
Scalable Consistency Maintenance
in Content Distribution Networks

Using Cooperative Leases
Anoop George Ninan, Purushottam Kulkarni, Prashant Shenoy, Member, IEEE,

Krithi Ramamritham, Fellow, IEEE, and Renu Tewari

Abstract—In this paper, we argue that cache consistency mechanisms designed for stand-alone proxies do not scale to the large

number of proxies in a content distribution network and are not flexible enough to allow consistency guarantees to be tailored to object

needs. To meet the twin challenges of scalability and flexibility, we introduce the notion of cooperative consistency along with a

mechanism, called cooperative leases, to achieve it. By supporting �-consistency semantics and by using a single lease for multiple

proxies, cooperative leases allow the notion of leases to be applied in a flexible, scalable manner to CDNs. Further, the approach

employs application-level multicast to propagate server notifications to proxies in a scalable manner. We implement our approach in

the Apache Web server and the Squid proxy cache and demonstrate its efficacy using a detailed experimental evaluation. Our results

show a factor of 2:5 reduction in server message overhead and a 20 percent reduction in server state space overhead when compared

to original leases albeit at an increased interproxy communication overhead.
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1 INTRODUCTION

1.1 Motivation

THE past decade has seen a dramatic increase in the
popularity and use of the World Wide Web. Numerous

studies have shown that web accesses tend to be nonuni-
form in nature, resulting in 1) hot-spots of server and
network load and 2) increases in the latency of web
accesses. Content distribution networks have emerged as
a possible solution to these problems. A Content Distribution
Network (CDN) consists of a collection of proxies that act as
intermediaries between the origin servers and the end
users. Proxies in a CDN cache frequently accessed data
from origin servers and serve requests for these objects from
the proxy closest to the end-user. By doing so, a CDN has
the potential to reduce the load on origin servers and the
network and also improve client response times.

Architectures employed by a CDN can range from tree-
like hierarchies [30] to clusters of cooperating proxies that
employ content routing to exchange data [13]. From the
perspective of endowing proxies with content, proxies
within a CDN can either pull web content on-demand,
prefetch popular content, or have such content pushed to
them [11]. Mechanisms for locating the best proxy to service
a user request range from Anycast [16] to DNS-based

selection [22]. Regardless of the exact architecture and
mechanisms, an important issue that must be addressed by
a CDN is that of consistency maintenance. Since web pages
tend to be modified at origin servers, cached versions of
these pages can become inconsistent with their server
versions. Using inconsistent (stale) data to service user
requests is undesirable and, consequently, a CDN should
ensure the consistency of cached data with the server by
employing suitable techniques.

The problemof consistencymaintenance iswell studied in
the context of a single proxy and several techniques such as
time-to-live (TTL) values [5], client-polling, server-based
invalidation [4], adaptive refresh methods [23], [25], and
leases [27] have been proposed. In the simplest case, a CDN
can employ these techniques at each individual proxy—each
proxy assumes responsibility formaintaining the consistency
ofdata stored in its cache and interactswith the server todo so
independently of other proxies in the CDN. Since a typical
content distribution network consists of hundreds or thou-
sands of proxies (e.g., the Akamai CDN has a footprint of
more than 13; 500 servers [1]), requiring each proxy to
maintain consistency independently of other proxies is not
scalable from the perspective of the origin servers (since the
server will need to individually interact with a large number
of proxies). Further, consistency mechanisms designed from
the perspective of a single proxy (or a small group of proxies)
do not scale well to large CDNs. The leases approach, for
instance, requires the origin server to maintain a per-proxy
state for each cached object. This state space will grow with
the number of objects a proxy caches andwith the number of
proxies that cache an object. These arguments motivate the
need for designing novel consistency mechanisms that scale
to large CDNs and is the focus of this paper.
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1.2 Research Contributions

In this paper, motivated by the need to reduce the load at
origin servers and to scale to a large number of proxies, we
1) argue that �-consistency semantics are appropriate for
CDNs because they allow the tailoring of consistency
guarantees to the nature of objects and their usage, and
2) introduce the notion of cooperative consistency along with a
mechanism, called cooperative leases, to achieve it. Coopera-
tive consistency enables proxies to cooperate with one
another to reduce the overheads of consistency mainte-
nance. By supporting �-consistency semantics and by using
a single lease for multiple proxies, our cooperative leases
mechanism allows the notion of leases to be applied in a
scalable manner to CDNs. Another advantage of our
approach is that it employs application—level multicast to
propagate server—notifications of modifications to objects,
which reduces server overheads. We address the various
design issues that arise in a practical realization of
cooperative leases and then show how to implement the
approach in the Apache web server and the Squid proxy
cache using HTTP/1.1. Our work focuses more on cache
consistency mechanisms and semantics, and less on the
protocol details (i.e., message formats) used for sending
invalidations. Finally, we experimentally demonstrate the
efficacy of our approach using trace-driven simulations and
the prototype implementation. Our results show that
cooperative leases can reduce the number of server
messages by a factor of 2:5 and the server state by
20 percent when compared to original leases, albeit at an
increased proxy-proxy communication overhead.

The rest of this paper is structured as follows: Section 2
defines theproblemof consistencymaintenance inCDNsand
presents our cooperative leases approach. We examine
various design issues in instantiating cooperative leases in
Section 3. Section 4 discusses the details of our prototype
implementation. Section 5 presents our experimental results.
Section 6 discusses related work and, finally, Section 7
presents some concluding remarks.

2 CACHE CONSISTENCY: SEMANTICS,
MECHANISMS, AND ARCHITECTURE

2.1 �-Consistency: Consistency Semantics for
Cached Objects

Objects cached within a content distribution network need
different levels of consistency guarantees depending on
their characteristics and user preferences. For instance,
users may be willing to receive slightly outdated versions of
objects such as news stories, but are likely to demand the
most up-to-date versions of “critical” objects such as
financial information and sports scores. Typically, the
stronger the desired consistency guarantee for an object,
the higher the overheads of consistency maintenance. For
reasons of flexibility and efficiency, rather than providing a
single consistency semantics to all cached objects, a CDN
should allow the consistency semantics to be tailored to
each object or a group of related objects.

One possible approach for doing so is to employ
�-consistency semantics [25]. �-consistency requires that a
cached version of an object is never out-of-date by more

than � time units with its server version. The value of �
determines the nature of the provided guarantee—the
larger the value of �, the weaker the consistency
guarantee (since the object could be out of date by up
to � time units at any instant). An advantage of
�-consistency is that it provides a quantitatively char-
acterizable guarantee by virtue of providing an upper
bound on the amount by which a cached object could be
stale (unlike certain mechanisms that only provide
qualitative guarantees). Another advantage is the flex-
ibility of choosing a different value of � for each object,
allowing the guarantee to be tailored on a per-object
basis. Finally, strong consistency—a guarantee that a
cached object is never out-of-date with the server
version—is a special case of �-consistency with � ¼ 0.1

Due to the above advantages, in this paper, we assume a
CDN that provides �-consistency semantics. Next, we
present a consistency mechanism to provide �-consistency
and then discuss its implementation in a CDN.

2.2 Cooperative Leases: A Cache Consistency
Mechanism for CDNs

A consistency mechanism employed by a CDN should
satisfy two key requirements: 1) scalability: The approach
should scale to a large number of proxies employed by the
CDN and should impose low overheads on the origin
servers and proxies. 2) flexibility: The approach should
support different levels of consistency guarantees. We now
present a cache consistency mechanism that satisfies these
requirements. Our approach is based on a generalization of
leases [12].

In the original leases approach [12], the server grants a
lease to each request from a proxy. The lease denotes the
interval of time during which the server agrees to notify the
proxy if the object is modified. After the expiration of the
lease, the proxy must explicitly renew the lease in order to
receive further notifications. Formally, a lease is a tuple
fO; p; dg maintained by the server, where the server agrees
to notify proxy p of all updates to an object O during time
interval d.

The leases approach has two drawbacks from the
perspective of a CDN. First, leases provide strong consis-
tency semantics by virtue of notifying a proxy of all updates
to an object. As argued earlier, not all objects cached within
a CDN need such stringent guarantees. Second, leases
require the server to maintain state for each proxy caching
an object; the resulting state space overhead can be
excessive for large CDNs. Thus, leases do not scale well to
busy servers and large CDNs.

To alleviate these drawbacks, we generalize leases along
two dimensions:

1. We add a notification rate parameter � to leases that
indicates the rate, 1=�, at which the server agrees to
notify a proxy of updates to an object. This
enhancement allows a server to relax the consistency
semantics provided by leases from strong consis-
tency to �-consistency—a proxy is notified of
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updates at most once every � time units (instead of
after every update) and no later than � time units
after an update. Using � ¼ 0 reverts to the original
leases approach (i.e., strong consistency), while a
positive value of � allows the server to provide
weaker consistency guarantees (and correspond-
ingly reduces the number of notifications sent to a
proxy).

2. We allow a server to grant a single lease collectively
to a group of proxies, instead of issuing a separate
lease to each individual proxy.2 For each cached
object, the proxy group designates an invalidation
proxy, referred to as the leader, that is responsible for
all lease-related interactions with the server. The
leader of a group manages the lease on behalf of all
the proxies in the group. Since a leader is selected
per object, no single proxy becomes the bottleneck.
Moreover, the server only notifies the leader upon
an update to the object; the leader is then responsible
for propagating this notification to other proxies in
the group that are caching the object. Such an
approach has two significant advantages: 1) it
reduces the amount of state maintained at a server
(by using a single lease to represent a proxy group
instead of an individual proxy), and 2) it reduces the
number of notifications that need to be sent by the
server (by offloading some of notification burden to
leader proxies).

We refer to the resulting approach as cooperative leases.
Formally, a cooperative lease is a tuple fO;G;L; d;�g,
where the server agrees to notify the leader L representing
proxy group G of any updates to the object O once every
� time units for an interval d. While leases is a pure server-
based approach to cache consistency, cooperative leases
require both the server and the proxy (especially the leader)
to participate in consistency maintenance. Hence, this
approach is more scalable when compared to original
leases and, thus, more suited to CDN environments.

2.3 System Model of Cooperative Leases

Before discussing the implementation of cooperative leases
in CDNs, we present the system model assumed in this
paper. A content distribution network is defined as a
collection of proxies that cache content stored on origin
servers. For the purposes of maintaining consistency,
proxies within the CDN are assumed to be partitioned into
nonoverlapping groups referred to as regions (issues in
doing so are beyond the scope of this paper). Proxies within
a region are assumed to cooperate with one another for
maintaining consistency of cached objects. Cooperative
consistency is orthogonal to cooperative caching—whereas
the latter involves the sharing of cached data to service user
requests, the former involves cooperation solely for main-
taining consistency of data cached by proxies within a
region. Further, the organization of proxies into regions is
limited to consistency maintenance; a different overlay
topology can be used for exchanging data and metadata
within the CDN. Each proxy in a region is assumed to

maintain a directory of mappings between the cached object
and its corresponding leader (and possibly other informa-
tion required by the CDN). Several directory schemes such
as hint caches [24] and bloom filters [8] have been proposed
to efficiently maintain such information. Another approach
is to use a simple consistent hashing [15] based scheme to
determine the mapping between an object and the proxy
that acts as the leader. Here, a hashing function is used to
hash on both the unique object identifier and the list of
proxy identifiers to determine the best match. Although this
approach reduces the flexibility in assigning the leader for
an object, it reduces the space and the message exchange
overhead. Any of the above schemes suffices for our
purpose.

2.4 Operations of Cooperative Leases

Cooperative leases can be instantiated as follows (see
Table 1 and Fig. 1).

First-time requests. When an object is requested for the
first time within a region (i.e., upon a global cache miss), a
leader needs to be chosen for the object. The proxy receiving
the request executes a leader selection algorithm to pick a
leader. Different cached objects can have different lea-
ders—the cooperative leases approach attempts to distri-
bute leader responsibilities across proxies in the region for
load-balancing purposes. Specific techniques for leader
selection are discussed in Section 3.1. After choosing a
leader, the proxy issues a HTTP request to the server and
piggybacks the leader information with the message; the
message can also include optional information such as the
desired notification rate parameter �. The requested object
is then sent to the proxy and the lease is sent to the leader
and, optionally, a copy of the object. As will be clear later,
the presence of a copy of the object at the leader enables us
to perform certain optimizations. The leader proxy then
broadcasts a directory update to all proxies in the region
indicating it is the designated leader for the object. The
leader also maintains a membership list consisting of all
proxies caching the object; the list is initialized to the proxy
that requested the object. Fig. 1a depicts these interactions.

From this point on, the leader is responsible for renewing
the lease onbehalf of proxies in the region and for terminating
the lease when proxies are no longer interested in the object.
Policies for doing so are discussed in Section 3.3.

A minor modification of the protocol in Fig. 1a is to have
the proxy communicate with the server to request the object
and communicate with the leader to obtain a lease on its
behalf. If the leader does not already have a lease for that
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object, it forwards the request to the server. The protocol
described in Fig. 1a has the advantage of lower message
overhead for popular objects and integrates well with
cooperative caching.

An alternate approach would have been to place the
leader in the HTTP request path from the proxy to the
server. This, however, suffers from the drawback of adding
to the cache miss latency and increases the load on the
leader as the entire object needs to be stored and forwarded
by the leader. Second, it does not scale well in a multilevel
proxy organization.

Subsequent requests. For each subsequent request to the
object within the region, a proxy first examines its local
cache. In the event of a cache hit, the proxy services the
request using locally cached data. In the event of a local
cache miss, the proxy can pursue one of several possible
alternatives. It can either fetch the object from the server or
consult its directory for a list of proxies caching the object
and fetch the object from one such proxy (the exact proxy
that is chosen may depend on the information in the
directory and metrics such as proximity). Since the focus of
our work is on consistency maintenance, the cooperative
leases approach does not mandate the use of cooperative
caching or require a particular policy for cooperative
caching—the proxy is free to fetch the object from any
entity that has the object, including the server. The only
requirement imposed by cooperative leases is that the proxy
notify the leader of its interest in the object. The leader then
updates the membership list for the object and starts
forwarding any subsequent notifications from the server
to this proxy. Fig. 1b depicts these interactions.

Observe that a proxy can optimize the overheads of the
above operations by just fetching the object from the leader.
If the leader cached the most recent version of the object
(recall that a copy of the object could be optionally sent to
the leader), this eliminates the need to send two different
messages, one to fetch the object and the other to notify the
leader of this fetch.

Updates to the Object. In the event that the object is
modified at the server, each proxy caching the object needs
to be notified of the update. To do so, the origin server first
notifies the leader of each region caching the object, subject
to the notification rate parameter �. The notification
consists of either a cache invalidate or a new version of
the object (see Section 3.4 for details). Each leader in turn
propagates this notification to every proxy in the region

caching the object (i.e., to all proxies in the membership list).
Depending on the type of notification, proxies then either
invalidate the object in the cache or replace it with the
newer version. Our approach is equivalent to using
application-level multicast for propagating notifications; the
membership list and the leader constitute the “multicast
group.” Fig. 1c depicts these interactions.

For simplicity of exposition, the above discussion
assumed that the application-level multicast tree within a
region is only two levels deep, spanning from servers to
leaders and from leaders to proxies. Whereas a one-level
hierarchy suffices for small regions (likely to be the
common case), large CDNs are likely to constitute multiple
regions and multilevel proxy hierarchies. Cooperative
leases can be easily extended to multilevel proxy hierarchies
and multiregion CDNs; techniques for doing so are
discussed in Section 3.5 and Section 3.6.

3 DESIGN CONSIDERATIONS FOR COOPERATIVE

LEASES

In this section, we discuss design issues that arise when
implementing cooperative leases in a CDN. These include
leader selection, selecting lease duration, notification rate,
policies for lease renewal, and sending invalidations versus
updates (see Table 1). We also present techniques to
instantiate cooperative leases when CDN proxies are
organized in multilevel hierarchies and/or multiple regions.

3.1 Leader Selection

We consider two different policies for choosing a leader
when an object is accessed for the first time within the
region. In the simplest case, the proxy that receives this
request can become the leader for the object. Since many
Web objects tend to be accessed by only one user [3], an
advantage of this approach is that only one proxy is
involved in consistency maintenance for such objects (since
the proxy caching the object is also the leader). This results
in lower communication overheads. A drawback, however,
is that the approach has poor load-balancing proper-
ties—leader responsibilities can become unevenly distrib-
uted if a small subset of proxies receive a disproportionate
number of first-time requests. Additionally, if several
proxies receive simultaneous first-time requests to an
object, it is possible for multiple proxies to declare
themselves the leader. Such duplication can be prevented
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Fig. 1. Interactions between servers (S), leaders (L), and proxies (P) in cooperative leases. (a) First-time requests, (b) subsequent requests, and

(c) object update.



using tie-breaking rules or by having the server perform
additional error checks before issuing a new lease to a
region.

An alternate approach is to employ a hashing function to
determine the leader for an object. To illustrate, the leader
could be determined based on the MD5 hash of the object
URL (i.e.,L ¼ MD5ðURLÞ mod N , whereN is the number of
proxies in the region). More complex hashing functions can
take other factors, such as the current load on proxies, into
account in addition to the URL [15]. An advantage of the
hash-based approach is that it has good load-balancing
properties and results in a more uniform distribution of
leader responsibilities across proxies. A limitation though is
that it can impose a larger communication overhead than
our first approach. Since the leader can be potentially
different from proxies caching the object, additional direc-
tory updates, server notifications, and lease management
messages need to be exchanged between these proxies,
which increases communication overheads. Section 5 quan-
titatively evaluates the trade offs of these two policies.

3.2 Choosing the Lease Duration and Notification
Rate

Two key factors that influence the performance of coopera-
tive leases are the lease duration d and the notification rate
parameter �. In a recent work, we investigated techniques
for determining the lease duration for the original leases
approach and proposed policies for computing d based on
parameters such as object popularity, write frequency, and
server/network load [7]. Since similar policies can be
employed for computing the lease duration d in CDNs,
we do not consider this issue any further.

The notification rate can either be specified by the user
(or proxy), or computed by the server. In the former
approach, the end-user or the proxy specifies a tolerance �
based on the desired consistency guarantee. The server then
grants a lease with this � if it has sufficient resources to
meet the desired tolerance. In the latter approach, the server
computes an appropriate notification rate based on various
system parameters while issuing a new lease. For instance,
the server could compute � based on the server or network
load. Rather than rejecting a request for a lease during
periods of heavy load, the server could continue to grant
leases but provide weaker guarantees (i.e., use a larger �).
To illustrate,

� ¼
0 load < LWM
c � load LWM � load < HWM
d load � HWM;

8<
: ð1Þ

where c is a constant (based on the values of the load and
the watermarks) and LWM and HWM denote low and
high watermarks (thresholds), respectively. Here, the server
notifies leaders of all updates at low loads. � is increased
linearly with the load at moderate utilizations and is finally
set to the lease duration at high loads (d is the least possible
notification rate since at least one update should be sent in
each lease duration).

To analyze the message overhead due to a particular
choice of these parameters, consider an object with a lease
duration d and notification rate 1=�. Let ŴW denote the

nonconsecutive write frequency for the object (a nonconse-
cutive write is defined to be a write followed by a read,
while a consecutive write is one followed by another write;
the nonconsecutive write frequency is computed by count-
ing all consecutive writes to an object as a single
write—only one notification is necessary for each set of
consecutive writes). In such a scenario, the number of
notifications sent by the server within each lease duration is
minðŴW; 1�Þ � d. In the event the notification is an invalidate,
each such message will trigger an HTTP GET message upon
a subsequent read at one of the proxies in the region,
resulting in another minðŴW; 1�Þ � d message. Hence, the total
number of messages processed by the server for the object is
2 �minðŴW; 1�Þ � d.

3.3 Eager versus Lazy Lease Renewals

Another important issue in cooperative leases is the policy
for lease renewals. Since the leader manages the lease on
behalf of all proxies in the region, i.e., the proxies do not
maintain the lease directly with the server, it needs to
decide whether and when to renew a lease. Two different
renewal policies are possible:

Eager renewals. In this policy, the leader continuously
renews the lease upon each expiration until it is explicitly
notified by proxies not to do so. This approach requires
each proxy to track its interests in locally cached objects and
send a “terminate lease” message to the leader when it is no
longer interested in an object. For instance, a proxy can send
such a message if it has not received a request for an object
for a long time period. Upon receiving such a message, the
leader removes that proxy from its membership list and
stops forwarding server notifications to the proxy. Conse-
quently, a “terminate lease” message is equivalent to a
“leave” message from the application-level multicast group.
When the membership list becomes empty (i.e., all proxies
caching the object send terminate messages), the leader
stops renewing the lease. It then broadcasts a directory
update to all proxies indicating that it has relinquished
leader responsibilities for the object. Eager renewals are
beneficial in scenarios where the objects that are being
modified are also the most popular objects.

To analyze the overhead of eager renewal, consider a
proxy region that caches an object. Assume that P proxies
within the region cache the object. Let d denote the lease
duration for the object and let R and ŴW denote the read and
the nonconsecutive write frequency, respectively, for the
object at the server. For simplicity, assume that � ¼ 0,
implying that every update triggers a notification. Then, the
server sends notifications at the rate of ŴW to the leader,
which in turn forwards these notifications to the remaining
P � 1 proxies. Each proxy issues a HTTP GET message
upon a subsequent read. Thus, the total message frequency
due to invalidates and GETs is 2 � ŴW � P . In addition to these
messages, the leader sends an eager renewal message once
every d time units, resulting in a message frequency of 1=d
for renewal messages. Finally, so long as the object is
popular (large R), no terminate messages are sent. When
the object becomes cold, each proxy sends a terminate
message to the leader, which then terminates the lease
when no proxies are interested in the object. Thus, there can
be at most P terminate messages within a lease duration.
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Consequently, the per-object control message frequency F
in a proxy region that employs eager renewals is

F ¼ 2 � ŴW � P þ 1
d for popular objects with R >> 0

2 � ŴW � P þ 1
d þ P

d for unpopular objects; R << 1 :

(

ð2Þ

Lazy renewals. Here, the leader does not renew a lease
upon expiration. Instead, it sends a “lease expired” message
to all proxies caching the object; proxies, in turn, flag the
object as “potentially stale.” This message is required as
member proxies do not maintain lease information. Upon
receiving a subsequent request for this object, a proxy sends
an if-modified-since (IMS) request to the server. The server
then issues a new lease for the object, if one has not already
been issued, and responds to the IMS request by sending a
new version of the object, if the object was modified in the
interim. The lease, if one is issued, is sent to the leader. In
the lazy approach, proxies do not need to track their interest
in each cached object. Moreover, since leases are renewed
lazily and only when an object is accessed, the approach is
efficient for less popular objects (e.g., “one-timers”). The
drawback, though, is that each request received after a lease
expiration involves an additional interaction with the server
(in the form of an IMS request). In contrast, the eager
approach only involves leader-server interactions after lease
expiry; individual proxies do not need to interact with the
server, which reduces server load.

To analyze the overhead of lazy renewals, consider a
region where P proxies are caching the object. Like in eager
renewals, the message frequency due to invalidate and GET
messages is 2 � ŴW � P . If the object is popular, each of the
P proxies will receive a read request after lease expiry,
which triggers an IMS request and an appropriate (server)
response. Thus, at most 2P

d IMS requests and responses are
exchanged. On the other hand, if the object is unpopular, no
messages are sent by proxies upon lease expiry. Conse-
quently, the per-object message frequency F in a proxy
region that employs lazy renewals is

F ¼ 2 � ŴW � P þ 2P
d for popular objects with R >> 0

2 � ŴW � P for unpopular objects; R << 1 :

�
ð3Þ

From the above analysis, we observe that eager renewals
yield a lower message overhead for popular objects, while
lazy renewals yield a lower message overhead for unpop-
ular objects.

3.4 Propagating Invalidates versus Updates

When an object is modified, the server notifies each leader
proxy with an active lease (subject to the notification rate
parameter �). As explained earlier, this notification consists
of either a cache invalidate or an updated (new) version of
the object. On receiving an invalidate message for an object,
a proxy marks the object as invalid. Subsequent requests for
the object requires the proxy to fetch the object from the
server (or from another proxy in the region if that proxy has
already fetched the updated object). Thus, each request after
a cache invalidate incurs an additional delay due to this
remote fetch. No such delay is incurred if the server sends
out the new version of the object upon a modification.3 In
such a scenario, subsequent requests can be serviced using

locally cached data. A drawback, however, is that sending
updates incurs a large network overhead (especially for
large objects). This extra effort is wasted if the object is
never subsequently requested at the proxy. Consequently,
cache invalidates are better suited for less popular objects,
while updates can yield better performance for frequently
requested objects. Observe that sending invalidates is
equivalent to a lazy update policy at proxies, while sending
new versions of objects amounts to eager updates.

A server can dynamically decide between invalidates
and updates based on the characteristics of an object. One
policy is to send updates for objects whose popularity
exceeds a threshold and to send invalidates for all other
objects. Although a server does not have access to the actual
request stream at proxies to compute object popularities, it
can estimate the popularity based on lease renewals. A
continuously renewed lease is an indication that the object
is popular within a region. Hence, the server can send
updates for objects whose leases have been renewed at least
� consecutive times (� is a threshold). Using � ¼ 0 causes
only updates to be sent, whereas � ¼ 1 causes only
invalidates to be sent; an intermediate value of � allows
the server to dynamically choose between the two based on
the object popularity. A more complex policy is to take both
popularity and object size into account. Since large objects
impose a larger network transfer overhead, the server can
use progressively larger thresholds for such objects (the
larger a object, the more popular it needs to be before the
server starts sending updates).

We analyze the overheads of propagating invalidates
and updates to understand when each of these options
should be used. Let R and W denote the read and write
frequency for an object cached in a region. For simplicity,
assume that � ¼ 0, implying that the proxy needs to be
notified of all updates.

To analyze the overhead of sending invalidates, observe
that a invalidate message needs to be sent for each write
that follows a read request. After each invalidate, the leader
needs to download a new version of the object upon a
subsequent read (via a HTTP GET). No request needs to be
sent to the server for consecutive reads (since the cached
version is up-to-date). Let all consecutive reads be grouped
as a single read and let the resulting frequency of
nonconsecutive reads be denoted by R̂R. Hence, in the worst
case, the bandwidth required for message exchanges is the
overhead due to invalidates, the overhead of GET messages,
and the overhead of transferring the object, which is given
by 2Wcþ R̂RS, where c denotes the size of a control message
and S denotes the size of the object.

As an optimization, we note that each set of con-
secutive writes requires only a single notification to be
sent by the server. Thus, in the best case, only the first
write after a read request triggers an invalidate, provided
the server maintains enough state about the leader’s last
read time. In this case, the above expression for
bandwidth usage simplifies to 2ŴWcþ ŴWS, where ŴW is
the frequency of nonconsecutive writes. Note that the
nonconsecutive write frequency and nonconsecutive read
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frequency become equal after consecutive reads and
consecutive writes are grouped together (i.e., R̂R ¼ ŴW ).

In contrast, if the server propagates updates, every write
at the server results in the object being pushed to the leader.
No additional control messages need to be exchanged. This
results in a bandwidth requirement of WS.

Having derived the overheads, we now analyze scenar-

ios under which each approach outperforms the other.

Consider the case where the object is small and is

approximately equal to the size of a control message

(c � S). Then, 2ŴWcþ ŴWS � 3ŴWS ¼ 3R̂RS. Hence, updates

are better if WS � 3R̂RS, i.e., if the write frequency is less

than thrice the nonconsecutive read frequency. In this

scenario, updates will incur a smaller overhead than

invalidates. Intuitively, updates are a better option if the

object is small and if lots of reads amortize the overhead of

pushing an update (due to a write). In contrast, for large

objects (where c
S ! 0), 2ŴWcþ ŴWS ! ŴWSð¼ R̂RSÞ. So, inva-

lidates use lower bandwidth as long as write frequency is

greater than the nonconsecutive read (write) frequency,

which is always the case. Thus, invalidates are better for

large objects and when there are more writes than reads.

3.5 Multilevel Proxy Organization

If the number of proxies in a region is large, then a single-
level proxy hierarchy will not scale since the leader needs to
propagate notifications to a large number of proxies and,
hence, the leader can become a potential bottleneck in the
system. To reduce the burden on the leader and improve
the scalability of the system, we propose a generic
technique for extending cooperative leases to a N-ary,
L-level proxy hierarchy, where N is an input to the system
and L is determined by the number of proxies interested in
an object in a region. The leader for an object becomes the
root of the hierarchy which is L-levels deep and has a fan-
out of N . N corresponds to the maximum length of the
membership list for any proxy in the region. Several
protocols exist that can be used for dynamic tree formation
among proxies; however, the simple tree construction
protocol described below suffices for our purpose. In what
follows, we describe how the cooperative leases approach
presented in Section 2.4 can be extended to multilevel
hierarchies.

First Request. The operation of cooperative leases for
this event remains the same as that described in Section 2.4.
Although any leader selection scheme suffices for our
purpose, for simplicity, we assume the first proxy is leader
scheme for the rest of this section. To make cooperative
leases generically applicable to a multilevel hierarchical, the
leader needs to maintain additional state about the
structure of the tree and each member proxy needs to
maintain information about its children. Doing so enables
generation of a well-balanced tree. We note that, like in
single-level hierarchies, a multilevel hierarchy is generated
on a per-object basis; different objects may have different
leaders and different tree structures.

Subsequent Requests. This is similar to what is
described in Section 2.4 with the following exception. If a
proxy experiences a cache miss, it forwards this request to

the leader; the leader adds such a proxy as a member (an

immediate child) as long as it has less than N immediate

children. For the formation of further levels, the proxy is

added as a child of an existing member with the least

number of children; since the leader knows the structure of

the entire tree, determining this information is trivial. If all

members have an equal number of children, then a member

is picked at random. If the selected member already has N

immediate children, it selects one of its children to be the

parent in a similar fashion. This process continues recur-

sively until a parent is found. The number of children at

each level of the tree gets updated as the parent selection

process continues. We call the messages sent by the leader

for identifying a parent, AddMember messages. Once a

parent proxy is found, the parent adds the new proxy as its

child (using a JoinMe message) and, hence, the new proxy

joins the hierarchy. The hierarchy creation procedure of

selecting a member with the smallest cardinality ensures

that the tree created is balanced and has the smallest depth

for a given number of proxies, thereby, reducing the

propagation delay from leader to leaf proxies.
Updates to the Object. Since the basis for multilevel

proxy organization is sharing the task for propagating

updates, in addition to that stated in Section 2.4, every

proxy in the hierarchy maintains a membership list. When a

proxy in the hierarchy receives an update, it forwards this

only to proxies in its membership list. Hence, a leader proxy

multicasts updates to its children and the process continues

recursively until all leaf proxies in the hierarchy receive the

updates.
Terminate Requests. When a proxy loses interest in an

object and if it has no children, it sends a terminate request

to its parent and this recurses all the way to the root

(leader). This is necessary so that state information at all

proxies required for maintaining balance in the tree gets

updated. To differentiate these messages from Terminate

Requests, we see in one-level proxy hierarchies, we call these

UpdateChildrenState messages. As new proxies join the

hierarchy, the tree will dynamically rebalance itself.

3.6 Multiple Regions in a CDN

If proxies in a CDN are organized into multiple regions, the

server has to maintain additional state information, which

includes leader proxy and lease information on a per-region

basis. As a result, if proxies in multiple regions express

interest in an object, the server will be responsible for

propagating updates to multiple leaders (one per region),

and they, in turn, will be responsible for catering to member

proxies in their regions. While it is clear that such a scheme

requires maintenance of extra state, the maintenance of a

lease for an object per-region has its advantages. This, in

general, adds flexibility in independently managing critical

resources for each region. For instance, CDN administrators

may choose different lease duration computation techni-

ques [7] for leases for different regions based on specific

region characteristics. Note that the operations of coopera-

tive leases within each individual region remains as stated

in Section 2.4 and Section 3.5.

NINAN ET AL.: SCALABLE CONSISTENCY MAINTENANCE IN CONTENT DISTRIBUTION NETWORKS USING COOPERATIVE LEASES 7



4 IMPLEMENTATION ISSUES

We have implemented the cooperative leases algorithm in
the Squid proxy cache and the Apache web server.4 Our
implementation is based on HTTP/1.1, which allows user-
defined extensions as part of the request/response header.
We use these header extensions to enable proxies to request
and renew leases from a server. To do so, lease requests and
responses are piggybacked onto normal HTTP requests and
responses. Lease renewals and invalidation requests are
also sent as request header extensions. The exact HTTP
grammar for lease requests, renewals, and invalidations is
described in [20].

For simplicity and modularity, our implementation
separates lease management functionality from the serving
of web requests. Lease management at the server is handled
by a separate lease server (leased). Such an architecture
results in a clean separation of functionality between the
Apache server, which handles normal HTTP processing,
and the lease server which handles lease processing and
maintains all the state information (see Fig. 2). Whenever
the Apache server receives a lease grant/renewal request
piggybacked on a HTTP request, it forwards the former to
the lease server for further processing. The lease duration d
and the notification rate parameter � are computed using
policies listed in [7] and Section 3.2. The HTTP response is
then sent back to the client (proxy), while the lease is sent to
the leader. Invalidation requests are handled similarly—the
web server forwards the request to the lease server, which
then sends invalidations to all leaders with active leases.
Leaders forward the invalidations to all proxies caching the
object as described below.

Analogous to the web server architecture, our imple-
mentation in Squid consists of two components—the proxy
cache and the lease handler—that separate the caching
functionality from lease management. The lease handler
(LH) can either act as a leader or as a member. In the former
case, the lease handler maintains a membership list of all
proxies caching the object and forwards notifications from
the server to this list. The lease handlers at member proxies
are responsible for tracking object popularities and sending
lease terminate messages to the leader for cold objects.

Server failures and/or network partitions can be handled at
the leader by exchanging heartbeat messages [18] or by
maintaining a persistent TCP connection with the server—a
broken connection indicates a failure and requires cached
objects to be invalidated within � time units. The heartbeat
interval should, in this case, be smaller than the notification
rate parameter.

5 EXPERIMENTAL EVALUATION

In this section, we demonstrate the efficacy of cooperative
leases by 1) comparing the approach with the original leases
from the perspective of scalability, 2) evaluating the trade offs
of various policies described in Section 3, and 3) quantifying
the implementation overheads of cooperative leases. We
employ a combination of trace-driven simulation and
prototype evaluation for our experiments. We use simula-
tions to explore the parameter space along various dimen-
sions and use our prototype to measure implementation
overheads (an aspect that simulations do not reveal). In what
follows, we first present our experimental methodology and
then our experimental results.

5.1 Experimental Methodology

5.1.1 Simulation Environment

We have designed an event-based simulator to evaluate the
efficacy of cooperative leases. The simulator simulates one
or more proxy regions within a CDN. Each proxy is
assumed to receive requests from a large number of clients.
Cache hits are serviced using locally cached data. Cache
misses involve a remote fetch and are serviced by fetching
the object from the leader (if one exists) or from the server.
The directory maintained by the proxy is used to make this
decision. Our simulator supports all policies discussed in
Section 3 for leader selection, server notifications, lease
renewals, and rate computations.

Our experiments assume that each proxy maintains a
disk-based cache to store objects. We assume each proxy
cache is infinitely large—a practical assumption since disk
capacities today are in tens of gigabytes and a typical proxy
can employ multiple disks. Data retrievals from disk (i.e.,
cache hits) are modeled using an empirically derived disk
model with a fixed operating system overhead added to
each request. For cache misses, data retrieval over the
network are modeled using the round-trip time, available
network bandwidth, and the object size. The network
latency and bandwidth between proxies and leaders is
assumed to be 75ms and 500KB=s, while that between
proxies and origin servers is 250ms and 250KB=s. Although
actual network latencies and bandwidths vary with net-
work conditions, the use of this simple network model
suffices for our purpose (due to our focus on consistency
maintenance rather than end-user performance).

Unless noted otherwise, our experiments assume a
default of one region with a one-level proxy hierarchy, a
region size of 10 proxies, and a lease duration of 30minutes.
We simulate 750K trace requests. The details of these traces
are outlined in the section that follows. We also assume that
a leader always caches a copy of the object and this copy is
updated upon a modification.
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5.1.2 Workload Characteristics

The workload for our experiments is generated using traces
from actual proxies, each containing several hundred

thousand requests. We use two different traces for our

study; the characteristics of these traces are shown in

Table 2. The same set of traces are used for our simulations

as well as our prototype evaluation (which employs trace

replay). Each request in the trace provides information such

as the time of the request, the requested URL, the size of the

object, the client ID, etc. We use the client ID to map each

request in the trace to a proxy in the region—all requests

from a client are mapped to the same proxy. To determine
when objects were modified, we considered using the last

modified times as reported in the trace. However, these

values were not always available. Since the modification

times are crucial for evaluating cache consistency mechan-

isms, we employ an empirically derived model to generate

modification times. Based on observations in [2], [14], we

assume that 90 percent of all Web objects change very

infrequently (i.e., have an average lifetime of 60 days). We

assume that 7 percent of all objects are mutable (i.e., have an

average lifetime of 20 days) and the remaining 3 percent
objects are very mutable (i.e., have a lifetime of 5 days). We

partition all objects in the trace into these three categories

and generate write requests and last modified times using

exponentially distributed lifetimes. Although the average

lifetimes are in days, given the high variance in the

modification times there were numerous writes within the

sampling duration of the trace. The number of synthetic

writes generated for each trace is shown in Table 2. In

practice, the server will rely on a publishing system or a

database trigger to detect a modification, the details of
which are beyond the scope of the paper.

Next, we describe our experimental results.

5.2 Impact of Leader Selection Policies

To evaluate leader selection policies, we simulated a region
of 10 proxies that employed two different policies—the
hash-based policy and the “first proxy is leader” policy. Our
experiment assumed eager lease renewals and notifications
in the form of invalidations (leaders were sent updates,
leaders forwarded invalidations). For each policy, we
measured how evenly leader responsibilities were distrib-
uted across proxies in the region as well as the total control
message overhead imposed. Figs. 3b and 3c depict our
results, while Fig. 3a shows the number of requests
processed by each proxy in the region (we only plot results
for one of the traces due to space constraints. See [20] for
complete results). As expected, the “first proxy is leader”
scheme suffers from load imbalances since some proxies
service a larger number of requests (and assume leader
responsibilities for a correspondingly larger number of first-
time requests). The figure also shows that there is a factor of
1:5 difference in load between the most heavily loaded and
the least-loaded proxy. In contrast, the hash-based policy
shows better load-balancing properties, but imposes a
larger communication overhead (since leaders can be
different from proxies caching the object, requiring addi-
tional message exchanges). As shown in Fig. 3c, the total
increase in control message overhead is about 10 percent
and the increase is primarily due to the lease terminate
messages sent from proxies to leaders. Since a small
(10 percent) increase in message overhead is tolerable
correcting a potentially large imbalance (factor of 1:5), our
results indicate that the hash-based leader selection is a
better policy than the “first proxy is leader” approach.

5.3 Eager versus Lazy Renewals

Next, we evaluate the impact of eager and lazy lease
renewals on performance. Like in the previous experiment,
we assume a region of 10 proxies, each with an infinite
cache. We vary the lease duration from five minutes to five
hours and measure its impact on lazy and eager renewals.
Fig. 4 depicts our results. As shown in Fig. 4a, depending on
the lease duration, eager renewals result in a 15-63 percent

NINAN ET AL.: SCALABLE CONSISTENCY MAINTENANCE IN CONTENT DISTRIBUTION NETWORKS USING COOPERATIVE LEASES 9

TABLE 2
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The DEC traces are from Dec. 1996, while the NLANR traces are from
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Fig. 3. Comparison of leader selection schemes. (a) Request distribution, (b) leader distribution, and (c) control message overhead.



improvement in cache hit ratios; the hit ratio is lower for

lazy renewals since requests arriving after a lease expiry

trigger an IMS request to the server. The higher hit ratios for

eager renewals are at the expense of an increased control

message overhead (see Fig. 4b). The message overhead is

33-175 percent higher and is primarily due to extra lease

renew and terminate messages. The overhead for both

policies decreases with increasing lease durations (since

longer leases require fewer renewals). Finally, Fig. 4c plots

the state space overhead of the two policies; as expected,

eager renewals result in a larger number of active leases at

any instant, causing a three to nine percent increase in state

space overhead.
An important factor governing the performance of the

eager renewals is the lease termination policy—the policy

employed by member proxies to notify the leader that they

are no longer interested in the object. As shown in Fig. 5, the

larger the period of inactivity before which a “terminate

lease” message is sent, the larger the state space overhead at

the server and the larger the control message overhead

(since the leader continuously renews leases until such a

message is received).
Thus, the two policies show a clear trade off—eager

renewals yield better hit ratios and response times at the

expense of a larger control message overhead and a slightly

larger state space overhead. Depending on whether user

performance or network/server overheads are the primary

factors of interest, one policy can be chosen over the other.

5.4 Server Notifications: Invalidates versus Updates

To understand the implications of sending invalidates

versus updates, we considered a policy where the server

sent updates for objects whose leases were renewed at least

� times in succession; invalidates were sent for the

remaining objects. We varied � from 0 to 1 and measured

its impact on the cache hit ratio and the control message

overhead. Fig. 6 shows that the notification policy has a

negligible impact on the cache hit ratio (< 1 percent

reduction as � increases from 0 to 1). The control message

overhead increases slightly (by about one percent) with

increasing � . This small increase is due to an increase in the

number of invalidates, each of which triggers an HTTP

request upon a subsequent user request. To better under-

stand this behavior, Fig. 6c plots the percentage of updates

and invalidates sent for different values of � ; the percentage

of objects accessed subsequent to a server notification is also

shown. As shown, when � ¼ 1 (i.e., the invalidate-only

scenario), only five percent of the invalidated objects are

accessed subsequently. Thus, our results show that updates

should be sent only for those modified objects that are also

popular, which can be achieved using a large � . More

generally, our analysis of read and write frequencies has

shown that updates are advantageous when the write

frequency is 1) less than three times the read frequency for

small objects and 2) less than the read frequency for large

objects [20].
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5.5 Impact of the Notification Rate

To understand the impact of the notification rate, we varied

� from five seconds to 30minutes and measured the impact

on the number of notifications (invalidates) sent by the

server (the leases duration was fixed at 30 minutes). As

shown in Fig. 7a, the number of notifications drops by an

order of magnitude with increasing �s. This indicates that

an appropriate choice of � can result in substantial savings

at the server, albeit at the expense of weaker consistency

guarantees. Next, we considered a policy where the server

computes� based on the load as explained in (1); the server

state space overhead, measured by the number of con-

current leases, is used as an indicator of the load. Note that

� is computed based on the server load only at the

beginning of a lease; once picked,� does not change for that

lease until lease expiry. We varied the high and low

watermarks in (1) and measured its impact on �. Fig. 7b

shows the variation in the server load over a 15-hour

period, while Fig. 7c plots the corresponding value of �

used for new leases and renewals. The figure shows that the

value of � closely matches the variation in the server load.

Further, depending on the low and high watermarks used,

the server uses � ¼ 0 during periods of low load and

increases � to its maximum value (i.e., the lease duration)

during periods of heavy load. Thus, an intelligent choice of

� helps provide the desired level of consistency guarantee

while lowering server overheads.

5.6 Scalability Issues: Comparison with Original
Leases

We use a more write-intensive workload to study scalability
issues—in addition to the set up we described in
Section 5.1.2. We split the three percent of very mutable
objects into two categories—2:5 percent of these change
once every 480 minutes (Type A), and 0:5 percent of these
change once every 32 minutes (Type B).

5.6.1 State Space and Control Message Overheads

To compare cooperative leases with original leases, we
consider a region of 20 proxies. We also mention results for
a 10-proxy region for comparison with results in prior
sections. To permit a fair comparison, other than the cache
consistency mechanism, all simulation parameters are kept
identical across these experiments, the first involving
cooperative leases and the second employing the original
leases approach. The lease duration is set to 30 minutes and
� ¼ 0. Due to resource constraints, we simulate only 500K
read requests from the DEC trace (this represents a duration
of 23; 565 seconds). Fig. 8 and Table 3 depict our results. As
expected, the number of leases managed by the server
decreases when cooperative leases is used (since each lease
represents multiple proxies, fewer leases are needed). The
reduction in state space overhead is 20 percent (see Table 3);
the reduction is smaller than expected since a large number
of objects in the workload are requested by only one proxy
and cooperative leases do not provide any benefits in such
scenarios. Note, however, that the number of active leases
in the region at any instant is only in the order of a few
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thousands. The number of server notifications is smaller by
a factor of 2:5 indicating that cooperative leases successfully
offloads the burden of sending notifications to leader
proxies, thereby improving server scalability. These reduc-
tions come at the expense of having to maintain a directory
of cached objects and an increased control message over-
head due to directory updates. This results in an increase in
the message overhead by a factor of 3:7, for a 20-proxy
region—the directory update overhead is proportional to
the number of proxies in the region when application-level
multicast (i.e., unicast) is used (see Fig. 8). The use of
IP-multicast, instead of application-level multicast, to send
directory updates can help lower this overhead (since
IP-multicast is more efficient than unicast). Also, note that
each unique � value associated with an object needs its
own application-level multicast group; a server can reduce
the number of multicast groups by restricting itself to a
small set of �s. For a 10-proxy region, the reduction in state
space overhead is 16 percent, the number of server
notifications is smaller by a factor of 1:9, and the increase
in the control message overhead is by a factor of only 2:2.
Thus, we conclude that cooperative leases do indeed
enhance scalability from the perspective of the server (in
terms of the state space and server message overhead),
albeit at the expense of increased inter-proxy communica-
tion overhead.

5.6.2 Effect of Varying Update Rate at the Server

A second dimension of comparing the cooperative leases
and original leases mechanisms is by studying the effect of
write frequency of objects at the server. In this section, we
change Type A objects once every 30 to 480 minutes, and
Type B objects once every 2 to 32minutes. Experiments were
run on both DEC and NLANR traces using 10 proxies for
original leases and a single region of 10 proxies for
cooperative leases. All other parameters are as described
in Section 5.1.1.

Figs. 9a, 9b, and 9c summarize our results. In Fig. 9a,
cooperative leases consistently reduced the number of
updates the server propagated to proxies by 50-53 percent
for the DEC trace. However, Fig. 9b shows that the
corresponding gain is only 2.9-3.3 percent for the NLANR
trace. We attribute this to the majority of the objects in the
NLANR trace not being accessed bymultiple proxies. Fig. 9c
plots the distribution of membership list sizes at leader
proxies for both DEC and NLANR workloads. As seen from
the figure, most leases have only one proxy in the

membership list for the NLANR workload, whereas a
sizable number of objects (popular objects) have greater
than one proxy in their membership lists for the DEC
workload. In scenarios where objects are accessed by only
one proxy, cooperative leases do not provide any benefits
over normal leases.

We conclude that, as long as objects are popular and
accessed by clients associated with different proxies in a
region, cooperative leases are effective in propagating
server notifications.

5.7 Multilevel Hierarchical Proxy Organization

In this section, we study how organizing a region of CDN
proxies into a multilevel hierarchy can help reduce some of
the overheads of maintaining a one-level proxy hierarchy.
As we mentioned earlier, the amount of work a leader
proxy will have to do in order to propagate updates and/or
invalidates to all interested members in the group can
become prohibitive if the number of proxies in the region
becomes large.

We ran this experiment with 500K read requests of the
DEC trace (a duration of 23; 565 seconds). While we keep all
other parameters the same, as elaborated in Section 5.1.1,
we use a 15-proxy region for a one-level proxy hierarchy
(server to leader proxy to member proxies) and for a
hierarchy that has a fixed span-out of two (four levels at
most). Note that the one-level proxy hierarchy can have a
maximum span-out of 14 (from leader to members) as
opposed to the maximum span-out of two in the other case.

Figs. 10a, 10b, and 10c summarize our results. Fig. 10a
shows a decrease by about 36 percent, in the number of
invalidates propagated by leader proxies per hour, when
proxies get organized into hierarchies with a span-out of
two. Fig. 10b shows an increase in the number of control
messages by about 1:2 percent. This is attributed to the
additional messages (see Fig. 10c and Section 3.5) involved
in maintaining a proxy hierarchy of more than one level.

We conclude that cooperative leases scale well with the
organization of proxies in a region into multiple levels by
sharing the responsibility of propagation of invalidate
messages by the leader proxies with the member proxies,
at the cost of a very small increase in the control message
overhead.

5.8 Organization of CDN Proxies into Varying
Number of Regions

In this section, we study how cooperative leases scale when
a fixed number of proxies P is organized into varying
number of regions, R (where R < P ; R ¼ P represents the
original leases [12] case).
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This experiment was run using P ¼ 20 proxies and 490K

requests of the NLANR trace (a duration of 36; 623 seconds).

All the other parameters are as mentioned in Section 5.1.1.

We ran experiments by uniformly distributing the 20

proxies across R ¼ 1; 2; 4; 5 and 10 regions. Let us now

compare the results we got for single (R ¼ 1) versus

multiple (R > 1 and R < P ) regions.
As we increase the number of regions, since there can be

only one leader per region, the server has to maintain more

state than it does in the single region case (a list of leader

proxies, one per region and a list of leases, one per leader,

per object). As we go from R ¼ 1 to R ¼ 10, we see a

20 percent increase in the mean state space overhead at the

server (see Fig. 11a). However, along with the increase in

the number of regions, since the number of proxies per

region (P=R) decreases, the degree of cooperation each

region decreases. As a result, we observe a decrease in

message overhead by 80:7 percent (see Fig. 11b) and a

decrease in overall hit ratio by a factor of 1:34 (see Fig. 11c).
Therefore, if server resources are critical, maintaining

fewer number of regions will be more economical and if

network resources are critical, creating multiple regions and

distributing CDN proxies across these is useful, albeit a

decrease in overall hit ratio and increase in state space

consumption at the server.
In addition to the above, we ran the same experiment but

simulated IP multicast this time. From Fig. 8, we observed

that, for a 20-proxy region, the large increase in message
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Fig. 10. Comparing single and multiple-level hierarchical proxy organizations in a region. (a) Invalidate propagation rate at leaders, (b) control

message overhead, and (c) the extra messages.

Fig. 11. Various metrics with increasing number of regions. (a) Server overhead, (b) control message overhead, and (c) hit ratio.



overhead when we use cooperative leases instead of the
original leases, can be overcome by using IP Multicast.
Fig. 12, on the other hand, shows how this message
overhead varies with an increasing number of regions,
when IP multicast is used. We see only a 2:8 percent
increase in the message overhead as we vary R from one to
10. This is because the increase in the number of regions
decreases the benefits of IP multicast.

Hence, cooperative leases exhibits good scalability
properties as we distribute CDN proxies across more
regions when using either application-level or IP multicast.

5.9 Implementation Overheads

Whereas the preceding sections examined the efficacy of
cooperative leases using simulations, in this section, we
study the overheads of various operations needed for
consistency maintenance. The testbed for our experiments
consists of the lease-enhanced Apache Web server, a region
consisting of four Squid proxy caches and a client workload
generator, all of which run on a cluster of Linux PCs. Each
PC in our experiment is a 700MHz Pentium III with 512MB

RAM, interconnected by 100Mb=s switched ethernet. The
client workload generator employs trace replay and uses
the traces described in Table 2. To do so, it maps each URL
in the trace to a unique object stored on the server of
approximately the same size. Further, like in our simula-
tions, each end-host in the trace is bound to a fixed proxy
cache using a hashing function. The proxy and the server
maintain consistency using cooperative leases as described
in Section 4. We measured the overhead of various lease
management operations at the server and the proxies over
the duration of the trace. Table 4 lists our results. As shown
in the table, the overhead of granting and renewing leases is
very small (order of milliseconds). Similarly, directory
updates and server notifications (invalidates) can be
propagated efficiently to proxies in the region (clearly these
overheads depend on the number of proxies in the region
and number of proxies that cache an object, respectively).

These results indicate that cooperative leases can be
implemented efficiently in web servers and CDN proxies.

6 RELATED WORK

Recently, several cache consistency mechanisms have been
developed for single proxies [4], [5], [7]; as argued earlier,
these mechanisms do not scale well to proxies in a CDN.

Three recent efforts have focused on the issue of scalability
[18], [27], [30]. We discuss each in turn.

A cache consistency mechanism for hierarchical proxy
caches was discussed in [30]. The approach does not
propose a new consistency mechanism, rather it examines
issues in instantiating existing approaches into a hierarch-
ical proxy cache using mechanisms such as multicast. They
argue for a fixed hierarchy (i.e., a fixed parent-child
relationship between proxies), whereas we allow different
proxies to be leaders for different objects. In addition to
consistency, they also consider the pushing of content from
servers to proxies.

Mechanisms for scaling leases are studied in [27]. The
approach assumes volume leases [28], where each lease
represents multiple objects cached by a stand-alone proxy. In
contrast, we employ cooperative leases where a lease can
represent multiple proxies. They examine issues such as
delaying invalidationsuntil lease renewals; ourwork is based
on a different consistency mechanism—�-consistency—for
propagating invalidations.�-consistency allows a separation
of the notification frequency from the lease duration, provid-
ing additional flexibility to the server. They also discuss
prefetching and pushing of lease renewals. Our renewal
policies are more complex since leaders need to interact with
memberproxies todecideonrenewals.Weshouldnote that, if
a large number of objects are serviced by only one proxy in a
region and if several such objects originate from the same
server, we could further optimize state and message over-
heads by employing a single volume lease to manage these
objects.

Techniques for dynamically growing and shrinking
consistency hierarchies are presented in [29]. Issues such
as fault tolerance and performance of hierarchies are
studied in this work. The study suggests that a promising
configuration for providing strong consistency is a two-
level hierarchy and dynamic hierarchies are almost always
better than static hierarchies. In contrast to their focus on
dynamic hierarchies and fault tolerance, we focus on issues
such as leader selection and eager versus lazy lease
renewals.

The Web cache invalidation protocol (WCIP) is an
attempt to standardize propagation of server invalidations
using application-level multicast [18]. The focus is on a
protocol for propagating invalidations; the approach is
agnostic of the actual cache consistency mechanism
employed by proxies. Like WCIP, our approach also
employs leaders to propagate invalidations and manage
lease renewals on behalf of proxies in a region. While we
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Fig. 12. Control message overhead when using IP Multicast with varying

number of regions.

TABLE 4
Implementation Overheads (NLANR)



study specific cache consistency mechanisms and policies
as well as their performance, their focus is on protocol
issues (message formats, heartbeat messages, etc.). Indeed,
our prototype implementation could have employed WCIP
instead of HTTP for sending invalidations.

The distributed object consistency protocol (DOCP) [6]
proposes extensions to the current HTTP cache control
mechanism for providing consistency guarantees. DOCP
uses a publish and subscribe mechanism along with server
invalidations to provide consistency guarantees. In DOCP,
master proxies that publish content are discovered by slave
proxies for subscription using an optimistic discovery
mechanism. Proxies subscribe to master proxies for popular
objects and directly interact with servers for other objects.
After subscription, the use of master and slave proxies is
similar to our approach of member proxies joining a group
after receiving first-time requests for objects. In both cases,
subsequent invalidates are always sent via the group’s
leader/master proxy. In contrast to the DOCP approach of
only using invalidates, we study both the effect of
propagating updates and invalidates depending on object
characteristics. While DOCP requires the deployment of
certain proxies as masters, our approach allows flexible
leader selection.

Finally, numerous studies have focused on specific

aspects of cache consistency or content distribution. For

instance, piggybacking of invalidations [17], the use of

deltas for sending updates [19], an application-level multi-

cast framework for internet distribution [10], the efficacy of

sending updates versus invalidates [9], distribution strate-

gies [21], and various schemes for prefetching content in

CDNs [26] have also been studied. These efforts comple-

ment our work and can coexist with our approach.

7 CONCLUDING REMARKS

In this paper, we argued that existing consistency techniques

are not suitable for CDN environments. To alleviate this

drawback, we proposed the notion of cooperative consis-

tency and a mechanism called cooperative leases to achieve

it. Cooperative leases meets the twin goals of flexibility and

scalability by 1) employing�-consistency semantics, 2) using

a single lease to represent multiple proxies, and 3) using

application-level multicast to propagate server notifications.

We implemented our approach into a prototype Web server

and proxy cache and demonstrated its efficacy via an

experimental evaluation. While we examined a single region

with a one-level proxy hierarchy for most design considera-

tions, we went on to underline that cooperative leases

indeed scale well when proxies in a region are organized

into a multilevel hierarchy and when CDN proxies are

organized into multiple regions. Although some results

shown use the DEC trace and others use the NLANR trace,

all corresponding results using both the traces have

displayed identical trends and are reported in [20].
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