structure of OS/SSO. IBM
Systems Journal, 5(1):3-51, 1966.

[Rashid 861 Rashid, R. F. From Rig to Accent to Mach:
The Evolution of a Network Operating Sys-
tem. In Proceeding of ACM/IEEE Com-
puter Society Fall Joint Computer Confer-
ence, November 1986.

[Redell et al. 801 Redell, D. D., Dalal, Y. K., Horsley,
T. R., Lauer, H. C., Lynch, W. C., McJones,
P. R., Murray, H. G., and Purcell, S. C. Pi-
lot: An Operating System for a Personal
Computer. Communications of the ACM,
pages 81-92, February 1980.

[Ritchie & Thompson 741 Ritchie, D. and Thompson,
K. The Unix Time-Sharing System. Com-
munications of the ACM, 17(7):365-375,
July 1974.

[Rovner et al. 851 Rovner, P., Levin, R., and Wick, J.
On Extending Modula-2 For Building Large,
Integrated Systems. Technical Report # 3,
Digital Equipment Corporation Systems Re-
search Center, Palo Alto, California, Jan-
uary 1985.

[Sandberg et al. 851 Sandberg, R., Goldberg, D.,
Steve Kleiman, D. W., and Lyon, B. De-
sign and Implementation of the SUN Net-
work Filesystem. In Proceedings ofthe 1985
USENIX Summer Conference, pages 119-
130, 1985.

[Schroeder & Burrows 891 Schroeder, M. D. and Bur-
rows, M. Performance of Firefly RPC. In
Proceedings of the fdth ACM Symposium
on Operating Systems Principles, December
1989. To appear in ACM Transactions on
Computer Systems, February 1990.

[Thacker et al. 881 Thacker, C. P., Stewart, L. C., and
Satterthwaite, Jr., E. H. Firefly: A Multi-
processor Workstation. IEEE tinsactions
on Computers, 37(8):909-920, August 1988.

[Tzou & Anderson 881 TZOU, S.-Y. and Anderson,
D. P. A Performance Evaluation of the
DASH Message-Passing System. Techni-
cal Report UCB/CSD 88/452, Computer
Science Division, University of California,
Berkeley, October 1988.

[van Renesse et al. 881 van Renesse, R., van Staveren,
H., and Tanenbaum, A. S. Performance
of the World’s Fastest Distributed Oper-
ating System. Operating Systems Review,
22(4):25-34, October 1988.

113

